CN110960995A - 用于盐水处理的薄聚合物膜 - Google Patents

用于盐水处理的薄聚合物膜 Download PDF

Info

Publication number
CN110960995A
CN110960995A CN201910926929.XA CN201910926929A CN110960995A CN 110960995 A CN110960995 A CN 110960995A CN 201910926929 A CN201910926929 A CN 201910926929A CN 110960995 A CN110960995 A CN 110960995A
Authority
CN
China
Prior art keywords
membrane
molecular weight
high molecular
weight polyethylene
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910926929.XA
Other languages
English (en)
Other versions
CN110960995B (zh
Inventor
高平
沈平
顾其傲
张清华
李津
李润莱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Kong University of Science and Technology HKUST
Original Assignee
Hong Kong University of Science and Technology HKUST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong University of Science and Technology HKUST filed Critical Hong Kong University of Science and Technology HKUST
Publication of CN110960995A publication Critical patent/CN110960995A/zh
Application granted granted Critical
Publication of CN110960995B publication Critical patent/CN110960995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/02Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation containing fruit or vegetable juices
    • A23L2/08Concentrating or drying of juices
    • A23L2/082Concentrating or drying of juices by membrane processes
    • A23L2/085Concentrating or drying of juices by membrane processes by osmosis, reverse osmosis, electrodialysis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/02Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation containing fruit or vegetable juices
    • A23L2/08Concentrating or drying of juices
    • A23L2/082Concentrating or drying of juices by membrane processes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/72Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration
    • A23L2/74Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration using membranes, e.g. osmosis, ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/447Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种超高分子量聚乙烯(UHMWPE)膜,其包括至少一层纳米多孔UHMWPE薄膜,每层纳米多孔UHMWPE薄膜是双轴取向的,厚度为0.1μm至12μm,孔阻止超过10nm的颗粒通过,并且总孔隙率为高达75%。可以通过亲水性聚合物涂覆或层压的方式将纳米多孔UHMWPE薄膜制备成具有多层复合结构的Janus膜。UHMWPE膜可用于膜蒸馏(MD)、反渗透(RO)、正渗透(FO)或过滤装置中。

Description

用于盐水处理的薄聚合物膜
相关申请的交叉引用
本申请要求于2018年9月28日提交的美国临时专利申请系列No.62/766,040的权益,通过引用将该美国临时专利申请的全部内容(包括所有表格、图示和附图)并入本文。
技术领域
本发明涉及一种超高分子量聚乙烯(UHMWPE)膜。具体而言,本发明涉及该UHMWPE膜的结构以及使用该UHMWPE膜的盐水脱盐装置。
背景技术
传统的海水脱盐技术通常包括蒸馏法和使用聚合物膜的渗透法,但是蒸馏法需要消耗大量能量,渗透法则存在脱盐率和淡水通量都不够高的问题。用于反渗透(RO)和正渗透(FO)海水脱盐法的聚合物膜相对致密,这些聚合物膜只能通过溶液扩散机制运行。相比之下,用于膜蒸馏(MD)法的膜是微孔的,该膜具有疏水微孔,允许水蒸气以Knudsen扩散的方式跨过膜却不允许液态水跨过膜。膜蒸馏法的驱动力是疏水膜两侧的蒸气压力差梯度。大部分聚合物膜方法中的通量受限于膜两侧的压力梯度小。但目前市面上暂时还没有专门设计用于膜蒸馏法的海水淡化膜。通常来说,现有膜蒸馏法海水淡化膜大多采用高孔隙率(孔隙率>60%)的疏水性微孔膜,膜的微孔孔径为大约0.5μm,并且膜厚度大于20μm。较大的膜厚度可以保证膜的机械强度以及均匀完整性,但却导致用于海水淡化通量的驱动力降低。
下面的表1总结了已经开发的膜的性能。
表1现有膜的性能总结
Figure BDA0002219178950000021
Lu等人,J.Memb.Sci.539,34-42(2017);Chen,Y.等人.Desalination 424,140-148(2017);Tijing,L.D.等人,J.Memb.Sci.502,158-170(2016);Khayet等人,J.Memb.Sci.252,101-113(2005);Laganà等人,J.Memb.Sci.166,1-11(2000);Singh等人,J.Memb.Sci.545,312-322(2018);An等人,Desalination 432,23-31(2018);Li等人,J.Memb.Sci.542,308-319(2017);Cai等人,Desalination 429,70-75(2018);Xu等人,Desalination 414,10-17(2017);Penkova等人,Mater.Des.96,416-423(2016);Liu等人,J.Memb.Sci.548,548-558(2018);Zhou等人,J.Memb.Sci.524,1-11(2017);以及Li等人,Desalination 422,49-58(2017)。
膜污染是限制这些商用海水淡化膜应用的另一个关键问题。为了使低出水通量提高,通常使用大于100nm的孔尺寸,这进一步降低了膜的抗蠕变性。膜材料的蠕变加上多孔结构造成的高摩擦系数都会导致膜污染现象的加剧。
另一方面,限制膜蒸馏海水淡化法广泛使用的最关键问题是水蒸发时需要大量潜热带来的高能量消耗成本。现有的膜不能用于减少这种热力学方面的重要限制。
因此,需要一种改进的膜,其可以具有以下优点:在相对低的进料温度下具有非常高的净化水生成通量;足够高的机械性能以承受高的外部压力;很薄的厚度(几微米)来降低传质阻力;高度防污性能以长期稳定运行;低成本且易于制造;减少水汽化潜热以降低能源成本。
发明内容
本发明的一个实施方案涉及包括纳米多孔超高分子量聚乙烯(UHMWPE)薄膜的膜,其由至少一层纳米多孔UHMWPE薄膜形成,其中每层纳米多孔UHMWPE薄膜是双轴取向的,厚度为0.1μm至12μm,孔阻止超过10nm的颗粒通过,并且总孔隙率为65%至75%。UHMWPE膜可包括多层纳米多孔UHMWPE薄膜,例如,两层至四层薄膜。该纳米多孔UHMWPE薄膜可具有超过0.1μm但小于12μm的厚度,极限拉伸强度为至少400MPa,并且模量为至少1.4GPa。这些膜用于处理流体。该纳米多孔UHMWPE薄膜可以为涂覆有亲水性聚合物的纳米多孔UHMWPE薄膜或者层压有亲水性聚合物的纳米多孔UHMWPE薄膜。涂覆有亲水性聚合物的纳米多孔UHMWPE薄膜可以具有聚乙烯醇、聚环氧乙烷、聚环氧乙烷-嵌段-聚环氧丙烷涂层或其他亲水性涂层。层压有亲水性聚合物的纳米多孔UHMWPE薄膜可以具有层压至多孔支撑基材的纳米多孔UHMWPE薄膜。
在本发明的一个实施方案中,用于进行盐水脱盐的装置包括含UHMWPE的膜。用于进行脱盐的装置可以是膜蒸馏(MD)装置、反渗透(RO)装置或正渗透(FO)装置。包含UHMWPE的膜支撑在支撑材料上,该支撑材料可以是碳纤维板或其他刚性基材支撑材料。该装置可以是MD装置,在盐水温度至少40℃、盐水浓度不低于3.5重量%且含UHMWPE的膜的相对侧的净化水的温度为约30℃的条件下,该MD装置通过含UHMWPE的膜的通量超过100LMH。该装置可包括真空泵。
本发明的一个实施方案涉及膜蒸馏海水淡化法,在该方法中由被支撑的含UHMWPE的膜将盐溶液进料腔室和净化水接收腔室分隔开。UHMWPE薄膜的支撑基底材料可以是多孔碳纤维板或其他刚性材料。进水口的盐溶液温度不低于40℃。经过纯化后的水蒸气通过薄膜来到出水口所在的一侧,该侧的真空度范围可以是从0bar到0.97bar甚至更高。在出水口一侧会有冷却装置将纯化后的水蒸汽冷凝。另外在该测试中,也可以在进水口处对盐溶液施加额外压力。使用该UHMWPE薄膜的海水淡化通量可以达到100LMH以上。该方法可用于淡化海水。该方法也可用于浓缩果汁或从水中分离可混溶的混合物,例如将酒精从水中分离。
附图说明
图1示出了根据本发明的一个实施方案,UHMWPE双轴取向纳米多孔膜的表面形貌的扫描电子显微镜(SEM)图像。
图2示出了根据本发明的一个实施方案,UHMWPE双轴取向纳米多孔膜的2μm截面的扫描电子显微镜(SEM)图像。
图3示出了根据本发明的一个实施方案,UHMWPE双轴取向纳米多孔膜的大量纤维网络的扫描电子显微镜(SEM)图像,图中显示出了该膜具有很高的孔隙率。
图4示出了根据本发明的一个实施方案,UHMWPE双轴取向纳米多孔膜的应力-应变曲线图。
图5示出了根据本发明的一个实施方案,UHMWPE双轴取向纳米多孔膜上的不同浓度的盐溶液的接触角的图。
图6A示出了使用现有技术的直径为4.5cm、摩擦系数为0.7的PTFE MD膜时,发生污染。
图6B示出了使用根据本发明的实施方案的直径为4.5cm、摩擦系数为0.05的UHMWPE双轴取向纳米多孔膜时,没有发生污染。
图7示出了在真空度为0.97巴、海水盐浓度为3.5重量%的VMD条件下,根据本发明的实施方案的UHMWPE双轴取向纳米多孔膜(■)的通量值相对于温度的图,其优于在3重量%的海底水浓度下获得的现有技术最高纪录的通量值(▲)。
图8示出了根据本发明的一个实施方案,在0.97巴、60℃时,使用UHMWPE双轴取向纳米多孔膜进行MD方法的通量值相对于盐浓度的图。
图9示出了根据本发明的一个实施方案,在盐浓度为3.5重量%、60℃时,使用UHMWPE双轴取向纳米多孔膜进行MD方法的通量值相对于真空度的图。
图10示出了根据本发明的一个实施方案,在0.97巴、60℃时,用于MD方法的UHMWPE双轴取向纳米多孔膜的通量和脱盐率随时间变化的图。
图11A示出了根据本发明的一个实施方案,涂覆有PVA的UHMWPE双轴取向纳米多孔Janus膜的PVA侧上的表面形貌的扫描电子显微镜(SEM)图像。
图11B示出了根据本发明的一个实施方案,涂覆有PVA的UHMWPE双轴取向纳米多孔Janus膜的UHMWPE侧上的表面形貌的扫描电子显微镜(SEM)图像。
图12示出了根据本发明的一个实施方案,直接接触MD(DCMD)=真空MD(VMD)的试验组合以用于说明组合方法,其中根据本发明的实施方案的UHMWPE膜存在于进料盐溶液和净化水真空侧之间。
图13示出了根据本发明的一个实施方案,亲水性尼龙支撑的UHMWPE膜。
具体实施方式
如图1所示,本发明的一个实施方案涉及用于以高脱盐率进行盐水处理的具有极高通量的双轴取向UHMWPE膜。UHMWPE膜的制造采用PCT专利申请公开No.WO/2019/123019中公开的方式,其中形成至少0.1μm的薄膜。UHMWPE膜的厚度为0.1μm至12μm,图2所示为作为实例的2μm膜。可使用多层该UHMWPE膜依次复合在一起以进行海水脱盐。如图3所示,UHMWPE膜具有高孔隙率,其孔隙率为约70%。该UHMWPE膜可用于过滤以除去大于10nm的颗粒。该UHMWPE提供了机械强度,使得所得的膜(如图4所示的2μm膜)的极限拉伸强度为约400MPa,并且模量为约1.4GPa。如图5所示,UHMWPE膜与纯水和盐水的接触角为约130°。如图6B所示,UHMWPE膜的摩擦系数非常低,仅为0.05,这个特性可以为UHMWPE膜提供优异的抗污染性能,相比之下,如图6A所示的PTFE膜在用于MD期间发生了污染。
根据本发明的一个实施方案,UHMWPE膜可用于通过膜蒸馏(MD)、反渗透(RO)或正渗透(FO)进行海水脱盐。由于UHMWPE膜的薄度、孔隙率和抗污染性能,因而实现了高通量。在MD中,跨过UHMWPE膜的水分子的通量遵循达西定律:
N=Bf(Pfm-Ppm)
其中Pfm是膜的盐水侧的蒸气压,Ppm是膜的纯水侧的蒸气压,而Bf是传质系数。根据安东尼定律,压力差是该过程的驱动力,并且将极大地受到膜两侧的水温度的影响。MD方法中的传质系数遵循以下公式:
Figure BDA0002219178950000061
其中δ表示膜的厚度,ε表示孔隙率,τ表示曲折度,Mw是水的分子量,并且T表示膜的整体平均温度。膜厚度的减小显著提高了传质系数。通过对膜的渗透侧施加一定的真空度,可以去除停留在膜孔中的空气以进一步提高传质系数。因此,膜承受较高压力梯度的能力是脱盐过程的重要要求,并且极高通量UHMWPE膜的极限拉伸强度为约400MPa,与钢相似,从而获得空前高的通量。
根据本发明的一个实施方案,如图7所示,在海水、3.5%盐浓度溶液、0.97巴真空度的VMD条件下,该UHMWPE膜通量(单位为升/平方米/小时)远远超过先前的世界纪录。根据本发明的一个实施方案,如图8所示,在0.97巴的真空度下,其在10wt%浓度盐水条件下的纯水产生速率超过商用PTFE膜的3.5wt%浓度盐水条件下的速率。如图9所示,由于通量随着真空度而快速增大,因而UHMWPE膜的机械性能对于膜蒸馏法海水淡化是非常重要的特点。PTFE的低强度、低抗蠕变性和高污染性使其在高压力差的场景下应用时变得不可靠。使用类似条件和相当的实验装置,观察到连续运行2小时后商用PTFE的纯水产出通量下降了20%,连续运行16小时后纯水产出通量下降了50%。另一方面,如图10所示,根据本发明的一个实施方案,使用本发明的UHMWPE膜,使得出水通量在降低12%后趋于稳定,通量降低的原因可能是由于膜压实现象,但与此同时该膜保持了99%以上的高脱盐率。除了如图7至图9所示的MD方法之外,根据本发明的一个实施方案,UHMWPE膜还可应用于较高压力的脱盐方法,例如RO方法。
由于脱盐率可能受到膜中的潜在缺陷(如小孔洞)的影响,因而使用多层复合膜来减轻潜在缺陷的影响。在该实施方案中,可以使用四层复合材料来制备超纯水。通过ICP测定来检测处理前后的海水中不同离子的量。可以看出,当膜的厚度超过四层时,脱盐通量仅降低37%,并且产出水的导电率低于仪器的分辨率极限,参见下表2。从表2中可以看出,通过单层膜后,海水的导电率从50,000μS/cm降低到2.7μS/cm;脱盐率大于99.5%,并且远高于标准的饮用水要求。当采用四层膜时,产生了导电率低于探针分辨率的超纯水。
表2.复合膜的通量和脱盐水导电率
Figure BDA0002219178950000071
表3.经过单层膜处理后的阳离子的浓度和脱盐率%
Figure BDA0002219178950000072
Figure BDA0002219178950000081
在本发明的一个实施方案中,Janus膜是由UHMWPE膜组成的复合膜,其中UHMWPE膜涂覆有诸如PVA或聚环氧乙烷等表面改性剂,或进行了其他亲水性处理。这种新型Janus膜也适用于FO以及MD。这种新型Janus膜旨在缓解膜蒸馏过程中最为关键的能源消耗问题。膜蒸馏法中需要的大量潜热是需要解决的主要问题。如下表所示,当所有其他条件保持不变时,出水通量提高了60%。使用Knudsen方程,可以计算出蒸气压提高了高达39%,这相当于潜热减少了1.5%。使用质量浓度为3.5%的NaCl溶液时,同样的UHMWPE膜在一种未做改变而另一种被改性为Janus膜后,两者之间的性能总结于下表4中。Janus膜的厚度(2.5μm)略高于普通的UHMWPE薄膜(2.0μm)是多孔的,具有均匀的纳米纤维。Janus膜的两侧如图11A和图11B所示,用亲水材料包裹。
表4.UHMWPE膜和Janus膜之间的MD结果的比较
Figure BDA0002219178950000082
在本发明的一个实施方案中,使用UHMWPE膜的半连续方法进行膜蒸馏(MD)法海水淡化。根据本发明的一个实施方案,UHMWPE膜可以在高达或超过5巴的高液体入口压力下使用。如图12所示,根据本发明的一个实施方案,对于MD系统,为了测试系统的功效,使用UHMWPE膜将盐水进料腔室与渗透净化水的真空腔室分隔开。盐水进料腔室含有NaCl溶液(其浓度通过使用蠕动泵添加去离子水来维持),使用加热器加热至高于40℃的温度,所述加热器图示为(但不限于)棒式加热器,对溶液进行搅拌以使局部的高盐浓度或低盐浓度最小化并使局部温度均匀。真空腔室采用冷却套,以保持膜两侧的温度差异,并且同样在纯水出水口侧施加搅拌或者循环等方式使该侧的温度场更加均匀,其中通过使用真空泵来维持真空度。真空侧温度应低于进料侧的温度。本发明的UHMWPE膜可以层压到多孔基底材料上,UHMWPE膜可以支撑在碳纤维板或其他较硬的多孔板上,其中UHMWPE膜的疏水侧接触进料溶液。多孔支撑材料可以是但不限于尼龙6、尼龙6/6或尼龙4/6网布。亲水性尼龙可以位于UHMWPE膜和碳纤维板之间,如图13所示。根据本发明的一个实施方案,在进行MD方法的生产单元中,进料侧可以为大量盐水来源,盐水是预先在外部加热好然后通过管道输送到UHMWPE薄膜所在的腔体,或者通过局部加热的方式直接在UHMWPE薄膜表面加热。同样地,纯水可以部分地再循环至从膜流出的水的容器中,使得与膜接触的纯水保持所需温度。根据本发明的一个实施方案,在这样的构造中,搅拌器不是系统的必要部件,并且该系统可以用作连续生产系统。
本文提及或引用的所有出版物均以引用的方式整体并入本文,包括所有附图和表格,只要它们与本说明书的明确教导不矛盾。应当理解,本文描述的实施例和实施方案仅用于说明目的,并且本领域技术人员可对其进行各种修改或改变,并且这些修改或改变均包括在本申请的精神和范围内以及所附权利要求书的范围内。此外,本文公开的任何发明或其实施方案的任何要素或限制可以与本文公开的任何和/或所有其他要素或限制(单独地或以任何组合的方式)或任何其他发明或其实施方式进行组合,并且所有这些组合均包括在本发明的范围内,但不限于此。

Claims (21)

1.一种包含超高分子量聚乙烯的膜,所述膜包括至少一层纳米多孔超高分子量聚乙烯薄膜,每层纳米多孔超高分子量聚乙烯薄膜是双轴取向的,厚度为0.1μm至12μm,孔阻止超过10nm的颗粒通过,并且总孔隙率高达75%。
2.根据权利要求1所述的膜,其中所述至少一层纳米多孔超高分子量聚乙烯薄膜包括多层纳米多孔超高分子量聚乙烯薄膜。
3.根据权利要求2所述的膜,其中所述多层纳米多孔超高分子量聚乙烯薄膜包括三层或者更多层纳米多孔超高分子量聚乙烯薄膜。
4.根据权利要求1所述的膜,其中所述纳米多孔超高分子量聚乙烯薄膜的厚度为大于0.1μm但小于12μm,其拉伸强度为至少400MPa并且模量为至少1.4GPa。
5.根据权利要求1所述的膜,其中一层纳米多孔超高分子量聚乙烯薄膜为涂覆有亲水性聚合物的纳米多孔超高分子量聚乙烯薄膜或者层压有亲水性聚合物的纳米多孔超高分子量聚乙烯薄膜。
6.根据权利要求5所述的膜,其中所述涂覆有亲水性聚合物的纳米多孔超高分子量聚乙烯薄膜包括涂覆有聚乙烯醇、聚环氧乙烷或聚环氧乙烷-嵌段-聚环氧丙烷或具有其他亲水性处理的纳米多孔超高分子量聚乙烯薄膜。
7.根据权利要求5所述的膜,其中所述层压有亲水性聚合物的纳米多孔超高分子量聚乙烯薄膜包括层压至亲水性尼龙或者其他多孔基材上的纳米多孔超高分子量聚乙烯薄膜。
8.一种用于进行盐水脱盐的装置,包括根据权利要求1所述的包含超高分子量聚乙烯的膜。
9.根据权利要求8所述的用于进行盐水脱盐的装置,其中所述装置为膜蒸馏装置、反渗透装置、正渗透或者过滤装置。
10.根据权利要求8所述的用于进行盐水脱盐的装置,其中所述超高分子量聚乙烯膜贴附在支撑材料上。
11.根据权利要求8所述的用于进行盐水脱盐的装置,其中所述支撑材料为多孔碳纤维板或者其他多孔刚性材料。
12.根据权利要求8所述的用于进行盐水脱盐的装置,其中,在所述盐水为温度为40℃的海水且所述包含超高分子量聚乙烯的膜的相对侧的净化水的温度比所述盐水的温度低的条件下,通过所述包含超高分子量聚乙烯的膜的通量超过100LMH。
13.根据权利要求8所述的用于进行盐水脱盐的装置,进一步包括真空泵。
14.一种进行膜蒸馏的方法,包括:
支撑根据权利要求1所述的膜,该膜将盐溶液进料腔室与净化水接收腔室分隔开;
将盐溶液供给至所述盐溶液进料腔室;
为所述盐溶液提供热源,以保持在至少40℃的温度;
使所述净化水接收腔室排气至一定程度的真空度;
使所述净化水冷却,以保持低于进料温度的温度;
任选地,向所述盐溶液施加压力;
水蒸气跨过所述膜的通量为100LMH以上;以及
通过使所述净化水冷却至比进料腔室中的所述盐溶液的温度低至少10℃来保持使水蒸气冷凝的能力。
15.根据权利要求14所述的方法,其中所述盐溶液为海水。
16.根据权利要求14所述的方法,其中所述盐溶液为果汁。
17.根据权利要求14所述的方法,其中支撑所述膜包括将所述膜附着至碳纤维板或者刚性材料。
18.根据权利要求14所述的方法,其中所述膜包括至少一层纳米多孔超高分子量聚乙烯薄膜。
19.根据权利要求18所述的方法,其中所述至少一层纳米多孔超高分子量聚乙烯薄膜中的至少一层为涂覆有亲水性聚合物的纳米多孔超高分子量聚乙烯薄膜或者层压有亲水性聚合物的纳米多孔超高分子量聚乙烯薄膜。
20.根据权利要求14所述的方法,其中所述膜包括多层纳米多孔超高分子量聚乙烯薄膜,由此生成的净化水的电阻率不低于10MΩ·cm。
21.根据权利要求14所述的方法,其中所述纳米多孔超高分子量聚乙烯薄膜为涂覆有亲水性聚合物的纳米多孔超高分子量聚乙烯薄膜或者层压有亲水性聚合物的纳米多孔超高分子量聚乙烯薄膜,由此使得蒸发潜热降低1.5%。
CN201910926929.XA 2018-09-28 2019-09-27 用于盐水处理的薄聚合物膜 Active CN110960995B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862766040P 2018-09-28 2018-09-28
US62/766,040 2018-09-28

Publications (2)

Publication Number Publication Date
CN110960995A true CN110960995A (zh) 2020-04-07
CN110960995B CN110960995B (zh) 2022-11-22

Family

ID=69947013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910926929.XA Active CN110960995B (zh) 2018-09-28 2019-09-27 用于盐水处理的薄聚合物膜

Country Status (2)

Country Link
US (1) US11623184B2 (zh)
CN (1) CN110960995B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022058789A1 (en) * 2020-09-17 2022-03-24 The Hong Kong University Of Science And Technology Transparent reusable ultrahigh molecular weight polyethylene air filter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US12040517B2 (en) 2022-11-15 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85109400A (zh) * 1984-11-21 1987-07-01 赛林斯研究有限公司 关于利用两种液体之间存在的渗透压差浓缩液体及其相应的设备
CN1294607A (zh) * 1999-02-19 2001-05-09 东燃化学株式会社 聚烯烃微多孔膜及其制造方法
EP1153969A1 (en) * 1998-10-01 2001-11-14 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
CN101164677A (zh) * 2006-10-18 2008-04-23 中国科学院化学研究所 热致相分离法制备超高分子量聚乙烯多孔膜的方法
CN101310838A (zh) * 2007-05-16 2008-11-26 林振武 用于物质和热量传递的装置
CN101939085A (zh) * 2007-12-10 2011-01-05 西悉尼大学 用于浓缩液体的装置和方法
CN104857856A (zh) * 2015-05-07 2015-08-26 大唐科技产业集团有限公司 一种新型高效的膜蒸馏方法与装置
WO2018164057A1 (ja) * 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜、多層ポリオレフィン微多孔膜、積層ポリオレフィン微多孔膜、及び、セパレータ
WO2019123019A2 (en) * 2017-12-18 2019-06-27 The Hong Kong University Of Science And Technology A method for the synthesis of flexible multifunctional high-voidage ultrathin pe membranes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3417870A (en) 1965-03-22 1968-12-24 Gulf General Atomic Inc Reverse osmosis purification apparatus
JP3107215B2 (ja) 1990-08-01 2000-11-06 株式会社日立製作所 蒸留装置
US7963401B2 (en) 2006-04-03 2011-06-21 Entegris, Inc. Atmospheric pressure microwave plasma treated porous membranes
JP5252943B2 (ja) 2008-02-12 2013-07-31 日東電工株式会社 燃料電池用水回収膜および燃料電池
US20100282680A1 (en) 2009-05-06 2010-11-11 University Of Central Florida Research Foundation, Inc. Superhydrophobic membrane distillation for water purification
EP2821126A4 (en) 2012-02-29 2015-10-21 Toray Industries COMPLEX SEMIPERMEABLE MEMBRANE
US20150353385A1 (en) 2014-06-09 2015-12-10 King Abdullah University Of Science And Technology Hydrophobic photothermal membranes, devices including the hydrophobic photothermal membranes, and methods for solar desalination
US9751047B2 (en) 2014-10-17 2017-09-05 Massachusetts Institute Of Technology Hydrophobic air-gap membrane distillation
US10233098B2 (en) 2015-01-15 2019-03-19 Ut-Battelle, Llc Nanoporous graphene membrane for desalination of salt water
WO2018091966A1 (en) * 2016-11-17 2018-05-24 The Hong Kong University Of Science And Technology Nanoporous ultra-high molecular weight polyethylene membrane
WO2019055446A1 (en) * 2017-09-12 2019-03-21 Celgard, Llc BASIC FILMS FOR IMPREGNATION, ENHANCED IMPREGNATED PRODUCTS AND RELATED METHODS

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85109400A (zh) * 1984-11-21 1987-07-01 赛林斯研究有限公司 关于利用两种液体之间存在的渗透压差浓缩液体及其相应的设备
EP1153969A1 (en) * 1998-10-01 2001-11-14 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
CN1294607A (zh) * 1999-02-19 2001-05-09 东燃化学株式会社 聚烯烃微多孔膜及其制造方法
CN101164677A (zh) * 2006-10-18 2008-04-23 中国科学院化学研究所 热致相分离法制备超高分子量聚乙烯多孔膜的方法
CN101310838A (zh) * 2007-05-16 2008-11-26 林振武 用于物质和热量传递的装置
CN101939085A (zh) * 2007-12-10 2011-01-05 西悉尼大学 用于浓缩液体的装置和方法
CN104857856A (zh) * 2015-05-07 2015-08-26 大唐科技产业集团有限公司 一种新型高效的膜蒸馏方法与装置
WO2018164057A1 (ja) * 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜、多層ポリオレフィン微多孔膜、積層ポリオレフィン微多孔膜、及び、セパレータ
WO2019123019A2 (en) * 2017-12-18 2019-06-27 The Hong Kong University Of Science And Technology A method for the synthesis of flexible multifunctional high-voidage ultrathin pe membranes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
叶婴齐主编: "《工业用水处理技术 第2版》", 30 September 2004, 上海科学普及出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022058789A1 (en) * 2020-09-17 2022-03-24 The Hong Kong University Of Science And Technology Transparent reusable ultrahigh molecular weight polyethylene air filter

Also Published As

Publication number Publication date
CN110960995B (zh) 2022-11-22
US20200101427A1 (en) 2020-04-02
US11623184B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
CN110960995B (zh) 用于盐水处理的薄聚合物膜
Woo et al. Hierarchical composite membranes with robust omniphobic surface using layer-by-layer assembly technique
Selatile et al. Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination
Chen et al. Can composite Janus membranes with an ultrathin dense hydrophilic layer resist wetting in membrane distillation?
Castelletto et al. Advantages, limitations, and future suggestions in studying graphene-based desalination membranes
He et al. Promoted water transport across graphene oxide–poly (amide) thin film composite membranes and their antibacterial activity
Xu et al. Surface modification of thin-film-composite polyamide membranes for improved reverse osmosis performance
Subramani et al. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes
Teow et al. Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method
Marets et al. Highly Efficient Virus Rejection with Self‐Organized Membranes Based on a Crosslinked Bicontinuous Cubic Liquid Crystal
JP5701475B2 (ja) 複合半透膜
Chang et al. Smart ultrafiltration membrane fouling control as desalination pretreatment of shale gas fracturing wastewater: The effects of backwash water
Zhao et al. Physically coating nanofiltration membranes with graphene oxide quantum dots for simultaneously improved water permeability and salt/dye rejection
TW201708104A (zh) 水淨化
US20160158707A1 (en) Novel membranes
WO2013074040A1 (en) A triple layer hydrophobic-hydrophilic membrane for membrane distillation applications
Ma et al. Electrospun nanofibrous membranes for desalination
US11383206B2 (en) Water treatment membrane and method of making water treatment membranes
Du et al. Chitosan‐modified graphene oxide as a modifier for improving the structure and performance of forward osmosis membranes
US20170120201A1 (en) Composite semipermeable membrane
Padaki et al. Conversion of microfiltration membrane into nanofiltration membrane by vapour phase deposition of aluminium for desalination application
Teow et al. Mixed-matrix membrane for humic acid removal: influence of different types of TiO2 on membrane morphology and performance
CN113164879A (zh) 膜蒸馏脱盐技术用膜
Islam et al. High flux and antifouling thin-film nanocomposite forward osmosis membrane with ingrained silica nanoparticles
Nam et al. Review of boron nitride-based membranes in liquid purification/separation applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant