CN110951087A - 一种主客体组装的超分子聚合物凝胶及其金属的制备和应用 - Google Patents

一种主客体组装的超分子聚合物凝胶及其金属的制备和应用 Download PDF

Info

Publication number
CN110951087A
CN110951087A CN201911259592.8A CN201911259592A CN110951087A CN 110951087 A CN110951087 A CN 110951087A CN 201911259592 A CN201911259592 A CN 201911259592A CN 110951087 A CN110951087 A CN 110951087A
Authority
CN
China
Prior art keywords
adg
gel
polymer gel
supramolecular polymer
host
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911259592.8A
Other languages
English (en)
Other versions
CN110951087B (zh
Inventor
魏太保
赵琪
林奇
巩冠斐
朱伟
曲文娟
姚虹
张有明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201911259592.8A priority Critical patent/CN110951087B/zh
Publication of CN110951087A publication Critical patent/CN110951087A/zh
Application granted granted Critical
Publication of CN110951087B publication Critical patent/CN110951087B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6443Fluorimetric titration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明设计合成了一种主客体组装的超分子聚合物凝胶ADG,该凝胶是以对羟基苯甲酸功能化的柱[5]芳烃为主体,4‑氨基吡啶功能化的均苯三甲酰氯为客体,在DMSO‑H2O体系中通过主客体相互作用组装而得。ADG具有良好的聚集诱导发光特性,当激发波长为300nm时,ADG发出白色荧光。向ADG中加入相同当量的一系列金属离子水溶液,只有Fe3+和Cr3+能使ADG的荧光猝灭。ADG与Fe3+、Cr3+配位形成的金属凝胶ADG‑Fe、ADG‑Cr分别可以单一选择性荧光打开H2PO4 、CN。另外,ADG的干凝胶粉末可以高效率吸附和分离水溶液中的Fe3+和Cr3+

Description

一种主客体组装的超分子聚合物凝胶及其金属的制备和应用
技术领域
本发明涉及一种主客体组装的超分子聚合物凝胶,尤其涉及一种由对羟基苯甲酸功能化的柱[5]芳烃和4-氨基吡啶功能化的均苯三甲酰氯组装的超分子聚合物凝胶;本发明同时涉及基于该超分子聚合物的金属凝胶及其制备;本发明还涉及上述超分子聚合物凝胶及其金属凝胶对多种离子的超灵敏荧光检测和分离。
背景技术
发展光学传感方法来检测环境和生物上重要的分析物(如重金属离子和有毒阴离子),几十年来一直是化学传感器领域的一个重要目标。在许多不同类型的光学传感器(发光、吸收、反射等)中,多功能传感器由于具有灵敏度高以及可直接应用于光学检测的优点,已经成为一个研究热点。
Fe3+作为人体正常代谢的两个重要组成部分,参与了许多人体内的生化反应。Fe3+是构成血红蛋白、肌红蛋白及多种酶的重要成分,铁的缺乏可引起很多生理上的变化,从而导致免疫力低下,智力降低和机体抗感染能力降低,影响机体体温调节能力,神经机能紊乱,工作效率降低等各种疾病,最常见的是缺铁性贫血。同时,Fe3+由于具有顺磁性的本质,导致它成为一种荧光猝灭剂,这就使人们很难研究出一种连续可逆的荧光传感器来检测和分离Fe3+
在生物体中,核酸(DNA和RNA)的中心成分就是一个H2PO4 -基团。铬(Cr)作为一种必要的微量营养元素,它能促进葡萄糖进入细胞内的效率,是重要的血糖调节剂。同时,铬有助于生长发育并对血液中的胆固醇浓度也有控制作用,缺乏铬时可能会导致心脏疾病。虽然人体对铬的需求量很少,但铬对人体的作用很大。重金属铬的毒性与其存在的价态有关,三价铬比六价铬毒性高100倍,并易被人体吸收且在体内蓄积。更重要的是,三价铬和六价铬可以相互转化。铬的污染源有含铬矿石的加工、皮革鞣制、金属表面处理、印染排放的污水等。
柱芳烃作为一种新型的大环主体化合物,它的空腔带有富电性,与电子贫乏的化合物有很强的相互作用。此外,柱芳烃的刚性结构和易于功能化使它们在构建超分子聚合物方面具有独特的优势。2001年,唐本忠课题组报道了一种全新的聚集诱导发光(AIE)概念,一系列具有AIE性质的分子已被用做化学传感器、刺激响应纳米材料、有机光二极管等。相对于传统的有机发光材料,AIE作为一种新型的光学材料设计概念和理论,引起了国内外化学和材料学家的广泛研究兴趣。AIE材料最显著的优势是其在聚集态下的高效发光,而聚集态恰好是发光材料在实际应用中最为常见的形式。AIE分子却可以在特定的底物诱导下形成聚集体,荧光效率出现显著的增加甚至由暗到明的突跃,从而实现对刺激源的定性分析和定量检测,使高品质的活体成像和高灵敏度的在线传感监测变得更加容易。目前,通过柱芳烃的主客体组装构建超分子AIE材料,开发新的多重刺激荧光材料仍然是一个大的挑战。
发明内容
本发明的一个目的是提交主客体组装的超分子聚合物凝胶及其制备方法;
本发明的另一目的是提供一种基于上述超分子聚合物凝胶的金属凝胶及其制备方;
本发明还有一个目的,就是提供上述超分子聚合物凝胶及其金属凝胶在荧光识别阴阳离子的具体应用。
一、超分子聚合物凝胶的制备
本发明超分子聚合物凝胶,是以对羟基苯甲酸功能化的柱[5]芳烃(ZA)为主体凝胶因子,4-氨基吡啶功能化的均苯三甲酰氯(ZD)为客体凝胶因子,加热溶解于DMSO-H2O体系中,静置冷却,通过主客体间的相互作用形成超分子聚合物凝胶,标记为ADG。
主体凝胶因子对羟基苯甲酸功能化的柱[5]芳烃(ZA)的结构式如下:
Figure DEST_PATH_IMAGE001
客体凝胶因子4-氨基吡啶功能化的均苯三甲酰氯(ZD)的结构式如下:
Figure 887692DEST_PATH_IMAGE002
图1和图2分别为主体凝胶因子ZA的氢谱图和质谱图,图3和图4分别为客体凝胶因子ZD的氢谱图和质谱图。
DMSO-H2O体系中,H2O的体积比为1:1~1:1.5。DMSO-H2O体系中,主客凝胶因子的凝胶浓度为33~68mg/mL。
超分子聚合物凝胶ADG在制备的过程中,主体凝胶因子ZA和客体凝胶因子ZD的摩尔比为3:1~3.3:1。为验证ADG的组装机理,我们首先使用1H NMR滴定法研究了溶液中ZA与ZD之间的主客体相互作用。如图5所示,与自由ZA的光谱相比,在存在ZD的情况下,与ZA上质子Hd-f相关的峰向低场移动。同时,由于络合动力学,观察到与ZD的质子信号H3和H4相对应的明显的高场偏移,以及与质子H3,H4有关的对ZD的扩展效应。表明ZD的吡啶基存在于ZA的腔中,建立了CH∙∙∙π和π∙∙∙π相互作用。此外,还进行了二维NOESY NMR研究,以研究包合物中各组分的相对位置(图6)。在ZA上的质子He-f与ZD上的质子H3,4之间观察到四个相关性。这些结果表明,ZD的吡啶基通过C-H∙∙∙π和π∙∙∙π的相互作用而被包含在柱状芳烃的腔中,与1H NMR表征一致。
二、超分子聚合物凝胶ADG的荧光性能及对阳离子的响应实验
1、超分子聚合物凝胶ADG的荧光性能
图7为ADG随温度变化的荧光光谱图。结果显示,当激发波长为380nm时,ADG在溶胶状态下几乎没有荧光;随着温度的降低,ADG的荧光强度不断增强,在凝胶状态下显示出强的白色荧光,说明ADG具有良好的聚集诱导发光特性。
2、ADG对Fe3+和Cr3+超灵敏荧光响应
用微量荧光比色皿配制一系列体积为200μL的ADG,向每份ADG中加入1倍当量的不同金属离子(Fe3+,Hg2+,Ag+,Ca2+,Cu2+,Co2+,Ni2+,Cd2+,Pb2+,Zn2+,Cr3+,Mg2+,Ba2+,Al3+,Eu3+,Tb3+,La3+和Th4+)水溶液(离子的浓度为0.1mol/L)。混合均匀后,观察ADG对各种金属离子的荧光响应。图8为ADG对不同金属离子的荧光响应光谱图。图8的结果显示,只有Fe3+和Cr3+可以使凝胶ADG的荧光猝灭,而其余金属离子的加入对ADG的荧光没有明显影响,说明ADG能选择性荧光识别Fe3+和Cr3+
3、Fe3+和Cr3+对ADG的荧光滴定实验
用微量荧光比色皿配制一份体积为200μL的ADG,向其中逐渐加入Fe3+水溶液(浓度为0.1mol/L),用荧光分光光度计测定该凝胶荧光强度的变化。图9为ADG对Fe3+的荧光滴定光谱图(a)和线性拟合图(b)。由图9a可知,随着Fe3+的逐渐加入,ADG的荧光逐渐减弱。经3σ法计算可知,ADG对Fe3+的荧光检测限为8.25×10–9(图9b)。说明ADG可以对Fe3+实现超灵敏检测。我们用相同的方法做了Cr3+对ADG的荧光滴定实验,并计算出ADG对Cr3+的最低检测限为7.18×10-9(见图10a和10b)。说明ADG能高灵敏荧光识别Fe3+和Cr3+
基于此理论,超分子聚合物凝胶ADG可用于吸附与分离水溶液中的Fe3+和Cr3+
三、金属凝胶ADG-Fe、ADG-Cr对阴离子的响应
1、金属凝胶ADG-Fe、ADG-Cr的制备
在超分子聚合物凝胶中分别加入Fe3+和Cr3+,加热溶解,ADG分别与Fe3+、Cr3+配位,冷却后分别形成金属凝胶ADG-Fe、ADG-Cr。ADG与Fe3+、Cr3+的摩尔比为1:1~1:2。
2、金属凝胶ADG-Fe对H2PO4 -的单一性选择性识别
向ADG中加入0.5倍当量的Fe3+水溶液(相对于ADG),ADG与Fe3+配位以后可以形成金属凝胶ADG-Fe,向该金属凝胶中分别加入1.5倍当量(相对于Fe3+)的Cl-,Br-,I-,F-,AcO-,H2PO4 -,HSO4 -,SCN-,CN-,ClO4 -,S2-,N3 -的水溶液(浓度为0.1mol/L),结果发现,只有H2PO4 -可以使ADG-Fe的白色荧光恢复。
在H2PO4 -对ADG-Fe的荧光滴定实验中,当H2PO4 -加入到1.5倍当量(相对于Fe3+)时,ADG-Fe的荧光强度达到最强并趋于稳定,通过3σ法计算可知,ADG-Fe对H2PO4 -的最低检测限为2.03×10–8(图11a和11b)。
3、金属凝胶ADG-Cr对CN-的单一性选择性识别
向ADG中加入1.5倍当量的Cr3+水溶液(相对于ADG),ADG与Cr3+配位以后可以形成金属凝胶ADG-Cr,向该金属凝胶中分别加入2倍当量(相对于Cr3+)的Cl-,Br-,I-,F-,AcO-,H2PO4 -,HSO4 -,SCN-,CN-,ClO4 -,S2-,N3 -的水溶液(浓度为0.1mol/L),结果发现,只有CN-可以使ADG-Cr的白色荧光恢复。
在CN-对ADG-Cr的荧光滴定实验中,当CN-加入到1.7倍当量(相对于Cr3+)时, ADG-Cr的荧光强度达到最强并趋于稳定,因此,ADG-Cr能够对水溶液中的CN-具有专一性识别能力。通过3σ法计算可知,ADG-Cr对CN-的最低检测限为1.75×10–8(图12a和12b)。
通过1H NMR滴定,研究了ADG对阴离子和阳离子可能的连续响应机理,如图13所示。在ADG和Cr3+1H NMR滴定中(图14),随着Cr3+浓度的增加,ZD上的H1-4质子和ZA上的He-f质子表现出明显的下场偏移。该结果表明Cr3+与ZD上的-NH和-C = O基团以及ZA上的烷氧基配位(图13)。还诱导了ADG凝胶的荧光猝灭。但是,在添加CN-之后,很明显,这些信号显示出场偏移并恢复到其初始位置(见图15)。同时,荧光也恢复了,这可能归因于Cr3+与CN-的竞争性结合。
综上所述,本发明设计合成了一种具有良好的聚集诱导发光特性的超分子聚合物凝胶ADG,该凝胶可以选择性超灵敏检测Fe3+和Cr3+。而ADG与Fe3+配位形成的金属凝胶ADG-Fe可以单一选择性荧光打开检测H2PO4 -;ADG与Cr3+配位形成的金属凝胶ADG-Cr可以单一选择性荧光打开检测CN-。因此,该超分子聚合物凝胶在离子的超灵敏响应领域具有十分重要的研究意义。基于此理论,ADG对Fe3+和H2PO4 -的连续性荧光响应及对Cr3+、CN-连续性荧光响应的荧光开关;还可以制备可擦写荧光显示薄膜材料。
附图说明
图1为ZA的氢谱图;
图2为ZA的质谱图;
图3为ZD的氢谱图;
图4为ZD的质谱图;
图5为主客体ZA和ZD在DMSO-d 6中的部分核磁滴定氢谱随ZD的增加质子峰的位移(a)单独的ZA;(d)单独的ZD;(b)加入0.3倍当量ZD;(c)加入1.0倍当量ZD;
图6为ZA和ZD混合物的二维核磁共振波谱(600mhz,DMSO-d 6,298k);
图7为ADG的荧光强度随温度变化的荧光响应光谱图;
图8为ADG对不同金属离子的荧光响应光谱图;
图9为ADG对Fe3+的荧光滴定光谱图和线性拟合图;
图10为ADG对Cr3+的荧光滴定光谱图和线性拟合图;
图11为ADG-Fe对H2PO4 -的荧光滴定光谱图和线性拟合图;
图12为ADG-Cr对CN-的荧光滴定光谱图和线性拟合图;
图13为ADG对Cr3+和CN-识别的可能机理;
图14为Cr3+和CN-的部分核磁滴定氢谱;
图15为ADG对Fe3+和H2PO4 -识别的可能机理;
图16为ADG对Cr3+和CN-的循环检测。
具体实施方式
下面通过具体实施例对本发明中的超分子聚合物凝胶ADG的制备及应用作进一步说明。
实施例1、超分子聚合物凝胶ADG的制备
1、主体凝胶因子ZA的合成:向100mL圆底烧瓶中分别加入乙腈(50mL)、溴功能化的双边柱[5]芳烃(0.523g,0.5mmol)、对羟基苯甲酸甲酯(1.2mmol,0.2g)、KI(5mmol,0.83g)、K2CO3(4mmol,0.5g),氮气保护80℃油浴回流搅拌10~12小时。反应结束后加硅胶拌样,旋干,用柱层析法纯化(石油醚:乙酸乙酯 = 50:1),得到白色产物即为对羟基苯甲酸甲酯功能化的柱[5]芳烃(产率为80%)。再用DMF溶解对羟基苯甲酸甲酯功能化的柱[5]芳烃,向该体系中加入浓度为1mol/L的NaOH水溶液,120℃油浴回流搅拌10~12小时;冷却用浓盐酸调PH=1,静置析出产物后减压抽滤,用乙醇和水重结晶得主体化合物ZA,产率为90%。ZA的合成式如下:
Figure DEST_PATH_IMAGE003
2、客体凝胶因子ZD的合成:在25mL DMF中,加入1mmol(0.2639g)均苯三甲酰氯和3.3mmol(0.3101g)4-氨基吡啶(摩尔比1:3.3),在室温下下反应16~18h左右,用DMF和水重结晶,得到0.96mmol(0.4211g)4-氨基吡啶功能化的均苯三甲酰氯(ZD),产率为80%。其合成式如下:
Figure 650505DEST_PATH_IMAGE004
3、超分子聚合物凝胶ADG的制备:称取主体凝胶因子ZA(0.0087g)和客体凝胶因子ZD(0.0013g),加入100μl的DMSO做溶剂,将混合物加热至完全溶解后,再加入100μl蒸馏水(主客体ZA、ZD的摩尔比为3:1),继续加热至溶解,静置冷却,即形成超分子聚合物凝胶ADG。
实施例2、超分子聚合物凝胶ADG荧光连续识别Fe3+、Cr3+
向超分子聚合物凝胶ADG中分别加入不同的金属离子水溶液(Fe3+,Hg2+,Ag+,Ca2+,Cu2+,Co2+,Ni2+,Cd2+,Pb2+,Zn2+,Cr3+,Mg2+,Ba2+,Al3+,Eu3+,Tb3+,La3+和Th4+),若ADG的荧光猝灭,说明加入的是Fe3+和Cr3+,若ADG的荧光没有发生明显的变化,说明加入的是其他离子。
实施例3、金属凝胶ADG-Cr的制备及对CN-的单一性选择性识别
向ADG中加入其摩尔量2/3倍Cr3+,ADG与Cr3+配位以后形成金属凝胶ADG- Cr。
向该金属凝胶中分别加入Cl-,Br-,I-,F-,AcO-,H2PO4 -,HSO4 -,SCN-,CN-,ClO4 -,S2-,N3 -的水溶液,若金属凝胶的白色荧光恢复,说明加入的是CN-
实施例4、金属凝胶ADG-Fe的制备及对H2PO4 -的单一性选择性识别
向ADG中加入其摩尔量2/3倍Fe3+,ADG与Cr3+配位以后形成金属凝胶ADG-Fe。
向该金属凝胶中分别加入Cl-,Br-,I-,F-,AcO-,H2PO4 -,HSO4 -,SCN-,CN-,ClO4 -,S2-,N3 -的水溶液,若金属凝胶的白色荧光恢复,说明加入的是H2PO4 -。可能的识别机理如图15所示,与ADG对Cr3+与CN-的识别机理相似。
实施例5、超分子聚合物凝胶ADG对水溶液中Fe3+和Cr3+的吸附与分离
称取一份ADG(0.001g)的干凝胶粉末放入含有Fe3+的水溶液中(5mL,1×10-4mol/L)。另称取一份ADG(0.001g)的干凝胶粉末放入含有Cr3+的水溶液中(5mL,1×10-4mol/L)。将两者室温搅拌24小时,用离心机离心10分钟(1000r/min),取上清液。经电感耦合等离子体技术分析可知,ADG的干凝胶粉末对Fe3+和Cr3+的吸附率分别为98.25~98.96%和98.65~98.96%。说明ADG的干凝胶粉末对水溶液中的Fe3+和Cr3+具有较好的吸附和分离能力。
实施例6、基于超分子聚合物凝胶ADG的离子响应的荧光开关
用微量荧光比色皿配制一份体积为200μL的ADG。先向ADG中加入一定量的Cr3+,凝胶的荧光被猝灭,然后加入CN-,凝胶的荧光强度明显增强。重复上述步骤,ADG的荧光可以形成一种“打开-关闭-打开”的循环,并且该循环可以重复多次(图16)。因此,ADG的这种特性可用于制备离子响应的荧光开关。
实施例7、可擦写荧光显示薄膜的制备
取400μL的超分子聚合物凝胶ADG,将该凝胶加热熔融后,均匀地倒在一个干净的玻璃板上,在室温下冷却并晾干制成凝胶薄膜,该凝胶薄膜具有较弱的白色荧光。用细毛笔蘸取适量的Cr3+水溶液均匀地涂抹在该凝胶薄膜上,在365nm荧光灯下可以观察到该凝胶薄膜的荧光消失。然后,用细毛笔蘸取适量的CN-水溶液,均匀地涂抹在无荧光的凝胶薄膜上,该凝胶的荧光明显增强。同理,用细毛笔蘸取适量的Fe3+水溶液均匀地涂抹在该凝胶薄膜上,在365nm荧光灯下可以观察到该凝胶薄膜的荧光消失。然后,用细毛笔蘸取适量的H2PO4 -水溶液,均匀地涂抹在无荧光的凝胶薄膜上,该凝胶的荧光明显增强。

Claims (10)

1.一种主客体组装的超分子聚合物凝胶,是以对羟基苯甲酸功能化的柱[5]芳烃为主体凝胶因子,4-氨基吡啶功能化的均苯三甲酰氯为客体凝胶因子,加热溶解于DMSO-H2O体系中,静置冷却,通过主客体之间相互作用形成超分子聚合物凝胶;
所述主体凝胶因子对羟基苯甲酸功能化的柱[5]芳烃的结构式如下:
Figure 185497DEST_PATH_IMAGE001
所述客体凝胶因子4-氨基吡啶功能化的均苯三甲酰氯的结构式如下:
Figure DEST_PATH_IMAGE002
主体凝胶因子对羟基苯甲酸功能化的柱[5]芳烃与客体凝胶因子4-氨基吡啶功能化的均苯三甲酰氯的摩尔比为3:1~3.3:1。
2.如权利要求1所述一种主客体组装的超分子聚合物凝胶,其特征在于:DMSO-H2O体系中,DMSO与H2O的体积比为1:1~1:1.5。
3.如权利要求1所述一种主客体组装的超分子聚合物凝胶,其特征在于:主客凝胶因子的凝胶浓度为33~68mg/mL。
4.如权利要求1所述一种主客体组装的超分子聚合物凝胶用于荧光识别Fe3+和Cr3+,其特征在于:向超分子聚合物凝胶中分别加入Fe3+,Hg2+,Ag+,Ca2+,Cu2+,Co2+,Ni2+,Cd2+,Pb2+,Zn2+,Cr3+,Mg2+,Ba2+,Al3+,Eu3+,Tb3+,La3+和Th4+的水溶液,只有Fe3+和Cr3+的可以使超分子聚合物凝胶的荧光猝灭。
5.如权利要求1所述一种主客体组装的超分子聚合物凝胶用于吸附分离水体中的Fe3+和Cr3+
6.如权利要求1所述一种主客体组装的超分子聚合物凝胶用于制备可擦写荧光显示薄膜。
7.如权利要求1所述一种主客体组装的超分子聚合物凝胶用于制备离子响应型荧光开关。
8.一种基于如权利要求1所述主客体组装的超分子聚合物凝胶的金属凝胶,是在超分子聚合物凝胶中分别加入Fe3+和Cr3+,加热溶解,超分子聚合物凝胶与Fe3+、Cr3+配位,冷却后分别形成金属凝胶ADG-Fe、ADG-Cr;超分子聚合物凝胶与Fe3+、Cr3+的摩尔比为1:1~1:2。
9.如权利要求8所述基于超分子聚合物凝胶的金属凝胶用于荧光识别H2PO4 -,其特征在于:在金属凝胶ADG-Fe上分别滴加Cl-,Br-,I-,F-,AcO-,H2PO4 -,HSO4 -,SCN-,CN-,ClO4 -,S2-,N3 -的水溶液时,只有H2PO4 -能使ADG-Fe的荧光恢复。
10.如权利要求8所述基于超分子聚合物凝胶的金属凝胶用于荧光识别CN-,其特征在于:在金属凝胶ADG-Cr上分别滴加Cl-,Br-,I-,F-,AcO-,H2PO4 -,HSO4 -,SCN-,CN-,ClO4 -,S2-,N3 -的水溶液时,只有CN-能使ADG-Fe的荧光恢复。
CN201911259592.8A 2019-12-10 2019-12-10 一种主客体组装的超分子聚合物凝胶及其金属的制备和应用 Expired - Fee Related CN110951087B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911259592.8A CN110951087B (zh) 2019-12-10 2019-12-10 一种主客体组装的超分子聚合物凝胶及其金属的制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911259592.8A CN110951087B (zh) 2019-12-10 2019-12-10 一种主客体组装的超分子聚合物凝胶及其金属的制备和应用

Publications (2)

Publication Number Publication Date
CN110951087A true CN110951087A (zh) 2020-04-03
CN110951087B CN110951087B (zh) 2021-08-17

Family

ID=69980850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911259592.8A Expired - Fee Related CN110951087B (zh) 2019-12-10 2019-12-10 一种主客体组装的超分子聚合物凝胶及其金属的制备和应用

Country Status (1)

Country Link
CN (1) CN110951087B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061088A (zh) * 2021-04-09 2021-07-02 南通大学 一种不对称柱[5]芳烃及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016734A1 (en) * 1997-10-01 1999-04-08 Macgillivray Leonard R Spherical molecular assembly
CN108440339A (zh) * 2018-04-18 2018-08-24 西北师范大学 一种基于芳酰腙功能化的柱[5]芳烃超分子传感器及其合成和应用
CN109400900A (zh) * 2018-10-30 2019-03-01 西北师范大学 基于柱[5]芳烃主客体组装的超分子凝胶及其在检测和吸附铁离子的应用
CN109536160A (zh) * 2018-12-29 2019-03-29 西北师范大学 一种基于均苯三甲酰氯的三足准轮烷超分子凝胶及其金属凝胶的制备和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016734A1 (en) * 1997-10-01 1999-04-08 Macgillivray Leonard R Spherical molecular assembly
CN108440339A (zh) * 2018-04-18 2018-08-24 西北师范大学 一种基于芳酰腙功能化的柱[5]芳烃超分子传感器及其合成和应用
CN109400900A (zh) * 2018-10-30 2019-03-01 西北师范大学 基于柱[5]芳烃主客体组装的超分子凝胶及其在检测和吸附铁离子的应用
CN109536160A (zh) * 2018-12-29 2019-03-29 西北师范大学 一种基于均苯三甲酰氯的三足准轮烷超分子凝胶及其金属凝胶的制备和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061088A (zh) * 2021-04-09 2021-07-02 南通大学 一种不对称柱[5]芳烃及其制备方法和应用
CN113061088B (zh) * 2021-04-09 2023-05-02 南通大学 一种不对称柱[5]芳烃及其制备方法和应用

Also Published As

Publication number Publication date
CN110951087B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
Xiaoxiong et al. Eu3+-postdoped UIO-66-type metal–organic framework as a luminescent sensor for Hg2+ detection in aqueous media
Dong et al. A new application of Salamo-type bisoximes: as a relay–sensor for Zn2+/Cu2+ and its novel complexes for successive sensing of H+/OH−
Choi et al. A single schiff base molecule for recognizing multiple metal ions: a fluorescence sensor for Zn (II) and Al (III) and colorimetric sensor for Fe (II) and Fe (III)
Gurusamy et al. Multiple target detection and binding properties of naphthalene-derived Schiff-base chemosensor
CN110240683B (zh) 一种共价有机框架材料及其制备方法和在荧光传感器中的应用
Jiang et al. Double-detecting fluorescent sensor for ATP based on Cu2+ and Zn2+ response of hydrazono-bis-tetraphenylethylene
Kursunlu et al. A highly branched macrocycle-based dual-channel sensor: Bodipy and pillar [5] arene combination for detection of Sn (II) &Hg (II) and bioimaging in living cells
CN109187472B (zh) 一种基于主客体自组装的超分子传感器及其制备和应用
Dalapati et al. Post-synthetic modification of a metal–organic framework with a chemodosimeter for the rapid detection of lethal cyanide via dual emission
Gupta et al. Azoaniline-based rapid and selective dual sensor for copper and fluoride ions with two distinct output modes of detection
Saha et al. New chemodosimetric probe for the specific detection of Hg 2+ in physiological condition and its utilisation for cell imaging studies
Sun et al. Sequence-specific fluorometric recognition of HIV-1 ds-DNA with zwitterionic zinc (II)-carboxylate polymers
CN110204564B (zh) 一种检测氰根离子的荧光探针及其制备方法和应用
Huang et al. A colorimetric and turn-on fluorescent chemosensor for selectively sensing Hg2+ and its resultant complex for fast detection of I− over S2−
Yadav et al. Dicarbohydrazide based chemosensors for copper and cyanide ions via a displacement approach
Murugesan et al. Traditional hydrogen bonding donors controlled colorimetric selective anion sensing in tripodal receptors: First-naked-eye detection of cyanide by a tripodal receptor via fluoride displacement assay
Celestina et al. Novel triazine-based colorimetric and fluorescent sensor for highly selective detection of Al3+
Rai et al. A new rhodamine derivative as a single optical probe for the recognition of Cu 2+ and Zn 2+ ions
CN108088828B (zh) 一种双柱芳烃汞离子荧光传感器及其制备和应用
Cai et al. Experimental and computational investigation of a DNA-shielded 3D metal–organic framework for the prompt dual sensing of Ag+ and S 2−
CN107903257B (zh) 一种基于花菁可视有机分子荧光探针及其制备方法
Bag et al. Attachment of an electron-withdrawing fluorophore to a cryptand for modulation of fluorescence signaling
Wang et al. Linear tri-pillar [5] arene-based acceptor for efficiently separate paraquat from water through collaboration effect
Giri et al. Benzodithieno-imidazole based π-conjugated fluorescent polymer probe for selective sensing of Cu 2+
CN110951087B (zh) 一种主客体组装的超分子聚合物凝胶及其金属的制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210817