通常,为了使逆变器装置具有大容量,采用通过电抗器并联连接单位逆变器装置的输出端的方法组成并联多重逆变器装置。图1所示为一已知并联多重逆变器装置的电路结构,图中画出了直流电源、单位逆变器2a和2b、半桥电路3a至3f、中心抽头电抗器4a、4b和4c、直流电源1的中间电位点X、半桥电路3a至3f的输出端5a至5f以及并联多重逆变器的输出端U、V与W。图2是一例半桥电路3a至3f的电路图。每一半桥电路是一个含有自关断半导体元件6a和6b、续流二极管7a和7b以及一输出端5的二电平逆变器装置,能在输出端5提供直流电源1的电源电压E或零电压。
图3是一例半桥电路3a至3f的电路图。每一半桥电路是一个含有自关断半导体元件6a至6f、续流二极管7c至7f、箝位二极管8a和8b、输出端5和一个与直流电源1的中间电位点X相连的端子的三电平逆变器装置,能在输出端5处提供直流电源的电源电压E、电压E/2和零电压。当此并联多重逆变器装置与单位逆变器装置2a和2b相互同相一起运行时,由于单位逆变器装置2a和2b的自关断半导体元件6a至6f之间的开关特性的不同以及电抗器4a、4b和4c之间的电感的差异,循环电流会流过单位逆变器装置2a和2b之间的电抗器4a、4b和4c。
图4所示的电路图可有助于说明图3所示三电平逆变器装置中的循环电流的通路。若循环电流使逆变器装置2a和2b的负荷分配不平衡的话是很危险的。
当对上述并联多重逆变器装置进行驱动时,日本专利公开号为1-110062的文献中建议了一种抑制循环电流的方法,采用这种方法可对构成自关断半导体元件的通断信号的时间进行调整,从而抑制循环电流,这已为公众所知。
在这种并联多重逆变器装置中,每一单位逆变器装置的每一自关断半导体元件的通断信号发生电路需有一个附加的通断定时调节器。当运用图3所示的三电平逆变器装置作为单位逆变器时,因为自关断半导体元件的各相有四种通断模式,所以自关断半导体的通断信号发生电路需要一个复杂的通断定时调节器,如图5所示。
日本专利公开号为63-287371的文献中所揭示的循环电流抑制方法,对每一相的循环电流进行检测,根据被检测的循环电流,以脉冲宽度调制(简称为“PWM”)方式对各相电压指令值进行校正,从而抑制循环电流。
日本专利公开号为3-253293的文献中所揭示的循环电流抑制方法,根据用并联多重逆变器驱动交流电机时所检测到的每一单位逆变器装置的输出电流,对被加值(相输出电流)和被减值(循环电流)进行计算,变更增益值,把计算值反馈到每一单位逆变器装置的输出电流控制电路,从而抑制相输出电流和循环电流。在并联多重逆变器装置中,交流电压指令信号是为每一单位逆变器的每一相产生的。因此,按照一种叫做三角波比较PWM方法,可以把此并联多重逆变器的PWM电路作为一种PWM电路,所述三角波比较PWM方法对三角载波和交流电压指令信号进行比较,从而产生切换自关断半导体元件的切换信号。相应地,不可能使用一种被叫做电压向量PWM方法(即用电压向量表示逆变器装置的输出电压的空间电压向量PWM方法)的PWM电路,不可能选择电压向量,从而使(例如交流电机的)初级联链磁通成一圆形轨迹,也不可能选择相应于此电压向量的自关断半导体元件的切换条件。
下面叙述这些问题的原因。参照图6所示的一单位逆变器的电路结构来描述电压向量PWM系统。按照图6,当零电位被确定时,零相位的电压为零,
Va+Vb+Vc=0 (1)
各相的输出电压瞬时值Va、Vb、Vc可用二变量(即电压向量)来表示。逆变器的输出可表述为
Vk=2/3(Va+Vb·exp{j(4/3)π}
+Vc·exp{j(2/3)π}) (2)
现在来检查在这一条件下逆变器输出电压的电压向量。在图6所示的电路中,假设当半桥电路30a的上臂自关断半导体元件处于通状态,Sa=1;当半桥电路30b的上臂自关断半导体元件处于通状态,Sb=1;当半桥电路30c的上臂自关断半导体元件处于通状态,Sc=1;当半桥电路30a的下臂自关断半导体元件处于通状态,Sa=1;当半桥电路30b的下臂自关断半导体元件处于通状态,Sb=1;当半桥电路30c的下臂自关断半导体元件处于通状态,Sc=0。这样,电压向量Vk可以被表示成Sa、Sb和Sc的函数Vk(Sa,Sb,Sc)。这样,逆变器装置输出电压的电压向量可以用图7所示的电压向量图来表示。
例如,
V5=(2/3){E+E·exp{j(2/3)π}
=(2/3)E·exp{j(1/3)π} (3)
如图7所示,V0(000),(111)是零电压向量,因为此时输出呈短路状态。所以,尽管有8个向量,但电压向量的实际个数只有7个。假设把这一概念扩展运用到图3所示的三电平逆变器装置,则当自关断半导体元件6c和6d处于通状态时Sa(或Sb或Sc)=1;当自关断半导体元件6d和6e处于通状态时,Sa(或Sb或Sc)=1/2;当自关断半导体元件6e和6f处于通状态时,Sa(或Sb或Sc)=0。于是,电压向量可以被表示成Ss,Sb和Sc的函数Vk(Sa,Sb,Sc)。这样,此三电平逆变器装置输出电压的电压向量可以用如图8所示的电压向量图来表示。从图8可以明显地知道,共有27种电压向量,而电压向量的类型有19种。
例如,当图7和图8所示的某一电压指令V*给定时,邻近电压指令V*的三个电压向量被选择,这三个电压向量的相应持续时间被分配至一PWM周期T,从而输出电压等于电压指令V*。用顺序连接这三个电压向量的顶点所组成的正三角形叫做“区域”。每一区域在PWM周期T内预先确定电压向量的输出顺序,自关断半导体元件按照电压向量的输出顺序和持续时间进行切换,因此,可以给出相应于电压指令V*的电压。这种控制逆变器的方法叫做电压向量PWM方法。
由于下述原因,电压向量PWM方法不能用于能够抑制循环电流的普通并联多重逆变器装置。
首先,当并联多重逆变器是一个三相系统时,电压向量用表示式(1)和(2)中所使用的二个变量来表示。然而,为了抑制循环电流,必须有3个变量。如上所述,循环电流的产生是因为单位逆变器装置的自关断半导体元件之间开关特性不同,以及电抗器之间的电感的不同,所以这三相的循环电流的各相应幅度是不相关的,即,每一单位逆变器装置的输出电压不满足对二电平单位逆变器装置和三电平逆变器装置都成立的表示式(1)。
其次,当单位逆变器装置是三电平逆变器装置时,为每一单位逆变器装置产生一个电压指令,每一单位逆变器按照电压指令进行运行,电压向量PWM方法为一确定包括电压指令区域的规则。但是,因为电压指令是分别对所有单位逆变器给出的,所以在某些情况下,为发给单位逆变器的电压指令V1 *和V2 *构成了各个不同区域,例如象图8所示的电压向量图所描述的那样。
图9(A)是按照电压指令V1 *电压向量输出顺序中单位逆变器的输出电压波形图,图9(B)是按照电压指令V2 *电压输出顺序中单位逆变器的输出电压波形图。比较图9(A)和图9(B)所示的波形图可知,此二单位逆变器装置是分别按照不同电压向量输出顺序和不同持续时间驱动的,从而存在一PWM周期T,在此周期中循环电流不能被抑制。因此,无法用电压向量PWM方法抑制已知的并联多重逆变器中的循环电流。
本发明已被用来解决上述问题,因此本发明的一个目的是提供一种并联多重逆变器,这种逆变器能够按照电压指令运行,并且当用电压向量PWM方法驱动时,抑制循环电流。
本发明的另一个目的是提供一种带单位逆变器的并联多重逆变器,所述单位逆变器含有开关元件,不需要任何用来对开关元件的通断运行进行时间设定的附加通断定时调节器,并且当用电压向量PWM方法驱动时,能够抑制循环电流,能够按照均衡负载电流的电流指令进行运行,能够在短时间内实现对循环电流的抑制。
本发明第一种形态的并联多重逆变器包括:一区域选择装置,用来选择多个区域中包含一电压指令向量的某一区域,所述多个区域中的每一区域由连接相应于每一单位逆变器开关状态的三个相邻电压向量的顶点而成;一持续时间计算装置,用来把由区域选择装置选择的确定区域的三个电压向量的各持续时间分配至一PWM周期,从而按照电压指令提供一输出电压;一持续时间校正装置,用来校正电压向量的各持续时间,从而减小每一单位逆变器同一相的输出电流偏差;一电压向量选择装置,用来选择由区域选择装置选择确定区域的电压向量;以及一产生一控制信号的开关信号产生装置,所述控制信号按照电压向量选择装置的输出控制单位逆变器的开关元件。
在本发明第一种形态的并联多重逆变器中,持续时间校正装置对由持续时间计算装置确定的电压向量持续时间进行校正,用以提供一个与电压指令吻合的输出电压,从而减小循环电流。相应地,当用电压向量PWM方法驱动并联多重逆变器时,就提供了相应于此电压指令的输出电压,而流经单位逆变器之间的循环电流被抑制。相应地,连接单位逆变器的电抗器可以具有相对较小的容量,并联多重逆变器可以具有相对较小的结构,可以减少由于循环电流而引起的电抗器中的损失,从而并联多重逆变器能以高效率运行。
本发明的第二种形态的并联多重逆变器包括:一电流指令发生装置,用来产生电流指令;一电压指令发生装置,用来产生电压指令向量,把由电流指令发生装置提供的电流指令和逆变器的输出电流之间的偏差减小到零;一区域选择装置,用来选择包括多个区域中电压指令向量的某一区域,所述多个区域中的每一区域由连接三个邻近电压向量的顶点构成;一持续时间计算装置,用来把区域选择装置选择确定区域的三个邻近向量的各持续时间分配至一PWM周期,从而提供相应于此电压指令的一电压;一持续时间校正装置,用来校正电压向量的持续时间,从而减小每一单位逆变器同一相的输出电流偏差;一电压向量选择装置,用来选择由区域选择装置选择确定区域的电压向量;以及一产生控制信号的开关信号产生装置,所述控制信号按照电压向量选择装置的输出控制单位逆变器的开关元件。
在本发明第二种形态的并联多重逆变器中,电压指令发生装置提供电压指令,从而减小电流指令和输出电流之间的偏差。持续时间校正装置对由持续时间计算装置所确定的电压向量持续时间进行校正,使输出电压与产生的电压指令吻合,从而减小循环电流。这样,循环于单位逆变器之间的循环电流受到抑制,使二个单位逆变器上的负载电流得到均衡,输出电流按照电流指令而变化。相应地,连接单位逆变器的电抗器可以具有相对较小的容量,可以减小由于循环电流而产生的电抗器中的损失,并联多重逆变器能以高效率运行,负载被均等地分配到单位逆变器上,并联多重逆变器可以具有相对较小的结构。
本发明第三种形态的并联多重逆变器包括;一电流指令发生装置,用来提供一电流指令;一电压指令发生装置,用来提供电压指令向量,减小由电流指令发生装置提供的电流指令和逆变器输出电流之间的偏差;一区域选择装置,用来选择包括相应于多个区域中逆变器开关状态的电压向量的某一区域,所述多个区域由连接三个邻近电压向量的顶点构成;一持续时间计算装置,用来把区域选择装置选择确定区域的三个电压向量的各持续时间分配至一PWM周期;持续时间校正装置,用来校正与一个单位逆变器有关的电压向量的持续时间;一第一电压向量选择装置,用来选择电压向量,所述电压向量确定按照持续时间计算装置输出、由区域选择装置选择的区域;一第二电压向量选择装置,用来选择电压向量,所述电压向量确定按照已校正持续时间、由区域选择装置选择的区域;以及一产生控制信号的开关信号产生装置,所述控制信号按照第一电压向量选择装置和第二电压向量选择装置的输出控制单位逆变器的开关元件。
在本发明第三种形态的并联多重逆变器中,只有一个单位逆变器中含有持续时间校正装置,从而可以在相对较短的时间内进行抑制循环电流的计算。
本发明第四种形态的并联多重逆变器包括:一电流指令发生装置,用来产生电流指令;一电压指令发生装置,用来提供电压指令向量,把由电流指令发生装置提供的电流指令和逆变器输出电流之间的偏差减小到零;一区域选择装置,用来选择包括多个区域中电压指令向量的某一区域,所述多个区域中的每一区域由连接相应于逆变器开关状态的三个邻近电压向量的顶点构成;一持续时间计算装置,用来把区域选择装置选择确定区域的三个邻近电压向量的各持续时间分配至一PWM周期;一持续时间校正装置,用来校正与第二单位逆变器有关的电压向量的持续时间,减小同一相的单位逆变器输出电流之间的偏差;一电压向量选择装置,用来选择电压向量,所述电压向量构成由区域选择装置选择的区域,而所述区域选择装置从属于一主单位逆变器;一电压向量选择装置,用来选择电压向量,所述选择电压向量按照被校正持续时间构成由区域选择装置所选择的区域,所述区域选择装置从属于第二单位逆变器;以及一用来产生控制信号的开关信号产生装置,所述控制信号按照电压向量选择装置的输出,控制单位逆变器的开关元件。
在本发明第四种形态的并联多重逆变器中,电压指令发生装置产生一电压指令,从而把电流指令和输出电流之间的偏差减小到零。持续时间校正装置对由持续时间计算装置确定的、电压向量的各持续时间进行校正,使输出电压与电压指令相吻合,从而减小循环电流。相应地,流经单位逆变器之间的循环电流被抑制,单位逆变器上的电流负载得到均衡,输出电流按照电流指令而变。这样,并联多重逆变器的输出电流容量被轻而易举地增大。
下面参照附图描述本发明的几个较佳实施例。图10是本发明所述并联多重逆变器的第一种实施例方框图,图11是图10所示并联多重逆变器主要部分的电路图。
如图10所示,一并联多重逆变器包括一电压指令发生装置10;一区域选择装置11;一用来计算各电压向量持续时间的持续时间计算装置12;根据各相循环电流Δi、计算单位逆变器2a和2b之间输出电压误差的电压误差计算装置13a、13b、13c;根据电压误差计算装置13a、13b和13c的输出、由持续时间计算装置12进行计算的、对各电压向量持续时间进行校正的持续时间校正装置14a和14b;电压向量选择装置15a和15b;以及用来产生开关信号的开关信号产生装置16a和16b,所述开关信号用来接通或断开单位逆变器2a和2b的自关断半导体元件。单位逆变器由开关信号产生装置16a和16b产生的转换信号来驱动。为了解决前述现有技术中的两个问题,单位逆变器2a和2b的半桥电路与图3所示的三电平逆变器是相同的。
如图2所示,电流检测装置9a至9f检测单位逆变器2a和2b的半桥电路输出电流。图2中的箭头表示半桥电路输出电流的正向流动方向。
下面描述用能抑制循环电流的电压向量PWM法进行驱动并联多重逆变器的方法。电压指令发生装置向包含在并联多重逆变器中的控制电路发出一电压指令向量V*。此电压指令向量V*的幅度为K,其方向用一与U相轴(即V4)成角度θ来表示。此电压指令向量以一角频率ω旋转。
区域选择装置11从图8所示出的电压向量图中,确定电压指令向量V*所处的区域,并确定将选择的电压向量。下面的描述中假定区域选择装置11已对由电压向量V4′〔=(1/2,0,0)或(1,1/2,1/2)〕,V6′〔=(1/2,1/2,0)或(1,1,1/2)〕以及V46〔=(1,1/2,0)〕。所定义的区域做出了选择。
持续时间计算装置12把由区域选择装置11选择的三个电压向量的各持续时间分配至一PWM周期,从而输出电压等于电压指令。由电压指令向量V*所勾画的圆形轨迹等于由待选电压向量的合成向量轨迹,这一条件可用下式表示:
V′4·t′4+V′6·t′6+V46·t46=k·exp(jθ)·T (4)其中,t′4,t′6和t46分别为电压向量V′4,V′6和V46的持续时间。这三个电压向量各自的持续时间之和与PWM周期T相等,这一条件可用下式表示:
t′4+t′6+t46=T (5)
这三个电压向量的各自持续时间可用下式表示:
t′4=T(1-2K·Sinθ)
t′6=T{1-2K·Sin〔(π/3)-θ〕}
t46=T{2K·Sin〔θ+(π/3)〕-1} (6)
尽管上述描述中假设电压指令向量V*包括在由连接电压向量V′4、V′6和V46的顶点所围成的区域内,但当电压指令向量V*包括在另一区域内时,持续时间计算装置12能够确定三个被选电压向量的各自持续时间。
下面先结合U相,描述计算循环电流Δi的步骤。参考图11,电流检测器9a和9b检测单位逆变器的U相输出电流iu1和iu2。假定循环电流Δiu和U相电流iu按箭头所示的方向流动,则U相输出电流iu1和iu2分别表示为:
iu1=(iu/2)+Δiu
iu2=(iu/2)=Δiu (7)
所以
Δiu=(iu1-iu2)/2 (8)
这样,循环电流Δiu可以由一减法器(图中未画出)用表达式(8)和由电流检测器9a和9b所检测到的U相电流iu1和iu2计算出来。同样,也可以计算V相和W相各自的循环电流Δiv和Δiw。
电压误差计算装置13a、13b和13c计算单位逆变器2b与单位逆变器2a之间的输出电压差ΔVu、ΔVv和ΔVw。然后用输出电压差ΔVu、ΔVv和ΔVw、电压E/2(E为电源1的电源电压)以及PWM频率f(=1/T),计算关于PWM周期T的电压向量持续时间的时间校正量Δtu、Δtv和Δtw,并给出时间校正量Δtu、Δtv和Δtw。
下面描述持续时间校正装置14a和14b的运行。并描述校正电压向量持续时间的过程,所述电压向量持续时间是由持续时间计算装置用时间校正量Δtu、Δtv和Δtw来抑制各相循环电流i计算而得。假设电压指令向量V*以图12所示的模式给出,并且电压向量持续时间以图13(A)所示分配至PWM周期T。
假设PWM周期中起点和终点的位置相同,并对不同分量的电压向量进行选择。当对这样的电压向量进行选择时,必定会在PWM周期T中的三相中,出现输出电压电平的变动。尽管为了方便起见,电压向量V′6的持续时间t′4这里被均等分配,但可以任意分配持续时间t′4,来减小输出电流的波动,或确保最小脉冲宽度,假设均衡分配电压向量的持续时间总和相同的话。
图13(A)是当被选电压向量以输出顺序给出时,各相输出电压(由直流电源1和电压E归一化)二个周期的波形图。注意图13A左边部分的PWM周期。在时刻t0和时间t1之间(也即T′4/2时间间隔内)保持电压向量V′4,在时刻t1至时刻t2之间(也即时间间隔T6′内)保持电压向量V6′,在时刻t2和时刻t3之间(也即周期T46内)保持电压向量V46,在时刻t3的时刻t4之间(也即时间间隔T′4/2内)保持电压向量V′4。T′4、T′6和T46的总和等于PWM周期T。如图14所示,三相循环电流Δi在U相中沿正向流动,在V相中沿正向流动,而在W相中沿负向流动。
从单位逆变器2a至单位逆变器2b,循环电流的流动方向为正方向。相应地,当循环电流Δi沿通过某一相的正方向流动时,相对于同一相的输出电压差而言,单位逆变器2a的极性为正极性,单位逆变器2b的极性为负极性。从抑制循环电流Δi的校正电压的角度看,单位逆变器2a的极性为负极性,而单位逆变器2b的极性为正极性。
在图13(A)左边所示的PWM周期T中,V相电压电平在时刻t1从0变到1/2,U相电压电平在时刻t2从1/2变到0,而W相电压电平在时刻t3从0变到1/2。
相应地,只有V相输出电压可以用移动时刻t1至右侧或左侧一时间校正量Δtv来改变。如果循环电流Δiv为正极性,那么,当持续时间校正装置14a对单位逆变器2a移动时刻t1至右侧一时间校正量Δtv、而持续时间校正装置对单位逆变器2b移动时刻t1至左侧一时间校正量Δtv时,循环电流Δiv开始沿负方向流动,因此,正向循环电流可被抑制。
只有U相输出电压可以用移动时刻t2至右侧或左侧一时间校正量Δtu来改变。所以,当循环电流Δiu为正极性时,并且当持续时间校正装置14a对单位逆变器2a移动时刻t2至右侧一时间校正量Δtu、而持续时间校正装置14b对单位逆变器2b移动时刻t2至左侧一时间校正置Δtu时,循环电流可被抑制。
只有W相输出电压可以用移动时刻t3至右侧或左侧一时间校正量Δtw来改变。所以,当循环电流Δiw为负极性时,并且当持续时间校正装置14a对单位逆变器2a移动时刻t3至左侧一时间较正量Δtw、而持续时间校正装置14b对单位逆变器2b移动时刻t3至右侧一时间校正量Δtw时,循环电流可被抑制。
图13(B)和13(C)中代表PWM周期T的直线的左半部分描述的是由上述循环电流抑制处理所进行的循环电流抑制运行结果。图13(B)描述的是由持续时间校正装置14a对单位逆变器2a进行校正以后,电压向量持续时间的分配,而图13(C)描述的是由持续时间校正装置14b对单位逆变器2b进行校正以后,电压向量持续时间的分配。当对图13(A)中PWM周期的右半边采用同样的循环电流抑制处理时,可以得到电压向量持续时间的分配,如图13(B)和13(C)中代表PWM周期T的直线右半部分所示。
图15表示的是图13(B)和13(C)(即并联多重逆变器输出)的平均值。PWM周期中所给出的平均电压等于图13(A)中的电压值;即,由持续时间校正装置14a和14b所进行的电压向量持续时间的校正丝毫也不会对并联多重逆变器产生不利影响。
同样,当电压指令向量V*包括在另一区域中时,如果各相电压的变化(图13(A)中左半边前沿的变化或右半边后沿的变化)以及当改变电压向量时电压相位变化的信息是事先知道的话,也可以对电压向量持续时间进行上述校正,抑制各相的循环电流Δi。
电压向量选择装置15a和15b根据由区域选择装置11选择的区域和由持续时间校正装置14a和14b所确定的电压向量持续时间,以预定顺序对电压向量进行选择。开关信号产生装置16a和16b按照由电压向量选择装置15a和15b所选择的电压向量,提供用来接通和断开单位逆变器2a和2b的自关断半导体元件的开关信号来驱动单位逆变器2a和2b。
图16是本发明所述并联多重逆变器的第二种实施例。如图16所示,除了第一种实施例不包括的电压指令发生装置10以外,并联多重逆变器还包括:一电流指令发生装置17;减法器18a、18b和18c,用来计算各向的电流指令和各相的相应输出电流之间的偏差;以及一根据减法器18a、18b和18c的输出、产生电压指令向量的电压指令发生装置19。
下面按照计算各相的输出电流i的步骤,描述并联多重逆变器的运行。电流检测器9a和9b(图11)检测单位逆变器的U相输出电流iu1和iu2。假设循环电流Δiu和U相电流沿箭头所述的方向流动。于是,U相输出电流iu1和iu2表示为:
iu1=(iu/2)+Δiu
iu2=(iu/2)-Δiu (9)
从表达式(9)得到:
i=iu1+iu2 (10)
相应地,根据由电流检测器9a和9b检测到的单位逆变器的U相输出电流iu1和iu2,U相输出电流可以由一加法器(图中未画出)立即计算出来。V相输出电流iv和W相输出电流iw可以用同样的方法方立即予以确定。
各相输出电流分别被提供给减法器18a、18b和18c,并且减法器18a、18b和18c把电流偏差提供给电压指令发生装置19。然后,电压指令发生装置发出电压指令,将电流偏差减小到零,即,使输出电流与电流指令吻合。电压指令发生装置19的输出模式可以与第一种实施例中的电压指令发生装置10的输出模式相同,这是因为并联多重逆变器的各相输出电流iu、iv和iw满足下述表达式。
in+iv+iw=o (11)当产生一电压指令时,因为各输出电流满足表达式(11),所以可以仅使用两相的输出电流。
因为电压指令发生装置19的输出模式与第一种实施例的电压指令发生装置10的输出模式相同,电压指令发生装置19后面的各元件运行与第一种实施例的相应元件的运行相同。区域选择装置11与第一种实施例的区域选择装置11相同,对图8中包括电压指令向量V*的区域进行选择。持续时间计算装置12与第一种实施例的持续时间计算装置相类似,对已选电压向量的持续时间进行计算。电压误差计算装置13a、13b和13c对单位逆变器2b相对于循环电流Δi流动所必须的单位逆变器2a的输出电压差ΔVu、ΔVv和ΔVw进行计算。根据输出电压差ΔVu、ΔVv和ΔVw,用电压E/2(E为直流电源1的电压值)和PWM频率f(=1/T),对PWM周期T中用来校正电压向量持续时间的时间校正量Δtu、Δtv和Δtw进行计算。
持续时间校正装置14a和14b与第一种实施例的相应装置类似,对由持续时间计算装置12用时间校正量Δtu、Δtv和Δtw所提供的电压向量持续时间进行校正,从而流过各相的循环电流Δi被抑制。
电压向量选择装置15a和15b,根据由区域选择装置11所选择的区域和由持续时间校正装置14a和14b所提供的电压向量持续时间,以预定顺序选择电压向量。开关信号产生装置16a和16b,根据由电压向量选择装置15a和15b所选择的电压向量,提供用来接通和断开单位逆变器2a和2b的自关断半导体元件的开关信号,从而驱动单位逆变器2a和2b。
单位逆变器2a和2b的输出电压平均值,即并联多重逆变器的输出电压,与第一种实施例的相应值完全相同;即,由持续时间校正装置14a和14b进行的电压向量校正丝毫不会影响并联多重逆变器的输出。所以,可以单独设计包括在并联多重逆变器的电压指令发生装置19中的输出电流控制器(图中未画出)的电流控制响应特性和包括在电压误差计算装置13a、13b和13c中循环电流控制器(图中未画出)的电流控制响应特性。相应地,即使并联多重逆变器的输出电流控制器具有较高电流控制响应特性,各相的循环电流仍可被抑制。
图17是本发明所述并联多重逆变器的第三种实施例,第三种实施例中的并联多重逆变器大体上与第二种实施例的并联多重逆变器具有相同的结构,所以这里主要描述与第一种实施例中的并联多重逆变器不同的那部分。一电压向量选择装置15a按照持续时间计算装置12的输出以及区域选择装置11的输出运行,从而提供一电压向量,一电压向量选择装置15b按照持续时间校正装置14的输出和区域选择装置11的输出运行,从而提供一电压向量。第三种实施例与第二种实施例的不同点在于,只有一个单位逆变器带有一个用来抑制循环电流Δi的持续时间校正装置。由单位逆变器2b进行的抑制循环电流Δi的处理过程与第一种实施例中的处理过程相同。
第三种实施例的运行与第二种实施例的运行类似。各相的输出电流iu、iv和iw的确定处理与第二种实施例中的确定处理相同。减法器18a、18b和18c接收各相的电流指令和各相的输出电流,向电压指令发生装置19提供电流偏差值。电压指令发生装置19提供电压指令,把电流偏差减小到零,即,使输出电流分别与电流指令吻合。
与第二种实施例中的区域选择装置类似,区域选择装置11对图8中包括电压向量V*的区域进行选择。与第二种实施例中的持续时间计算装置12类似,一持续时间计算装置12计算持续时间。电压误差计算装置13a、13b和13c计算输出电压差ΔVu、ΔVv和ΔVw,即,使循环电流Δi流动所必须的、单位逆变器2a与2b的输出电压差。PWM周期T中用于校正电压向量的持续时间的时间校正量Δtu、Δtv和Δtw用输出电压差ΔVu、ΔVv和ΔVw、电压E/2(E为直流电源的电压值)以及PWM频率f(=1/T)进行计算。
持续时间校正装置14用时间校正量Δtu、Δtv和Δtw校正由持续时间计算装置计算的电压向量持续时间,从而抑制流过每一相的循环电流Δi。持续时间校正装置14用如第一种实施例中所描述的持续时间校正处理过程,按照循环电流Δiu、Δiv和Δiw的方向,用移动电压电平变化点的方法,仅校正与单位逆变器2b有关的电压指令持续时间。
电压向量选择装置15a根据由区域选择装置选择的区域和由持续时间计算装置12计算的电压向量,以预定顺序选择电压向量。电压向量选择装置15b根据由区域选择装置11选择的区域和持续时间校正装置14提供的电压向量持续时间,以预定顺序选择电压向量。开关信号产生装置16a和16b按照由电压向量选择装置15a和15b选择的电压向量,提供开关信号,用来接通或者断开单位逆变器2a和2b的自关断半导体元件,从而驱动单位逆变器2a和2b。
在第三种实施例中,单位逆变器2a按照电压指令发生装置19提供的电压指令运行,单位逆变器2b提供一电压,从而把循环电流Δi减小到零。如果循环电流Δi能够被减小到零,那么单位逆变器2b就按照电压指令发生装置19提供的电压指令运行。所以,在第三种实施例中,一个单位逆变器为主要单位逆变器,另一单位逆变器为次要单位逆变器。
尽管第一种实施例和第二种实施例中,并联多重逆变器的输出与单位逆变器2a和2b的输出电压平均值完全相等,但当循环电流Δi由逆变器2b来抑制时,第三种实施例中的并联多重逆变器的输出并不完全与单位逆变器2a和2b的输出电压平均值相等。
然而,在图17所示的并联多重逆变器中,输出电流被反馈到电压指令发生器19,电压指令发生装置19提供一电压指令,使输出电流与电流指令发生装置17提供的电流指令吻合。相应地,对循环电流Δi的抑制不会影响并联多重逆变器的输出。
在第三种实施例中,最好使包括在电压误差计算装置13a、13b和13c中的循环电流控制器的电流控制响应特性低于包括在并联多重逆变器电压指令发生装置19中的输出电流控制器的电流控制响应特性。
图18是本发明所述并联多重逆变器的第四种实施例主要部分的框图,图19是含有逆变器单元的并联多重逆变器电路图。第四种实施例中,并联连接的单位逆变器数是N。图19中,逆变器用记号INV(K)(K=1,2,……,N)表示,单位逆变器的相输出电流用记号iuk、ivk和iuk表示。
用作参考单位逆变器的单位逆变器INV(1)作主单位逆变器,其余的单位逆变器作为从属单位逆变器。对单位逆变器的U相输出电流iuk进行检测。电流偏差检测装置(图中未画出)对从属单位逆变器的U相输出电流与主单位逆变器INV(1)和U相输出电流iu1之间的偏差Δiuk进行检测。
并联多重逆变器的U相输出电流iu是用迭加单位逆变器的U相输出电流iuk,即iu=∑iuk得到的。V相和W相的偏差电流是用同样的处理过程确定的。本质上偏差电流等于循环电流。然而,这里使用偏差电流(即相输出电流与主单位逆变器的相输出电流之间的偏差),是因为当并联连接多个单位逆变器时,很难确定循环电流的循环路程。
电压指令发生装置19提供一电压指令,用来把每一输出电流与相应相电流指令之间的偏差减小到零,即,使输出电流与电流指令吻合。
主单位逆变器INV(1)的控制方法与第三种实施例中的单位逆变器2a的控制方法相同。具体地说,电压向量选择装置151根据由区域选择装置11选择的区域以及由持续时间计算装置12确定的电压向量持续时间,以预定顺序选择电压向量。控制从属单位逆变器的方法与控制第三种实施例中的单位逆变器2b的方法相同。具体地说,向量选择装置15K(K=2至N)根据由区域选择装置11所选择的区域和由持续时间校正装置14K所提供的电压向量持续时间,以预定顺序选择电压向量。持续时间校正装置14k的运行与第三种实施例的持续时间校正装置14的运行相同。电压向量选择装置15K的运行与电压向量选择装置15a和15b的运行相同。
当偏差电流用前面第三种实施例所描述的过程被减小到接近于零时,所有从属单位逆变器的相输出电流与主单位逆变器的相输出电流相等。当单位逆变器的相输出电流总和与相电流指令吻合时,负载电流被均衡地分配到所有的单位逆变器。所以,不管并联连接的单位逆变器的个数多少,负载电流可被控制,而不影响对单位逆变器的负载分配。
尽管第二、第三和第四种实施例中所使用的电流指令发生装置17提供一三相电流指令,但当用并联多重逆变器来驱动一交流电机时,可以使用一扭矩电流指令和一激磁电流指令。当驱动一交流电机时,根据并联多重逆变器的三相输出电流计算扭矩电流和激磁电流,并把减法器计算的扭矩电流偏差和激磁电流偏差提供给电压指令发生装置19。
当由上述实施例中的每一并联多重逆变器驱动一带有二组多相线圈的交流电机时,因为多相线圈的磁耦合产生互感,所以连接二单位逆变器的电抗器可被省去。尽管当驱动这种交流电机时流动的是非平衡电流而不是循环电流,但因为非平衡电流可以用上述实施例中控制循环电流的相同方法来控制,所以可以平衡流过多相交流电机相线圈的电流。
单位逆变器的半桥电路不必仅限于图3中所示的三电平逆变器;上述实施例中的单位逆变器可以带有能够提供三个输出值的半桥电路。本发明所述单位逆变器不必仅限于图2中所示的二电平逆变器或图3中所示的三电平逆变器;单位逆变器可以是多电平逆变器。
图11和19中所示的电抗器可以是耦合电抗器或空心电抗器。