CN110957377B - 一种基于mos管的忆容器及其制备方法 - Google Patents
一种基于mos管的忆容器及其制备方法 Download PDFInfo
- Publication number
- CN110957377B CN110957377B CN201911292674.2A CN201911292674A CN110957377B CN 110957377 B CN110957377 B CN 110957377B CN 201911292674 A CN201911292674 A CN 201911292674A CN 110957377 B CN110957377 B CN 110957377B
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- layer
- capacitance
- oxide dielectric
- memcapacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 239000004065 semiconductor Substances 0.000 title claims abstract description 8
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 7
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000010408 film Substances 0.000 claims description 21
- 229910016553 CuOx Inorganic materials 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 3
- 238000000427 thin-film deposition Methods 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 6
- 239000002131 composite material Substances 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 abstract description 2
- 239000003990 capacitor Substances 0.000 description 11
- 230000008859 change Effects 0.000 description 8
- 230000000638 stimulation Effects 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000000277 atomic layer chemical vapour deposition Methods 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 239000002159 nanocrystal Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 241000218993 Begonia Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000861 blow drying Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/92—Capacitors having potential barriers
- H01L29/94—Metal-insulator-semiconductors, e.g. MOS
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
- C23C14/5853—Oxidation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/403—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66969—Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明公开了一种基于MOS管的忆容器及其制备方法。该忆容器的结构为:在衬底上依次生长有第一氧化物介质层、CuOx纳米晶层、第二氧化物介质层以及顶电极。通过在氧化物介质层中掺入具有忆阻特性的CuOx纳米晶,构成介电常数可调的复合介质层,从而使器件具有电容可调的功能。本发明的忆容器具有结构简单、环境友好、电容调节方便、可调范围大(可调率超过3000%)和可重构等优点。
Description
技术领域
本发明属于微电子器件领域,涉及一种基于MOS管忆容器及其制备方法。
背景技术
忆阻器的概念是由蔡少棠教授在1971年首先提出,直到2008年,HP实验室才首次成功制得基于双层二氧化钛薄膜的固体忆阻器。2009年,蔡少棠等在IEEE上撰文将记忆系统的概念扩展到容性和感性元件中,并详细阐述了忆容器和忆感器的特性。忆阻器、忆容器、忆感器统称为记忆元件。记忆元件凭借其纳米尺寸、低功耗、集成密度高及非线性特性,被广泛应用于存储、人工神经网络、非线性科学等领域,同时被认为是最有可能延续摩尔定律的新型元件。
忆阻器、忆容器和忆感器区别于普通的无源器件的一个特征就是其阻态、容态和感态取决于系统的历史状态,即具有记忆性。其中,忆容器根据其电容改变的物理机制不同可分为以下几种:一、精确改变器件的物理尺寸,包括微机电系统(MEMS)、纳机电系统(NEMS)和弹性电容器等,它们在无线电通信等领域有广泛应用。但此类器件设计难度大,工作方式属于耗散型。二、改变介质层的介电常数,包括利用相变、离子注入、铁电极化来调节介质的电容。2009年,T.Driscoll等人在《Science》上报道了利用VO2的金属-绝缘体转变来实现电容的连续可调和记忆,可是其同时存在工作温度区间窄、电容可调范围低和阻值改变大等问题。2010年,M.Krems等人在《Nano Letters》上发表了离子注入型的忆容器文章,它利用离子受到外场作用后穿过纳米孔洞来改变溶液的电容,但是它工作需要溶液的参与,存在与微电子器件不兼容的问题。铁电忆容系统利用铁电畴在外场作用下发生翻转实现忆容的效果,但当电场撤去后,铁电调制效果逐渐消失。因此,寻找一种制备简单、工艺兼容、电容大范围可调、可编程和重构的忆容器显得至关重要。
磁控溅射是20世纪70年代发展起来的一种溅射技术,具有高速、低温、低损伤的特点,是物理气相沉积的一种。通过靶阴极表面中引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率。原子层化学气相沉积(ALD)技术利用气相源在衬底表面吸附或反应的自饱和性实现逐层生长,生成薄膜的厚度只与循环周期的数目有关。由于具有独特的自限制生长特点,原子层沉积成膜具有精确的厚度控制、优异的三维贴合性和大面积成膜等优点,在制备超薄薄膜、纳米结构方面独具优势。
发明内容
针对以上现有技术的缺陷,本发明提供一种基于MOS管的忆容器及其制备方法。
本发明忆容器采用的技术方案如下:
一种基于MOS管的忆容器,在衬底上依次生长有第一氧化物介质层、CuOx纳米晶层、第二氧化物介质层以及顶电极。
进一步地,所述衬底是p-型掺杂的、电阻率为1~10Ω/cm的单晶硅。
进一步地,所述第一氧化物介质层的厚度为2~10nm,第二氧化物介质层的厚度为10~20nm。
优选地,所述CuOx纳米晶层的厚度为2~10nm。
优选地,所述顶电极的结构为圆柱状点电极,直径为50~100μm,厚度为75~150nm。
本发明一种基于MOS管的忆容器的制备方法,其特征在于,步骤如下:
(1)在衬底表面生长第一氧化物介质层;
(2)在第一氧化物介质层上生长Cu薄膜,接着退火后自组装得到CuOx纳米晶层;
(3)在CuOx纳米晶层上生长第二氧化物介质层;
(4)最后在第二氧化物介质层上生长金属薄膜,作为顶电极。
进一步地,所述步骤(1)中,利用原子层薄膜沉积技术生长Al2O3的第一氧化物介质层,其中三甲基铝作为金属源,水蒸气为氧源,生长温度为250℃,生长速度为0.1nm/cycle。
进一步地,所述步骤(2)中,首先利用磁控溅射方法,在氩气气氛下,以40W功率、12nm/min的生长速率,生长Cu薄膜;接着在650~750℃下、O2的气氛中退火30~60s,自组装得到CuOx纳米晶层。
与现有技术相比,本发明具有以下有益效果:
(1)提出了一种结构简单、环境友好、基于MOS管电容器的新型忆容器,其结构为p-Si/氧化物介质层/CuOx/氧化物介质层/顶电极。MOS管电容器本身具有非线性的电容-电压特性,在氧化物介质层掺入具有忆阻特性的CuOx纳米晶后,当外加电刺激改变CuOx纳米晶的电导时,介质层的介电常数将发生变化,最终器件电容也随之变化。此时,器件具有滞后的电容-电压回线,即典型的忆容器特性。
(2)本发明忆容器具有电容调节方便、可调范围大的优点。只需施加低幅值方波电脉冲即可改变器件电容,此忆容器的电容值可以随着频率、脉冲幅值和刺激次数的增加而增加,最大可调率超过3000%。
(3)本发明忆容器具有可重构的优点。利用电脉冲改变其电容后,只需要施加相反极性的电脉冲即可使器件电容回到初始状态。
(4)采用磁控溅射法制备的Cu薄膜,具有纯度高、致密性好、成膜均匀与氧化物薄膜结合均匀的优点。此外,相比其他制备技术,磁控溅射还具备操作简便、可重复性好、成本较低的特点。
附图说明
图1是本发明忆容器的结构示意图。
图2是忆容器在不同频率下的电荷-电压滞后曲线。其中x轴表示施加在顶电极上的电压,y轴表示MOS管电容器两端的电荷,不同曲线分别代表不同的扫描频率。
图3是电脉冲刺激次数对忆容器电容的影响。其中x轴是扫描频率,y轴是0V偏压下的电容值,不同曲线代表不同的电脉冲刺激次数。
图4是忆容器的电容可调率测试图。施加不同的电脉冲以调制器件电容,其中x轴代表施加脉冲的幅值,y轴代表器件电容。脉冲宽度保持150ms,幅值的变化规律为0V→8V→-8V→0V,变化梯度为0.5V。每施加一次脉冲后,在0V偏压、1M Hz的条件下读取器件电容。
图5是忆容器的可重构性测试图,其中x轴是扫描频率,y轴是0V偏压下的电容值。三条曲线分别代表初始状态器件电容、施加正脉冲后增大的器件电容、接着施加负脉冲恢复到初始态的器件电容。
具体实施方式
本发明忆容器的结构为:p-Si/氧化物介质层/CuOx/氧化物介质层/顶电极。具有单一氧化物介质层的MOS管电容器本身具有非线性的电容-电压特性,本发明在氧化物层中掺入CuOx纳米晶,构成复合介质层。这样,器件将表现出滞后的电容-电压回线,即典型的忆容器特性。这是由于CuOx纳米晶具有忆阻特性,外加电刺激可以改变CuOx纳米晶和介质层的电导;根据Maxwell-Wagner模型,介质层的介电常数是其电导的函数。换言之,介质层介电常数和器件电容可由外加电脉冲调制。
该忆容器各层的生长方法如下:
(1)选用电阻率为1~10Ω/cm的p型掺杂的单晶硅(p-Si)作为衬底。
(2)利用化学气相沉积、磁控溅射、原子层沉积技术或电子束蒸镀等方法,在衬底表面生长2~10nm厚的第一氧化物介质层(HfO2、Al2O3、SiO2)。该介质层除作为复合电介质(包括第一氧化物介质层和第二氧化物介质层)的一部分外,由于该层厚度极小,可以将第一氧化物介质层视为隧穿层,硅衬底电子在外加垂直电场的作用下,可以越过势垒隧穿到CuOx纳米晶层,被CuOx层中的缺陷俘获。此时,在衬底和第一氧化物介质层界面处,空穴将进一步累积,从而提高器件电容的可调范围。
(3)可利用磁控溅射或分子束外延技术,在第一氧化物介质层上生长2~10nm的Cu薄膜,接着在650~750℃下和O2的气氛中退火30~60s,自组装得到CuOx纳米晶层。该厚度的CuOx层具有显著且稳定的忆阻特性,通过施加电脉冲可以显著改变其电阻,从而提高器件的电容可调率。
(4)第二氧化物介质层可为薄层的氧化物,如HfO2、Al2O3、SiO2等。可利用化学气相沉积、原子层沉积技术或电子束蒸镀等方法,在CuOx纳米晶层上生长10~20nm的氧化物薄膜,从而完成复合电介质层的构建。第二氧化物介质层除作为复合电介质的一部分外,由于该层厚度较大,可以将该氧化物介质层视为阻挡层,它的存在可以阻挡电子进一步向电极方向运动,确保电子被CuOx层的缺陷俘获。
(5)顶电极可选用电阻率较低,且能够与介质层实现欧姆接触的金属薄膜,如Au、Pt、Cu等,其厚度应在75~150nm范围,可通过磁控溅射、电子束蒸镀、脉冲激光沉积等方式实现薄膜生长。
由上述方法制备的MOS忆容器件,其结构如图1所示。
实施例
本实施例给出一种忆容器件的制备过程,具体如下:
1、将p-Si衬底分别用适量的丙酮、乙醇、去离子水超声清洗10分钟,清洗掉Si表面的有机物等杂质。然后再将衬底放入HF:H2O=1:10的氢氟酸溶液中浸泡30s,去除表面氧化物,再用去离子水超声清洗5分钟,洗掉残余的氢氟酸,用高纯氮气吹干后放入原子层沉积腔体内沉积薄膜。
2、采用原子层沉积技术在衬底上沉积厚度为3nm的Al2O3作为介质层。在沉积过程中用三甲基铝(Al(CH3)3)作为金属源,水蒸气为氧源,生长温度为250℃,生长速度为0.1nm/cycle,共生长30个循环。
3、接着将步骤2得到的样品放入磁控溅射生长腔内,在样品表面沉积约5nm厚的金属Cu薄膜,生长功率为40W,气氛为氮气(4Pa),生长速率为12nm/min。
4、生长完Cu薄膜后,将样品放入快速退火炉中退火,使Cu膜氧化并团聚成CuOx纳米晶。退火条件是700℃,氧气气氛,退火时间40s。
5、将退火后的样品再用ALD沉积12nm厚的Al2O3介质层,生长条件与步骤2所述相同,循环次数为120次。
6、接着在样品表面用磁控溅射生长约100nm的铂金作为上电极,生长功率为15W,气氛为氩气(2Pa),生长速率为9nm/min。
7、最后,在Si衬底上涂一层导电银胶作为底电极。
制备完成后进行测量,实验中忆容器件的电荷-电压滞后曲线以及电容-频率变化曲线均使用Keithley 4200半导体参数分析仪完成。
电容可调行为的测试方法为:用Keithley 4200首先测得初始状态下忆容器的电容-频率曲线,再用Keithley 4200中的PMU模块在上电极上施加10个脉冲,脉冲幅值为8V,脉冲宽度为0.15s,测得器件刺激后的电容-频率曲线,接着给忆容器施加若干-8V 0.1s的脉冲,将其电容值调至初始状态。20个脉冲刺激后的电容-频率曲线同样按照此步骤进行。
如图2,在频率分别为100k、1M Hz的条件下,测得器件在+8V和-8V之间的电容-电压回线,利用电容定义式计算后,得到忆容器的电荷-电压的滞后回线,该回线的存在证明的器件具有忆容特性。
如图3,相比初始状态,施加正脉冲后,器件电容显著增大。器件电容的随施加脉冲次数的增大而增大,随频率的增大而减小,由此实现了对器件电容的调制。
电容可调率的测试方法:分别测得特定的频率、脉冲幅值、脉冲次数刺激后的忆容器的电容值C,已知初始转态下1MHz的电容值为C0,得到忆容器的电容可调率为T=(C-C0)/C0×100%,最终做出电容可调率相图。本实施例的忆容器的电容值可以随着频率、脉冲幅值和刺激次数的增加而增加。如图4,施加正脉冲可使器件电容增大,施加负脉冲则会使器件电容降低。当脉冲幅值处于2~4V,-2~-4V范围,器件可调率的变化最为显著。在施加+8V、150ms的脉冲后,器件电容可调率超过了3000%。
电容可重构性的测试方法:首先测得初始状态下的电容-频率曲线,接着在上电极上施加+8V 0.15s的电压脉冲,测得刺激后的电容-频率曲线,然后再在上电极上施加-8V 3μs的电压脉冲,再次测量忆容器的电容-频率曲线。如图5,对处于初始态的器件施加正脉冲,器件电容在全频率范围下,特别是低频下显著增大,再施加合适的负脉冲,器件电容回到初始状态,由此完成了对器件电容的重构。
Claims (4)
1.一种基于MOS管的忆容器的制备方法,其特征在于,步骤如下:
(1)在衬底表面生长第一氧化物介质层;
(2)在第一氧化物介质层上生长Cu薄膜,接着退火后自组装得到CuOx纳米晶层,具体步骤为:首先利用磁控溅射方法,在氩气气氛下,以40W功率、12nm/min的生长速率,生长Cu薄膜;接着在650~750℃下、O2的气氛中退火30~60s,自组装得到CuOx纳米晶层;
(3)在CuOx纳米晶层上生长第二氧化物介质层;
(4)最后在第二氧化物介质层上生长金属薄膜,作为顶电极。
2.根据权利要求1所述的一种基于MOS管的忆容器的制备方法,其特征在于,所述步骤(1)中,利用原子层薄膜沉积技术生长Al2O3的第一氧化物介质层,其中三甲基铝作为金属源,水蒸气为氧源,生长温度为250℃,生长速度为0.1nm/cycle。
3.根据权利要求1所述的一种基于MOS管的忆容器的制备方法,其特征在于,所述步骤(3)中,第二氧化物介质层的厚度为10~20nm。
4.根据权利要求1所述的一种基于MOS管的忆容器的制备方法,其特征在于,所述步骤(4)中,顶电极的厚度为75~150nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911292674.2A CN110957377B (zh) | 2019-12-16 | 2019-12-16 | 一种基于mos管的忆容器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911292674.2A CN110957377B (zh) | 2019-12-16 | 2019-12-16 | 一种基于mos管的忆容器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110957377A CN110957377A (zh) | 2020-04-03 |
CN110957377B true CN110957377B (zh) | 2021-05-28 |
Family
ID=69981947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911292674.2A Active CN110957377B (zh) | 2019-12-16 | 2019-12-16 | 一种基于mos管的忆容器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110957377B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090289251A1 (en) * | 2008-05-22 | 2009-11-26 | Masahiro Kiyotoshi | Nonvolatile memory device and method for manufacturing same |
CN101692463A (zh) * | 2009-09-24 | 2010-04-07 | 复旦大学 | 一种混合纳米晶存储器的电容结构及其制备方法 |
CN102763219A (zh) * | 2010-02-15 | 2012-10-31 | 美光科技公司 | 忆容器装置、场效应晶体管装置、非易失性存储器阵列及编程方法 |
CN103426920A (zh) * | 2013-09-02 | 2013-12-04 | 南京大学 | 一种存储材料及其在非易失性电荷俘获型存储器件中的应用 |
US20140073108A1 (en) * | 2006-11-16 | 2014-03-13 | Macronix International Co., Ltd. | Methods for forming resistance random access memory structure |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101803740B1 (ko) * | 2016-01-11 | 2017-12-01 | 명지대학교 산학협력단 | 아날로그 멤리스터 및 멤캐패시터 특성을 갖는 전자소자와 그 제조방법 |
-
2019
- 2019-12-16 CN CN201911292674.2A patent/CN110957377B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140073108A1 (en) * | 2006-11-16 | 2014-03-13 | Macronix International Co., Ltd. | Methods for forming resistance random access memory structure |
US20090289251A1 (en) * | 2008-05-22 | 2009-11-26 | Masahiro Kiyotoshi | Nonvolatile memory device and method for manufacturing same |
CN101692463A (zh) * | 2009-09-24 | 2010-04-07 | 复旦大学 | 一种混合纳米晶存储器的电容结构及其制备方法 |
CN102763219A (zh) * | 2010-02-15 | 2012-10-31 | 美光科技公司 | 忆容器装置、场效应晶体管装置、非易失性存储器阵列及编程方法 |
CN103426920A (zh) * | 2013-09-02 | 2013-12-04 | 南京大学 | 一种存储材料及其在非易失性电荷俘获型存储器件中的应用 |
Non-Patent Citations (1)
Title |
---|
Solid-state memcapacitive system with negative and diverging capacitance;J.Martinez-Rincon et al;《Physical Review B》;20100515;第81卷(第19期);第195430-1~195430-7页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110957377A (zh) | 2020-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6746586B2 (ja) | 電子部品 | |
Reece et al. | Nonvolatile memory element based on a ferroelectric polymer Langmuir–Blodgett film | |
Kubicek et al. | Uncovering two competing switching mechanisms for epitaxial and ultrathin strontium titanate-based resistive switching bits | |
Niu et al. | Epitaxy of BaTiO3 thin film on Si (0 0 1) using a SrTiO3 buffer layer for non-volatile memory application | |
CN106910776B (zh) | 基于高k栅介质的大面积二硫化钼场效应晶体管及其制备 | |
US10170547B2 (en) | Nanodevice | |
CN106206944A (zh) | 一种纳米薄膜忆阻器及其制备方法 | |
Porro et al. | Multiple resistive switching in core–shell ZnO nanowires exhibiting tunable surface states | |
Shaw et al. | Integration of self-assembled redox molecules in flash memory devices | |
Minh et al. | Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates | |
Park et al. | Capacitance characteristics of MOS capacitors embedded with colloidally synthesized gold nanoparticles | |
Sarkar et al. | Presence of capacitive memory in indium doped TiO2 alloy thin film | |
US11227995B2 (en) | Si2Te3 resistive memory | |
Lim et al. | Artificial Synapse Based on Oxygen Vacancy Migration in Ferroelectric‐Like C‐Axis‐Aligned Crystalline InGaSnO Semiconductor Thin‐Film Transistors for Highly Integrated Neuromorphic Electronics | |
CN102231365B (zh) | 不挥发电荷存储器件的制备方法、所得不挥发电荷存储器件及其应用 | |
CN110957377B (zh) | 一种基于mos管的忆容器及其制备方法 | |
Wang et al. | Vacancy-induced resistive switching and synaptic behavior in flexible BST@ Cf memristor crossbars | |
Orak et al. | Utilizing embedded ultra-small Pt nanoparticles as charge trapping layer in flashristor memory cells | |
Lim et al. | Characteristics of LiNbO3 memory capacitors fabricated using a low thermal budget process | |
CN111547676B (zh) | 一种新型铁电涡旋态纳米岛阵列的制备方法 | |
Tsoi et al. | Silicon nanocrystal memories by LPCVD of amorphous silicon, followed by solid phase crystallization and thermal oxidation | |
CN116669535A (zh) | 一种基于铁电氧化铪材料mfms结构的忆容器及其制备方法 | |
Mathur et al. | Properties of functionalized redox-active monolayers on thin silicon dioxide-a study of the dependence of retention time on oxide thickness | |
Bheesayagari et al. | Conduction mechanisms and charge trapping control in SiO2 nanoparticle MIM capacitors | |
Ren et al. | Silicon-Based PbTiO3/Pb (Zr, Ti) O3/PbTiO3 Sandwich Structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |