CN110971285B - 适用于共形天线阵的波束赋形方法 - Google Patents

适用于共形天线阵的波束赋形方法 Download PDF

Info

Publication number
CN110971285B
CN110971285B CN201911240795.2A CN201911240795A CN110971285B CN 110971285 B CN110971285 B CN 110971285B CN 201911240795 A CN201911240795 A CN 201911240795A CN 110971285 B CN110971285 B CN 110971285B
Authority
CN
China
Prior art keywords
antenna array
conformal antenna
array
conformal
received signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911240795.2A
Other languages
English (en)
Other versions
CN110971285A (zh
Inventor
赵勋旺
闫聪欢
张玉
林中朝
朱明达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201911240795.2A priority Critical patent/CN110971285B/zh
Publication of CN110971285A publication Critical patent/CN110971285A/zh
Application granted granted Critical
Publication of CN110971285B publication Critical patent/CN110971285B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Abstract

本发明公开了一种基于共形天线阵的波束赋形方法,主要解决现有技术对共形天线阵波束赋形误差大的问题。其方案是:创建共形天线阵和发射天线模型;发射天线对共形天线阵发射电磁波信号;对共形天线阵的接收信号进行时间反转处理;对时间反转后的信号进行傅里叶变换得到频域上的接收信号;对频域上的接收信号取共轭作为共形天线阵的激励;利用取共轭后的接收信号作为不含有发射天线的共形天线阵的激励;利于商业软件计算该激励下共形天线阵的辐射方向图。本发明利用时间反转对共形天线阵进行波束赋形,不用考虑实际阵列的组成,数量,排布,耦合,截断,载体,带宽这些因素影响,减小了对共形天线阵波束赋形时产生的误差,提高了波束赋形的准确性。

Description

适用于共形天线阵的波束赋形方法
技术领域
本发明属于天线技术领域,特别涉及一种波束赋形方法,可用于对共形天线阵。
背景技术
在雷达,通讯等众多领域中,往往需要阵列天线方向图形成指定波束以达到所需的要求,天线阵波束赋形技术通过调整相位阵列的基本单元的参数,使得某些角度的信号获得相长干涉,而另一些角度的信号获得相消干涉。在给定天线形状与阵元个数的前提下,通过选择各阵元的间距、馈电电流幅值及相位来获得指定的天线方向图,使阵列天线可快速灵活地实现可重构波束,因而波束赋形技术在军事、遥感、无线通信、卫星定位以及雷达系统等领域均得到了广泛应用。
传统实现天线阵列波束赋形的方法,包括泰勒综合和切比雪夫综合方法,这些方法在计算简单规则的线阵或者平面阵时,具有计算量小、速度快、计算数值稳定性好等优点。但是这些方法都有各自的局限性,其适用对象仅限于一类或某几类规则排布的阵列,阵元为理想的无方向性辐射点源,且不考虑阵元之间无耦合、阵列与载体的耦合、阵列边缘无截断效应。而实际天线阵列的阵元之间往往存在较强的耦合,阵列边缘的截断效应亦无法忽略,并且天线阵列在实际中往往需要安装在某一载体上,如果载体的材质为金属,则载体与天线阵列的耦合效应对阵列方向图的影响就不能忽略,这就导致了传统波束赋形法在应用于实际阵列时往往会出现赋形波束与期望波束相差较大的情况。
根据经典天线阵列理论,天线阵列的辐射方向图是由阵因子和单元因子的乘积得到的。然而对于共形天线阵来说,复杂的天线单元位置会导致共形天线阵的阵列因子无法通过计算得到,且容易受到共形载体以及单元间互耦效应的影响,进而导致了在通过传统波束赋形法对共形天线阵进行波束赋形时的误差较大,同时由于共形天线阵的阵元是分布在载体表面,其不同阵元的单位因子是不同的,不能简单的利用方向图乘积原理来进行方向图求解,故进一步加重了用传统的波束赋形方法对共形天线阵进行波束赋形的困难程度。
发明内容
本发明的目的在于针对上述现有技术的不足,提出一种适用于共形天线阵的波束赋形方法,以减小对共形天线阵波束赋形时产生的误差,实现对共形天线阵的准确波束赋形。
为实现上述目的,本发明的技术方案是通过时间反转方法得出对共形天线阵列进行波束赋形所需加激励的幅值和相位,其步骤包括如下:
(1)建立由M个天线单元与不规则载体组成的共形天线阵模型,设每个天线单元的工作频率F为450MHz,M大于等于2;
(2)在共形天线阵
Figure BDA0002306166230000021
方向的远区处放置一个发射天线,用于对共形天线阵发射与所期望波束赋形方向相一致的电磁波w(t),该发射天线与天线阵的距离为r,r的范围大于等于20个波长,工作频率F为450MHz,其中,θr为电磁波的w(t)的入射方向与+X轴的夹角,
Figure BDA0002306166230000026
为电磁波的w(t)的入射方向与+Y轴的夹角;
(3)利用电磁商业软件计算发射天线在发射电磁波w(t)的情况下共形天线阵馈电端口的接收信号:Y(t)=[y1(t),y2(t),...ym(t)...,yM(t)]T,其中,ym(t)为每个阵元的馈电端口接收信号,m为每个阵元的序号,1≤m≤M;
(4)对接收信号Y(t)进行时间反转处理,得到时间反转后接收信号Y(-t)=[y1(-t),y2(-t),...ym(-t)...,yM(-t)]T,其中ym(-t)为每个阵元的馈电端口进行时间反转后的时域接收信号;
(5)对时间反转后的时域接收信号Y(-t)进行傅里叶变换,得到频域上的接收信号Y(ω):
Figure BDA0002306166230000022
对Y(ω)取共轭可得
Figure BDA0002306166230000023
其中上标*为取共轭算子,
Figure BDA0002306166230000024
为每个阵元时域接收信号Y(-t)进行傅里叶变换并取共轭后的频域接收信号,即得到了所期望波束的激励端幅相分布;
(6)将共轭后的频域接收信号Y*(ω)中的
Figure BDA0002306166230000025
作为第m个天线单元的激励信号,以对不含有发射天线的共形天线阵进行激励,并利用电磁商业软件计算该激励下共形天线阵的波束方向图,该波束方向图即波束赋形后的共形天线阵方向图;
本发明由于通过对共形天线阵的接收信号进行时间反转处理,得到对共形天线阵进行波束赋形时所加激励的幅相,使得共形天线阵进行波束赋形时不再受到实际阵列的组成,数量,排布,耦合,截断,载体,带宽等因素的影响,且自动考虑了阵元之间的耦合情况和天线阵列与载体的耦合情况,减小了对共形天线阵进行波束赋形时产生的误差,克服了现有技术对共形天线阵进行波束赋形时的缺陷,解决了传统方法解决不了的共形天线阵波束赋形问题。
附图说明
图1本发明的实现流程图;
图2现有的共形天线阵列模型图;
图3是根据经典天线阵列理论对图2计算得到的方向图;
图4本发明中发射天线与共形天线阵列的分布示意图;
图5用本发明对图2进行波束赋形后的方向图。
具体实施方式
下面结合附图和具体实施例,对本发明的实施例和效果作进一步详细描述:
参照图1,本实例的实现步骤如下:
步骤1,创建共形天线阵列。
参照图2,本步骤创建的共形天线阵列是由10x 7个天线单元组成,每个天线单元分布在载体表面,且在+X方向上天线单元间的间隔为三分之一个波长,在+Z方向上天线单元间的间隔为一个波长,该天线阵的阵元为倒F天线。
步骤2,根据经典天线阵列理论计算共形天线阵的方向图。
本实例是利用电磁商业软件,如FEKO,HOBBIES,在对天线单元所加激励的幅值均为1伏,相位均相差90度的情况下计算共形天线阵的辐射方向图,结果如图3所示。
步骤3,设置发射天线,对共形天线阵发射电磁波。
参照图4,本实例是在共形天线阵(-180,0)方向的远区处放置一个发射天线,该发射天线对共形天线阵发射的中心频率为450MHz电磁波,发射天线与天线阵的距离为二十个波长,发射天线发射过程和共形天线阵接收过程均采用高阶矩量法进行模拟仿真。
步骤4,对接收信号进行时间反转处理。
(4.1)设共形天线阵接收到的电磁波信号为:Y(t)=[y1(t),y2(t),...ym(t)...,y70(t)]T,其中,ym(t)为每个阵元的馈电端口接收信号,1≤m≤70;
(4.2)设电磁波在色散,非均匀或各向异性介质中传播时,满足如下麦克斯韦方程:
Figure BDA0002306166230000041
其中,
Figure BDA0002306166230000042
表示电场矢量,
Figure BDA0002306166230000043
表示磁场矢量,
Figure BDA0002306166230000044
是介电常数张量,
Figure BDA0002306166230000045
是磁导率张量,▽是哈密顿算子;
(4.3)将(4.2)式中
Figure BDA0002306166230000046
变换为:
Figure BDA0002306166230000047
对该式两端取旋度运算得到表示式:
Figure BDA0002306166230000048
(4.4)利用恒等式
Figure BDA0002306166230000049
将(4.2)式中的
Figure BDA00023061662300000410
变换为:
Figure BDA00023061662300000411
(4.5)将(4.4)中的
Figure BDA00023061662300000412
代入(4.3)中的
Figure BDA00023061662300000413
得到电磁波在非均匀介质中的波动方程为:
Figure BDA00023061662300000414
其中:
Figure BDA00023061662300000415
由于该波动方程中只有关于时间的二阶微分,因此电场波动方程在时间域上是对称的,即
Figure BDA00023061662300000416
Figure BDA00023061662300000417
都为波动方程的解;
(4.6)根据(4.5)中波动方程的解,可知当Y(t)改为Y(-t)后,电磁波会沿Y(t)的来波路径进行逆向传播,故对共形天线阵的每个阵元的馈电端口接收信号Y(t)进行时间反转处理,得到时间反转后接收信号:
Y(-t)=[y1(-t),y2(-t),...ym(-t)...,y70(-t)]T,其中ym(-t)为每个阵元的馈电端口接收信号进行时间反转后的时域结果。
步骤5,对时间反转处理后的时域结果进行再处理:
(5.1)对步骤4中得到的接收信号进行时间反转处理后的时域结果Y(-t)进行傅里叶变换,可得
Figure BDA0002306166230000051
Y(ω)为时间反转处理后的频域结果。
(5.2)对(5.1)中得到的频域上的激励信号Y(ω)取共轭可得Y*(ω),
Figure BDA0002306166230000052
其中
Figure BDA0002306166230000053
为每个阵元时域接收信号Y(-t)进行傅里叶变换并取共轭后的频域接收信号。
步骤6,利用时间反转方法得到的激励计算共形天线阵的方向图。
将步骤5中得到的Y*(ω)作为不含有发射天线的共形天线阵激励,利用电磁商业软件,如FEKO,HOBBIES,计算共形天线阵的辐射方向图,该辐射方向图即为利用时间反转方法进行波束赋形后的结果,如图5所示。
以上描述仅是本发明的具体实施例,不构成对本发明的任何限制。应当理解的是,对本领域专业技术人员来说,在了解本发明的原理后,根据上述说明对形式、细节和参数等加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (2)

1.一种适用于共形天线阵的波束赋形方法,其特征在于,包括如下:
(1)建立由M个天线单元与不规则载体组成的共形天线阵模型,设每个天线单元的工作频率F为450MHz,M大于等于2;
(2)在共形天线阵
Figure FDA0003779244020000011
方向的远区处放置一个发射天线,用于对共形天线阵发射与所期望波束赋形方向相一致的电磁波w(t),该发射天线与天线阵的距离为r,r的范围大于等于20个波长,工作频率F为450MHz,其中,θr为电磁波的w(t)的入射方向与+Y轴的夹角,
Figure FDA0003779244020000012
为电磁波的w(t)的入射方向与+X轴的夹角;
(3)利用电磁商业软件计算发射天线在发射电磁波w(t)的情况下共形天线阵馈电端口的接收信号:Y(t)=[y1(t),y2(t),...ym(t)...,yM(t)]T,其中,ym(t)为每个阵元的馈电端口接收信号,m为每个阵元的序号,1≤m≤M;
(4)对接收信号Y(t)进行时间反转处理,得到时间反转后接收信号Y(-t)=[y1(-t),y2(-t),...ym(-t)...,yM(-t)]T,其中ym(-t)为每个阵元的馈电端口进行时间反转后的时域接收信号;
(5)对时间反转后的时域接收信号Y(-t)进行傅里叶变换,得到频域上的接收信号Y(ω):
Figure FDA0003779244020000013
对Y(ω)取共轭可得
Figure FDA0003779244020000014
其中上标*为取共轭算子,
Figure FDA0003779244020000015
为每个阵元时域接收信号Y(-t)进行傅里叶变换并取共轭后的频域接收信号,即得到了所期望波束的激励端幅相分布;
(6)将共轭后的频域接收信号Y*(ω)中的
Figure FDA0003779244020000016
作为第m个天线单元的激励信号,以对不含有发射天线的共形天线阵进行激励,并利用电磁商业软件计算该激励下共形天线阵的波束方向图,该波束方向图即波束赋形后的共形天线阵方向图。
2.根据权利要求1所述的方法,其中(4)中对接收信号Y(t)进行时间反转处理,按如下步骤进行:
(4a)设电磁波在色散,非均匀或各向异性介质中传播时,满足如下麦克斯韦方程:
Figure FDA0003779244020000021
其中,
Figure FDA0003779244020000022
表示电场矢量,
Figure FDA0003779244020000023
表示磁场矢量,
Figure FDA0003779244020000024
是介电常数张量,
Figure FDA0003779244020000025
是磁导率张量,
Figure FDA0003779244020000026
是哈密顿算子;
(4b)将(4a)式中
Figure FDA0003779244020000027
变换为:
Figure FDA0003779244020000028
对该式两端取旋度运算得到表示式:
Figure FDA0003779244020000029
(4c)利用恒等式
Figure FDA00037792440200000210
将(4a)式中的
Figure FDA00037792440200000211
变换为:
Figure FDA00037792440200000212
(4d)将(4c)式中的
Figure FDA00037792440200000213
代入(4b)式中的
Figure FDA00037792440200000214
得到电磁波在非均匀介质中的波动方程为:
Figure FDA00037792440200000215
其中:
Figure FDA00037792440200000216
由于该波动方程中只有关于时间的二阶微分,因此电场波动方程在时间域上是对称的,即
Figure FDA00037792440200000217
Figure FDA00037792440200000218
都为波动方程的解;也就是说,当Y(t)改为Y(-t)后,电磁波会沿Y(t)的来波路径进行逆向传播。
CN201911240795.2A 2019-12-06 2019-12-06 适用于共形天线阵的波束赋形方法 Active CN110971285B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911240795.2A CN110971285B (zh) 2019-12-06 2019-12-06 适用于共形天线阵的波束赋形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911240795.2A CN110971285B (zh) 2019-12-06 2019-12-06 适用于共形天线阵的波束赋形方法

Publications (2)

Publication Number Publication Date
CN110971285A CN110971285A (zh) 2020-04-07
CN110971285B true CN110971285B (zh) 2022-09-23

Family

ID=70033304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911240795.2A Active CN110971285B (zh) 2019-12-06 2019-12-06 适用于共形天线阵的波束赋形方法

Country Status (1)

Country Link
CN (1) CN110971285B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113314843B (zh) * 2021-05-11 2022-06-10 西安电子科技大学 适用于共形天线阵的抑制副瓣方法
CN114554513A (zh) * 2021-12-30 2022-05-27 中国电信股份有限公司 波束赋形参数的确定方法、装置及网络设备
CN115114780A (zh) * 2022-06-27 2022-09-27 北京雷久科技有限责任公司 一种圆锥台阵列天线波束赋形方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706839A (zh) * 2009-11-27 2010-05-12 电子科技大学 一种基于时间反演的共形阵列天线激励相位确定方法
EP2806576A1 (en) * 2013-05-21 2014-11-26 Telefonica S.A. Method and system for performing multiple access in wireless OFDM cellular systems considering both space and frequency domains
CN104866662A (zh) * 2015-05-15 2015-08-26 电子科技大学 一种基于时间反演传输的电磁切割刀实现方法
WO2017155634A1 (en) * 2016-03-11 2017-09-14 Origin Wireless, Inc. Methods, devices, servers, apparatus, and systems for wireless internet of things applications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573975B2 (en) * 2018-01-10 2020-02-25 Taiwan Green Point Enterprises Co., Ltd. Method of making a conformal array antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706839A (zh) * 2009-11-27 2010-05-12 电子科技大学 一种基于时间反演的共形阵列天线激励相位确定方法
EP2806576A1 (en) * 2013-05-21 2014-11-26 Telefonica S.A. Method and system for performing multiple access in wireless OFDM cellular systems considering both space and frequency domains
CN104866662A (zh) * 2015-05-15 2015-08-26 电子科技大学 一种基于时间反演传输的电磁切割刀实现方法
WO2017155634A1 (en) * 2016-03-11 2017-09-14 Origin Wireless, Inc. Methods, devices, servers, apparatus, and systems for wireless internet of things applications

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Deshuang Zhao 等.Time Reversal Based Broadband Synthesis Method for Arbitrarily Structured Beam-Steering Arrays.《IEEE Transactions on Antennas and Propagation》.2011,全文. *
Zaiping Nie 等.A Model Independent Scheme of Adaptive Focusing for Wireless Powering to In-Body Shifting Medical Device.《IEEE Transactions on Antennas and Propagation》.2018,全文. *
刘瑞斌.共形相控阵天线波束赋形的研究.《中国优秀硕士学位论文全文数据库》.2007,全文. *

Also Published As

Publication number Publication date
CN110971285A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
CN110971285B (zh) 适用于共形天线阵的波束赋形方法
US11005192B2 (en) Intelligent metamaterial radar having a dynamically controllable antenna
CN104181531B (zh) 一种基于相控阵雷达的三维关联成像方法
CN106483494B (zh) 基于空间取样天线阵列的全极化干涉仪及其参数估计方法
CN102567574B (zh) 船舶大规模平面相控阵天线优化布局方法
CN210443669U (zh) 一种水文监测雷达平板微带阵列天线
CN102904069B (zh) 基于Sinc函数的圆形口径场分布的阵列天线的设计方法
CN110581368A (zh) 一种水文监测雷达平板微带阵列天线及其设计方法
Yoo et al. Estimation of detection performance for vehicle FMCW radars using EM simulations
Dawood et al. Optimized VAA based synthesis of elliptical cylindrical antenna array for SLL reduction and beam thinning using minimum number of elements
CN108183321A (zh) 一种两维波束赋形的无源天线阵列
US10008778B2 (en) Directional array for near vertical incidence skywave antenna
Konno et al. Reflectarray design by induced electromotive force method
US10804600B2 (en) Antenna and radiator configurations producing magnetic walls
El-Hassan et al. Shaped-Beam Circularly-Polarized Practical Antenna Array for Land Imaging SAR Systems.
Ghorbani et al. Mutual Coupling Compensation in Array Antennas Using Isolated-Element Pattern Approach
Daniel et al. Printed antenna arrays: Examples of commercial applications
Rahmani et al. Optimum design of conformal array antenna with a shaped radiation pattern and wideband feeding network
CN114597641B (zh) 一种基于函数逼近理论的扇形波束天线单元
Mariyanto et al. Design and realization of microstrip antenna for GPS application using proximity coupled techniques
Higaki et al. 3d indoor localization of rfid tags with phased array and deep neural network
Konno et al. A reflectarray using log-periodic dipole array element
Vashist et al. Design and performance analysis of Rotman lens
Zhu et al. Design of a low sidelobe 4D planar array including mutual coupling
Duplouy et al. Wideband vector antenna using radiation pattern reconfigurability for 3-d direction finding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant