CN110970900A - 一种光热机组调相运行提高电压稳定性评价指标计算方法 - Google Patents

一种光热机组调相运行提高电压稳定性评价指标计算方法 Download PDF

Info

Publication number
CN110970900A
CN110970900A CN201911264361.6A CN201911264361A CN110970900A CN 110970900 A CN110970900 A CN 110970900A CN 201911264361 A CN201911264361 A CN 201911264361A CN 110970900 A CN110970900 A CN 110970900A
Authority
CN
China
Prior art keywords
photo
voltage
thermal
phase modulation
modulation operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911264361.6A
Other languages
English (en)
Other versions
CN110970900B (zh
Inventor
吕亚洲
郜建良
张舒捷
方保民
陈春萌
孙一鸣
刘福锁
李威
薛峰
张倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nari Technology Co Ltd
NARI Nanjing Control System Co Ltd
State Grid Qinghai Electric Power Co Ltd
Original Assignee
Nari Technology Co Ltd
NARI Nanjing Control System Co Ltd
State Grid Qinghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nari Technology Co Ltd, NARI Nanjing Control System Co Ltd, State Grid Qinghai Electric Power Co Ltd filed Critical Nari Technology Co Ltd
Priority to CN201911264361.6A priority Critical patent/CN110970900B/zh
Publication of CN110970900A publication Critical patent/CN110970900A/zh
Application granted granted Critical
Publication of CN110970900B publication Critical patent/CN110970900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种光热机组调相运行提高电压稳定性评价指标计算方法,若区域电网电压失稳,依次计算区域电网内光热集热系统中光热机组的指标ITSj;按照指标ITSj从大到小顺序依次将光热机组转调相运行;直到电压恢复稳定或所有光热机组全部调相运行为止。本发明提供的一种光热机组调相运行提高电压稳定性评价指标计算方法,可用于指导光热机组群在转调相运行的优先级确定,有助于提高电网电压稳定水平。

Description

一种光热机组调相运行提高电压稳定性评价指标计算方法
技术领域
本发明涉及一种光热机组调相运行提高电压稳定性评价指标计算方法,属于电力系统及其自动化技术领域。
背景技术
光伏发电和风力发电是清洁能源领域中技术成熟、具备规模开发的发电方式,但风电和光电存在出力不稳定和间歇性等特点,新能源发电单元脱网事故时有发生,使得接入电网的安全运行问题突出。与光伏、风力发电相比,光热发电最大的优势是并网友好、储热连续、发电稳定,具有担当基荷电力的条件。太阳能热发电通过产生热水蒸汽带动汽轮机发电,与传统的火力发电方式相同,可以和光伏发电、风力发电、水电、抽水蓄能等多种电源配合,不会对电网产生不利影响,同时还能提供无功功率,具有优良的并网友好性,同时光热发电可以实现长时间稳定连续发电。
由于光热机组的发电能力不仅受光照条件约束,还具备一般同步机的运行特性。在光照强度不足时,为了保障储热系统连续供电能力,可适当降低光热机组有功出力,同时为了充分利用机组容量,可通过调整励磁电流,转调相运行,调整无功功率输出,提高近区电压稳定性。但如果大部分光热机组都转调相运行,则光热机组整体有功出力大幅下降,造成弃光,影响新能源消纳。
为了合理评价某台光热机组是否适宜转调相运行以及在转调相运行中对电压的支撑效果,本发明提出一种光热机组调相运行提高电压稳定性评价指标计算方法。通过该评价指标,可充分计及光热机组光照情况,有功储备情况,时域响应中的动态无功支撑及对电压中枢点的电气距离等一系列因素,综合评价光热转调相运行对系统电压稳定性的效果。
发明内容
目的:为了克服目前电网中光热机组投产逐渐增多,光热机组近区往往已经配套建设大量光伏电站,由于光伏电站出力间歇性、波动性的特点,同时无功补偿薄弱,容易造成电压大幅波动,在电网扰动及故障下容易造成电压失稳的不足。光热机组具备一般同步机的运行特性,在光照强度不足时,可适当降低光热机组有功出力,同时可通过调整励磁电流,转调相运行,调整无功功率输出,提高近区电压稳定性。为了评价光热机组转调相运行对电压稳定性的支撑效果,本发明提供一种光热机组调相运行提高电压稳定性评价指标计算方法。
技术方案:为解决上述技术问题,本发明采用的技术方案为:
一种光热机组调相运行提高电压稳定性评价指标计算方法,包括如下步骤:
若区域电网电压失稳,依次计算区域电网内光热集热系统中光热机组的指标ITSj
按照指标ITSj从大到小顺序依次将光热机组转调相运行;
直到电压恢复稳定或所有光热机组全部调相运行为止。
一种光热机组调相运行提高电压稳定性评价指标计算装置,包括如下模块:
指标计算模块:若区域电网电压失稳,依次计算区域电网内光热集热系统中光热机组的指标ITSj
转调相模块:按照指标ITSj从大到小顺序依次将光热机组转调相运行;直到电压恢复稳定或所有光热机组全部调相运行为止。
作为优选方案,所述指标ITSj计算公式如下:
Figure BDA0002310987030000031
其中:Bi为第i个电压观测点,n为区域电网内电压检测点总数量,wk为第k个时刻的权重,N为电压失稳到电压稳定的总时刻数,ΔQj为光热机组Gj转调相运行前后发出的无功功率变化量,ΔUi为电压检测点Bi电压变化量,po为光热集热系统o制约因素,WBi第i个电压观测点的权重。
作为优选方案,所述po计算公式如下:
Figure BDA0002310987030000032
其中:Pco.solar为光热集热系统o收到的太阳能功率,PNo.solar为光热集热系统o设计额定最大接受的太阳能功率。
作为优选方案,所述k时刻处于故障期间,wk>1。
作为优选方案,所述WBi计算公式如下:
Figure BDA0002310987030000033
其中:Sij为母线Bi与光热机组Gj的电气距离,Sj(min)为母线Bi与光热机组Gj的最小电气距离。
有益效果:本发明提供的一种光热机组调相运行提高电压稳定性评价指标计算方法,通过利用电网中不断投产的光热机组可提供动态无功补偿的特点,考虑光热自身的光照条件,计算光热机组发出无功对于近区电压提升的灵敏度,采用一定的权重算法,计及权重加权求和,得到光热机组调相运行提高电压稳定性评价指标。本发明可用于指导光热机组群在转调相运行的优先级确定,有助于提高电网电压稳定水平。
附图说明
图1为本发明方法的流程示意图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示,一种光热机组调相运行提高电压稳定性评价指标计算方法,包括以下内容:
1)假设某区域内有m台光热机组,第j台光热机组称为Gj。对Gj转调相运行对提高电压稳定性进行评价。设研究区域内有n个电压检测点,第i个电压观测点为Bi,根据电力系统运行方式及相应的模型与参数,采用时域仿真方法获取预想故障下光热机组Gj转调相运行前后发出的无功功率变化量ΔQj及研究区域内电压检测点Bi电压变化量ΔUi
2)计算电压变化量和光热发出无功变化量的比值
Figure BDA0002310987030000041
并在时域仿真时间段内取N个时刻,第k个时刻称为tk。考虑一定的权重wk,计算N个时刻下
Figure BDA0002310987030000042
之和
Figure BDA0002310987030000043
3)计算研究区域内所有电压观测点的
Figure BDA0002310987030000051
之和,并考虑一定的权重WBi,记为
Figure BDA0002310987030000052
4)认为光热集热系统收到的太阳能功率在时域仿真的时间尺度上保持不变,令当前光照强度下光热集热系统o收到的太阳能功率为Pco.solar,光热集热系统o设计额定最大接受的太阳能功率为PNo.solar。考虑光热集热系统o在调相运行时光照强度的制约因素,其系数为
Figure BDA0002310987030000053
5)综合考虑以上因素,得出光热机组转调相运行提高电压稳定性评价指标
Figure BDA0002310987030000054
ITSj为光热机组Gj转调运行提高电压稳定性的评价指标,ITSj越大,说明光热机组Gj提高电压稳定性效果越好。
6)若在某预想故障的时域仿真中造成含光热机组的区域电网电压失稳,则依次计算区域电网内具备调相运行条件的光热机组ITSj,按照ITSj从大到小顺序依次将光热机组转调相运行并重新进行时域仿真,直到电压恢复稳定或所有光热机组全部调相运行为止。
所述步骤2)在时域仿真时间段内取N个时刻。N的个数是按照仿真时间T与仿真步长的t的比值确定的,即
Figure BDA0002310987030000055
所述步骤2)考虑一定的权重wk。权重wk的大小与该时刻k是否处于故障期间有关,若k时刻处于故障期间,wk>1,否则,wk=1。
所述步骤3)考虑一定的权重WBi。权重WBi的大小与母线Bi与光热机组Gj的电气距离Sij有关。设母线Bi与光热机组Gj的最小电气距离为Sj(min),则
Figure BDA0002310987030000061
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种光热机组调相运行提高电压稳定性评价指标计算方法,其特征在于:包括如下步骤:
若区域电网电压失稳,依次计算区域电网内光热集热系统中光热机组的指标ITSj
按照指标ITSj从大到小顺序依次将光热机组转调相运行;
直到电压恢复稳定或所有光热机组全部调相运行为止。
2.根据权利要求1所述的一种光热机组调相运行提高电压稳定性评价指标计算方法,其特征在于:所述指标ITSj计算公式如下:
Figure FDA0002310987020000011
其中:Bi为第i个电压观测点,n为区域电网内电压检测点总数量,wk为第k个时刻的权重,N为电压失稳到电压稳定的总时刻数,ΔQj为光热机组Gj转调相运行前后发出的无功功率变化量,ΔUi为电压检测点Bi电压变化量,po为光热集热系统o制约因素,WBi第i个电压观测点的权重。
3.根据权利要求2所述的一种光热机组调相运行提高电压稳定性评价指标计算方法,其特征在于:所述po计算公式如下:
Figure FDA0002310987020000012
其中:Pco.solar为光热集热系统o收到的太阳能功率,PNo.solar为光热集热系统o设计额定最大接受的太阳能功率。
4.根据权利要求2所述的一种光热机组调相运行提高电压稳定性评价指标计算方法,其特征在于:所述k时刻处于故障期间,wk>1。
5.根据权利要求2所述的一种光热机组调相运行提高电压稳定性评价指标计算方法,其特征在于:所述WBi计算公式如下:
Figure FDA0002310987020000021
其中:Sij为母线Bi与光热机组Gj的电气距离,Sj(min)为母线Bi与光热机组Gj的最小电气距离。
6.一种光热机组调相运行提高电压稳定性评价指标计算装置,其特征在于:包括如下模块:
指标计算模块:若区域电网电压失稳,依次计算区域电网内光热集热系统中光热机组的指标ITSj
转调相模块:按照指标ITSj从大到小顺序依次将光热机组转调相运行;直到电压恢复稳定或所有光热机组全部调相运行为止。
7.根据权利要求6所述的一种光热机组调相运行提高电压稳定性评价指标计算模块,其特征在于:所述指标ITSj计算公式如下:
Figure FDA0002310987020000022
其中:Bi为第i个电压观测点,n为区域电网内电压检测点总数量,wk为第k个时刻的权重,N为电压失稳到电压稳定的总时刻数,ΔQj为光热机组Gj转调相运行前后发出的无功功率变化量,ΔUi为电压检测点Bi电压变化量,po为光热集热系统o制约因素,WBi第i个电压观测点的权重。
8.根据权利要求7所述的一种光热机组调相运行提高电压稳定性评价指标计算模块,其特征在于:所述po计算公式如下:
Figure FDA0002310987020000023
其中:Pco.solar为光热集热系统o收到的太阳能功率,PNo.solar为光热集热系统o设计额定最大接受的太阳能功率。
9.根据权利要求6所述的一种光热机组调相运行提高电压稳定性评价指标计算模块,其特征在于:所述k时刻处于故障期间,wk>1。
10.根据权利要求6所述的一种光热机组调相运行提高电压稳定性评价指标计算模块,其特征在于:所述WBi计算公式如下:
Figure FDA0002310987020000031
其中:Sij为母线Bi与光热机组Gj的电气距离,Sj(min)为母线Bi与光热机组Gj的最小电气距离。
CN201911264361.6A 2019-12-10 2019-12-10 一种光热机组调相运行提高电压稳定性评价指标计算方法 Active CN110970900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911264361.6A CN110970900B (zh) 2019-12-10 2019-12-10 一种光热机组调相运行提高电压稳定性评价指标计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911264361.6A CN110970900B (zh) 2019-12-10 2019-12-10 一种光热机组调相运行提高电压稳定性评价指标计算方法

Publications (2)

Publication Number Publication Date
CN110970900A true CN110970900A (zh) 2020-04-07
CN110970900B CN110970900B (zh) 2022-09-20

Family

ID=70033662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911264361.6A Active CN110970900B (zh) 2019-12-10 2019-12-10 一种光热机组调相运行提高电压稳定性评价指标计算方法

Country Status (1)

Country Link
CN (1) CN110970900B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790258A (zh) * 2016-03-15 2016-07-20 国电南瑞科技股份有限公司 基于正态Copula函数的拉丁超立方抽样法概率潮流计算方法
CN106026111A (zh) * 2015-12-25 2016-10-12 国网甘肃省电力公司电力科学研究院 一种基于概率潮流计算的新能源穿透率评估方法
CN106130004A (zh) * 2016-05-14 2016-11-16 国电南瑞科技股份有限公司 一种综合考虑稳定特性的并网点新能源接纳能力的评估方法
CN107947244A (zh) * 2017-09-12 2018-04-20 国电南瑞科技股份有限公司 新能源电站并网功率超前控制方法
CN109378863A (zh) * 2018-10-31 2019-02-22 国电南瑞科技股份有限公司 权重与约束关联调整的电网实时发电控制优化决策方法
CN109802394A (zh) * 2019-04-01 2019-05-24 东北大学 一种计及分布式电源与电动汽车接入的概率潮流计算方法
CN110311425A (zh) * 2019-06-18 2019-10-08 国网山西省电力公司 考虑调峰辅助服务报价的风火深调电力优化控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026111A (zh) * 2015-12-25 2016-10-12 国网甘肃省电力公司电力科学研究院 一种基于概率潮流计算的新能源穿透率评估方法
CN105790258A (zh) * 2016-03-15 2016-07-20 国电南瑞科技股份有限公司 基于正态Copula函数的拉丁超立方抽样法概率潮流计算方法
CN106130004A (zh) * 2016-05-14 2016-11-16 国电南瑞科技股份有限公司 一种综合考虑稳定特性的并网点新能源接纳能力的评估方法
CN107947244A (zh) * 2017-09-12 2018-04-20 国电南瑞科技股份有限公司 新能源电站并网功率超前控制方法
CN109378863A (zh) * 2018-10-31 2019-02-22 国电南瑞科技股份有限公司 权重与约束关联调整的电网实时发电控制优化决策方法
CN109802394A (zh) * 2019-04-01 2019-05-24 东北大学 一种计及分布式电源与电动汽车接入的概率潮流计算方法
CN110311425A (zh) * 2019-06-18 2019-10-08 国网山西省电力公司 考虑调峰辅助服务报价的风火深调电力优化控制方法

Also Published As

Publication number Publication date
CN110970900B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
Fathabadi Novel standalone hybrid solar/wind/fuel cell power generation system for remote areas
Fathabadi Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems
Gomathy et al. Design and implementation of maximum power point tracking (MPPT) algorithm for a standalone PV system
Fathabadi Novel standalone hybrid solar/wind/fuel cell/battery power generation system
RU2537039C2 (ru) Электронная система управления фотогальваническими элементами посредством адаптированных порогов
Fathabadi Novel high-efficient large-scale stand-alone solar/wind hybrid power source equipped with battery bank used as storage device
Andrei et al. Photovoltaic applications
Vasant et al. Optimization of solar-wind energy system power for battery charging using MPPT
CN109861292B (zh) 一种基于多能源储能系统提高清洁能源消纳方法
CN103618335A (zh) 一种用于光伏并网逆变器低电压穿越的控制方法
Ishrat et al. A Comprehensive Study on Conventional HPPT Techniques for Solar PV System
CN110970900B (zh) 一种光热机组调相运行提高电压稳定性评价指标计算方法
CN102637056A (zh) 一种维持光伏发电系统最大功率点的方法
CN113783234B (zh) 一种净增发电量最大化的光伏发电pv配置和功率限值优化方法
CN109888823A (zh) 一种风光联合发电系统的储能容量优化方法
Zhang et al. Modelling and control strategy for hybrid PV and central receiver CSP in power system restoration
Utomo et al. Optimizing of the installed capacity of hybrid renewable energy with a modified MPPT model.
CN114386256A (zh) 一种考虑电热设备灵活性约束及热网特性的区域电热系统优化调度方法
Barsoum et al. Modeling and cost simulation of stand-alone solar and biomass energy
JP6095109B2 (ja) 電力供給システム
CN109038688A (zh) 一种基于电储热装置的提高电网灵活性控制方法
CN110768306A (zh) 一种提高保底电网中微电网应急能力的电源容量配置方法
CN110417049B (zh) 一种储热系统消纳多能源发电的协调控制方法
Parida PEM Fuel Cell based PV/Wind Hybrid Energy System
Hao et al. A Bi-Level Control Strategy for PV-BES System Aiming at the Minimum Operation Cost of BES

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant