CN110950655A - Ca-Ti基高介微波陶瓷基板材料及制备方法和应用 - Google Patents

Ca-Ti基高介微波陶瓷基板材料及制备方法和应用 Download PDF

Info

Publication number
CN110950655A
CN110950655A CN201911261807.XA CN201911261807A CN110950655A CN 110950655 A CN110950655 A CN 110950655A CN 201911261807 A CN201911261807 A CN 201911261807A CN 110950655 A CN110950655 A CN 110950655A
Authority
CN
China
Prior art keywords
percent
purity
hours
sintering
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911261807.XA
Other languages
English (en)
Other versions
CN110950655B (zh
Inventor
唐斌
熊喆
刘帅
袁颖
杨成韬
张树人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201911261807.XA priority Critical patent/CN110950655B/zh
Publication of CN110950655A publication Critical patent/CN110950655A/zh
Application granted granted Critical
Publication of CN110950655B publication Critical patent/CN110950655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)

Abstract

本发明提供一种Ca‑Ti基高介微波陶瓷基板材料及其制备方法和应用,它由两种晶相组成,分别为金红石型TiO2和CaTiO3。B位取代后的CaTiO3相与TiO2复合形成了性能可调可控的陶瓷材料,其它掺杂剂起到了抑制Ti还原、提升陶瓷材料Q×f值的作用,材料化学通式为:Ca(BbTi1‑b)O3+aTiO2+cZnO+dD;制备方法包括配料、球磨、造粒、成型、烧结,采用本方法制备的Ca‑Ti基微波陶瓷基板材料经实验室研究测试具有较高Q×f值(8000~12000),高介电常数(145~165)和系列化的介电常数温度系数(‑1500±500),本发明复合陶瓷适用于制作微波电容器的基板材料,还可用于制作微带滤波器等可调微波器件的材料。

Description

Ca-Ti基高介微波陶瓷基板材料及制备方法和应用
技术领域
本发明涉及一种适用于微波电容器和微带滤波器的Ca-Ti基高介微波陶瓷基板材料及其制备方法和应用,属于先进通讯元器件基板材料领域。
背景技术
电子信息技术的快速发展,对电子元器件的集成化度、可靠性、稳定性和小型化要求越来越高。如今,第五代(5G)通信网络已在许多国家得到应用和大力推广。信息技术向高频化、大功率化、集成化、多功能化方向发展,这是必然趋势,且其发展速度迅猛。陶瓷滤波器在系统模块之间和通讯接发端的重要性日益提高。同时伴随着单片微波集成电路(MMIC)的日益发展,微带线已成为传输线中使用频率最多的一种。利用高介电常数的陶瓷基板材料,可使得印制在基板上的微带线工作波长远远小于自由空间的工作波长,同时可以实现阻抗的良好匹配。陶瓷基板材料是微带陶瓷器件的基础,随着微波介质器件的发展,相应的微波介质材料的发展要求为:系列化的介电常数温度系数满足温度补偿要求,高品质因素Q值满足低插入损耗,介电常数稳定满足仿真设计要求,精细的陶瓷表面颗粒结构满足微带工艺要求。相比一般的功能性微波陶瓷器件而言,微带陶瓷滤波器的特殊要求体现在,陶瓷表面粗糙度越大,在陶瓷基片表面溅射微带线时,薄膜不能很好的在陶瓷基片上成膜,可能影响膜层质量,使方阻变大,此时会导致滤波器的插入损耗严重恶化。因此,研制高频下具有良好微波介电性能并能满足微带工艺加工要求的介质材料具有现实意义和实际应用价值。
低损耗、系列化介电常数和一定的电容温度系数是微波电容器和微带陶瓷滤波器对基板材料的基本要求,可以应用在微波和射频电路中。国内外已被研究的高频微波介质材料有:CaZrO3、Ca(Li1/3Nb2/3)O3-δ和Ba(Mg1/3Ta2/3)O3等。其中,CaZrO3和Ba(Mg1/3Ta2/3)O3的烧结温度高,达到1400℃及以上;Ca(Li1/3Nb2/3)O3-δ系微波MLCC用介质材料烧结温度虽然低(约1150℃),但其烧结气氛要求在低氧分压下。所以上述几种微波陶瓷材料均难以大规模应用到实际工业生产中。而且,上述几种陶瓷材料,介电常数都在30以下。对于介电常数大于130的陶瓷基板材料,目前研究较为广泛的材料体系主要是以下几种:CaTiO3及其改性陶瓷和CaO-Li2O-Ln2O3-TiO2及其改性陶瓷。目前很多研究主要集中在对上述第二种陶瓷的频率温度系数的调节。如《材料快报》(Scripta Materialia)2016年的文章《火花等离子烧结制备的0.7CaTiO3–0.3NdAlO3陶瓷的烧结特性及微波介电性能》(Sintering behavior andmicrowave properties of dense 0.7CaTiO3–0.3NdAlO3 ceramics with sub-micronsized grains by spark plasma sintering)中报道了CaTiO3与NdAlO3两种陶瓷复合,可制备出具有较为优异介电性能的微波陶瓷材料:εr=46,Q×f=32000GHz,τf=-2.4ppm/℃。但该文章采用的烧结方法无法大规模应用,且复合后的陶瓷介电常数大大下降。《材料研究公报》(Materials Research Bulletin)2012年的文章《键价对(1-x)CaTiO3–x(Li0.5La0.5)TiO3陶瓷微波介电性能的影响》(Effect of bond valence on microwave dielectricproperties of(1-x)CaTiO3–x(Li0.5La0.5)TiO3 ceramics)中报道了介电常数高达245,频率温度系数近零的0.4CaTiO3–0.6(Li0.5La0.5)TiO3陶瓷。但该陶瓷Q×f值很低(2750GHz),且该文章未能评估其是否能满足微带滤波器表面精细颗粒结构加工要求,同时也未测试改性后的陶瓷材料的介电温度系数,无法确定其是否满足实际应用要求。
目前研究的高介微波介质陶瓷材料都在尽力追求其稳定的频率温度特性,并且忽视了改性过程中陶瓷损耗的提升,也从未考虑其可加工性,因此,当前迫切需要开发一种工艺简单、原材料成本低,同时满足高介电常数要求且具有低损耗特性的微波介质陶瓷材料,并通过控制微带线陶瓷的显微结构来实现微带线陶瓷的可精密加工来满足微带工艺,也可以适应超微型微波电容器加工工艺,以满足高频微波通信行业的应用需求。
发明内容
本发明的目的是提供一种具有低损耗、一定的介电温度系数、成本低廉并具有良好加工性的适用于微波电容器和微带滤波器的Ca-Ti基高介微波陶瓷基板材料及其制备方法和应用。
为实现上述发明目的,本发明技术方案如下:
一种Ca-Ti基高介微波陶瓷基板材料,由两种晶相组成,分别为金红石型TiO2和CaTiO3;B位取代后的CaTiO3相与TiO2复合形成了性能可调的陶瓷材料;
材料化学通式为:Ca(BbTi1-b)O3+aTiO2+cZnO+dD;其中B=Zr,Sn,Si,Mg1/3Nb2/3,Al1/2Nb1/2,D=MnCO3,Cr2O3,CuO,0.01≤b≤0.07,0.5≤a≤1.5,0.01≤c≤0.03,0.001≤d≤0.003。
作为优选方式,原料包括如下纯度的材料:99.5%碳酸钙,99.5%二氧化钛,99.5%二氧化锆,99%二氧化锡,99%二氧化硅,99%碱式碳酸镁,99.9%氧化铝,99%五氧化二铌,99.8%氧化锌,99%碳酸锰,99.5%三氧化二铬,99.5%氧化铜。
作为优选方式,所述的陶瓷基板材料的制备合成工艺包括下列步骤:
(1)配料:以纯度为99.5%碳酸钙,99.5%二氧化钛,99.5%二氧化锆,99%二氧化锡,99%二氧化硅,99%碱式碳酸镁,99.9%氧化铝,99%五氧化二铌,99.8%氧化锌,99%碳酸锰,99.5%三氧化二铬,99.5%氧化铜为起始原料,按化学通式进行配料得到混合料;
(2)一次球磨过筛:将上述混合料投入球磨机,以二氧化锆球为球磨介质,以去离子水为溶剂,按照混合料:磨球:水的重量比为1:(4~6):(1~2)进行研磨4~16小时,出料;然后在烘箱中110℃条件下烘12小时,烘干后用60目筛网过筛;
(3)预烧:过筛后的料在1150~1250℃下烧结2~4小时,冷却得到预烧陶瓷粉料;
(4)二次球磨:将上述预烧粉料投入球磨机,以二氧化锆球为球磨介质,以去离子水为溶剂,按照混合料:磨球:水的重量比为1:5:1.2进行研磨6小时,出料;然后在烘箱中110℃条件下烘12小时,烘干得到干燥粉体;
(5)造粒:将第三步得到的干燥粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在100~200目;
(6)成型:将粒料放入成型模具中于16MPa压力下干压成型得到生坯;
(7)烧结:生坯于1350~1450℃下烧结2~6小时,冷却制得微波陶瓷材料。
为实现上述发明目的,本发明还提供一种Ca-Ti基高介微波陶瓷基板材料的制备方法,包括如下步骤:
(1)配料:以纯度为99.5%碳酸钙,99.5%二氧化钛,99.5%二氧化锆,99%二氧化锡,99%二氧化硅,99%碱式碳酸镁,99.9%氧化铝,99%五氧化二铌,99.8%氧化锌,99%碳酸锰,99.5%三氧化二铬,99.5%氧化铜为起始原料,按化学通式进行配料得到混合料;
材料化学通式为:Ca(BbTi1-b)O3+aTiO2+cZnO+dD;其中B=Zr,Sn,Si,Mg1/3Nb2/3,Al1/2Nb1/2,D=MnCO3,Cr2O3,CuO,0.01≤b≤0.07,0.5≤a≤1.5,0.01≤c≤0.03,0.001≤d≤0.003;
(2)一次球磨过筛:将上述混合料投入球磨机,以二氧化锆球为球磨介质,以去离子水为溶剂,按照混合料:磨球:水的重量比为1:(4~6):(1~2)进行研磨4~16小时,出料;然后在烘箱中110℃条件下烘12小时,烘干后用60目筛网过筛;
(3)预烧:过筛后的料在1150~1250℃下烧结2~4小时,冷却得到预烧陶瓷粉料;
(4)二次球磨:将上述预烧粉料投入球磨机,以二氧化锆球为球磨介质,以去离子水为溶剂,按照混合料:磨球:水的重量比为1:5:1.2进行研磨6小时,出料;然后在烘箱中110℃条件下烘12小时,烘干得到干燥粉体;
(5)造粒:将第三步得到的干燥粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在100~200目;
(6)成型:将粒料放入成型模具中于16MPa压力下干压成型得到生坯;
(7)烧结:生坯于1350~1450℃下烧结2~6小时,冷却制得微波陶瓷材料。
为实现上述发明目的,本发明还提供一种所述的Ca-Ti基高介微波陶瓷基板材料在微波电容器或微带滤波器基板中的应用。
本发明的微波介质陶瓷基板材料,经检测具有较低的损耗即较高的Q×f值(8000~12000),高介电常数(145~165)、一定的介电常数温度系数(-1500±500)和良好的可加工性。
本发明所涉及到的微波介质陶瓷材料制备方法与传统的生产技术相比,主要特点是获得了晶粒分布均匀,结构致密且加工性能良好的具有较高介电常数和较高品质因子的微波介质陶瓷材料。
用X射线衍射仪对烧结后的陶瓷试样进行了物相分析如图1所示,可以证实本发明所得陶瓷试样由TiO2和CaTiO3两种晶相组成。用扫描电镜SEM对研磨过的陶瓷表面进行观察如图2所示,可以看出加工后的陶瓷表面平整致密。对加工后的陶瓷用针触法进行测试陶瓷的表面粗糙度如图3所示,发现其表面粗糙度小于100nm,可以达到微波电容器和微带制备工艺要求。
与现有技术相比,本发明具有以下特点:
1、采用单次合成工艺,容易实现材料的稳定生产;
2、获得具有两种晶相的陶瓷材料,易于控制和调节材料性能,同时获得性能稳定的粉体材料,
3、在陶瓷颗粒结构控制上实现了较大提升,并能满足微带工艺或超微型微波电容应用要求;获得的高介陶瓷颗粒结构致密、陶瓷可精细加工,Q×f值达到8000~12000GHz;
4、原材料在国内充足,价格低廉,使高性能微波陶瓷基板的低成本化成为可能。
5、B位取代后的CaTiO3相与TiO2复合形成了性能可调可控的陶瓷材料,其它掺杂剂起到了抑制Ti还原、提升陶瓷材料Q×f值的作用。
附图说明
图1是本发明得到的陶瓷材料的X射线衍射图;
图2是本发明得到的陶瓷材料表面的扫描电镜图;
图3是本发明的陶瓷材料用针触法测试得到的陶瓷表面粗糙度数据。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1-16
(1)配料:按照化学通式Ca(BbTi1-b)O3+aTiO2+cZnO+dD进行备料,其中B=Zr,Sn,Si,Mg1/3Nb2/3,Al1/2Nb1/2,D=MnCO3,Cr2O3,CuO,按照摩尔百分比,0.01≤b≤0.07,0.5≤a≤1.5,0.01≤c≤0.03,0.001≤d≤0.003。原料包括如下纯度的材料:99.5%碳酸钙,99.5%二氧化钛,99.5%二氧化锆,99%二氧化锡,99%二氧化硅,99%碱式碳酸镁,99.9%氧化铝,99%五氧化二铌,99.8%氧化锌,99%碳酸锰,99.5%三氧化二铬,99.5%氧化铜。
其中B、D、a、b、c、d具体表示如表1所示,各实施例所需原料称好混合后备用;
(2)一次球磨过筛:将步骤1得到的混合料二氧化锆球为球磨介质,以去离子水为溶剂,按照混合料:磨球:水的重量比为1:(4~6):(1~2)进行研磨4~16小时,出料;然后在烘箱中110℃条件下烘12小时,烘干后用60目筛网过筛;
(3)预烧:过筛后的料在1150~1250℃下烧结2~4小时,冷却得到预烧陶瓷粉料;
(4)二次球磨:将上述预烧粉料投入球磨机,以二氧化锆球为球磨介质,以去离子水为溶剂,按照混合料:磨球:水的重量比为1:5:1.2进行研磨6小时,出料;然后在烘箱中110℃条件下烘12小时,烘干得到干燥粉体;
(5)造粒:将第三步得到的干燥粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在100~200目;
(6)成型:将粒料放入成型模具中于16MPa压力下干压成型得到生坯;
(7)烧结:生坯于1350~1450℃下烧结2~6小时,冷却得到Ca-Ti基高介微波陶瓷基板材料。
每个实施例具体制备工艺如表2所示,微波介电性能测试结果如表3所示。
表1各实施例的微波陶瓷基板材料的组成
实施例编号 B D a b c d
1 Zr MnCO<sub>3</sub> 0.5 0.07 0.02 0.002
2 Sn Cr<sub>2</sub>O<sub>3</sub> 1 0.05 0.01 0.003
3 Si CuO 1.5 0.01 0.03 0.001
4 Mg<sub>1/3</sub>Nb<sub>2/3</sub> Cr<sub>2</sub>O<sub>3</sub> 1 0.05 0.01 0.001
5 Al<sub>1/2</sub>Nb<sub>1/2</sub> MnCO<sub>3</sub> 0.5 0.07 0.01 0.002
6 Zr CuO 1 0.03 0.01 0.001
7 Sn MnCO<sub>3</sub> 1.5 0.03 0.02 0.003
8 Si Cr<sub>2</sub>O<sub>3</sub> 1 0.05 0.03 0.002
9 Mg<sub>1/3</sub>Nb<sub>2/3</sub> MnCO<sub>3</sub> 0.5 0.05 0.03 0.002
10 Al<sub>1/2</sub>Nb<sub>1/2</sub> CuO 1 0.05 0.02 0.003
11 Zr Cr<sub>2</sub>O<sub>3</sub> 1.5 0.05 0.01 0.001
12 Sn CuO 0.5 0.07 0.02 0.002
13 Si MnCO<sub>3</sub> 0.5 0.07 0.01 0.003
14 Mg<sub>1/3</sub>Nb<sub>2/3</sub> CuO 1.5 0.01 0.01 0.001
15 Al<sub>1/2</sub>Nb<sub>1/2</sub> Cr<sub>2</sub>O<sub>3</sub> 1.5 0.01 0.01 0.002
表2各实施例的微波陶瓷基板材料的制备工艺
实施例编号 料:球:水 球磨时间(h) 预烧条件(℃/h) 造粒尺寸(目) 烧结条件(℃/h)
1 1:6:1 4 1150/2 100 1350/6
2 1:4:1.5 4 1150/3 150 1400/5
3 1:5:2 6 1150/4 200 1450/4
4 1:4:1 6 1200/2 150 1400/3
5 1:6:1.5 8 1200/3 100 1350/2
6 1:4:2 8 1200/4 150 1400/3
7 1:5:1 12 1250/2 200 1450/4
8 1:5:1.5 12 1250/3 150 1400/5
9 1:5:2 6 1250/4 100 1350/6
10 1:5:1 6 1200/3 150 1400/5
11 1:4:1.5 6 1200/4 150 1450/4
12 1:6:2 6 1200/2 150 1400/3
13 1:6:2 12 1250/3 200 1350/2
14 1:4:1.5 12 1150/2 200 1400/3
15 1:5:1 16 1150/3 150 1450/4
表3各实施例的微波陶瓷基板材料的微波性能
Figure BDA0002311794940000061
Figure BDA0002311794940000071
从表3可以看出,本发明制备出的适用于微带滤波器的Ca-Ti基高介微波陶瓷基板材料具有高介电常数(145~165),Q×f值在8000~12000GHz,介电常数温度系数τε控制在-1500±500ppm/℃范围内。该陶瓷材料由金红石型TiO2和CaTiO3两种晶相组成,表面晶粒分布均匀,机构致密,且从图三可看出抛光后陶瓷材料的表面粗糙度低,完全适用于微带加工工艺和超微型微波电容加工工艺。
一种Ca-Ti基高介微波陶瓷基板材料,由两种晶相组成,分别为金红石型TiO2和CaTiO3;B位取代后的CaTiO3相与TiO2复合形成了性能可调的陶瓷材料;
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (5)

1.一种Ca-Ti基高介微波陶瓷基板材料,其特征在于:由两种晶相组成,分别为金红石型TiO2和CaTiO3;B位取代后的CaTiO3相与TiO2复合形成了性能可调的陶瓷材料;
材料化学通式为:Ca(BbTi1-b)O3+aTiO2+cZnO+dD;其中B=Zr,Sn,Si,Mg1/3Nb2/3,Al1/ 2Nb1/2,D=MnCO3,Cr2O3,CuO,0.01≤b≤0.07,0.5≤a≤1.5,0.01≤c≤0.03,0.001≤d≤0.003。
2.根据权利要求1的一种Ca-Ti基高介微波陶瓷基板材料,其特征在于:原料包括如下纯度的材料:99.5%碳酸钙,99.5%二氧化钛,99.5%二氧化锆,99%二氧化锡,99%二氧化硅,99%碱式碳酸镁,99.9%氧化铝,99%五氧化二铌,99.8%氧化锌,99%碳酸锰,99.5%三氧化二铬,99.5%氧化铜。
3.根据权利要求1的一种Ca-Ti基高介微波陶瓷基板材料,其特征在于所述的陶瓷基板材料的制备合成工艺包括下列步骤:
(1)配料:以纯度为99.5%碳酸钙,99.5%二氧化钛,99.5%二氧化锆,99%二氧化锡,99%二氧化硅,99%碱式碳酸镁,99.9%氧化铝,99%五氧化二铌,99.8%氧化锌,99%碳酸锰,99.5%三氧化二铬,99.5%氧化铜为起始原料,按化学通式进行配料得到混合料;
(2)一次球磨过筛:将上述混合料投入球磨机,以二氧化锆球为球磨介质,以去离子水为溶剂,按照混合料:磨球:水的重量比为1:(4~6):(1~2)进行研磨4~16小时,出料;然后在烘箱中110℃条件下烘12小时,烘干后用60目筛网过筛;
(3)预烧:过筛后的料在1150~1250℃下烧结2~4小时,冷却得到预烧陶瓷粉料;
(4)二次球磨:将上述预烧粉料投入球磨机,以二氧化锆球为球磨介质,以去离子水为溶剂,按照混合料:磨球:水的重量比为1:5:1.2进行研磨6小时,出料;然后在烘箱中110℃条件下烘12小时,烘干得到干燥粉体;
(5)造粒:将第三步得到的干燥粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在100~200目;
(6)成型:将粒料放入成型模具中于16MPa压力下干压成型得到生坯;
(7)烧结:生坯于1350~1450℃下烧结2~6小时,冷却制得微波陶瓷材料。
4.一种Ca-Ti基高介微波陶瓷基板材料的制备方法,其特征在于包括如下步骤:
(1)配料:以纯度为99.5%碳酸钙,99.5%二氧化钛,99.5%二氧化锆,99%二氧化锡,99%二氧化硅,99%碱式碳酸镁,99.9%氧化铝,99%五氧化二铌,99.8%氧化锌,99%碳酸锰,99.5%三氧化二铬,99.5%氧化铜为起始原料,按化学通式进行配料得到混合料;
材料化学通式为:Ca(BbTi1-b)O3+aTiO2+cZnO+dD;其中B=Zr,Sn,Si,Mg1/3Nb2/3,Al1/ 2Nb1/2,D=MnCO3,Cr2O3,CuO,0.01≤b≤0.07,0.5≤a≤1.5,0.01≤c≤0.03,0.001≤d≤0.003;
(2)一次球磨过筛:将上述混合料投入球磨机,以二氧化锆球为球磨介质,以去离子水为溶剂,按照混合料:磨球:水的重量比为1:(4~6):(1~2)进行研磨4~16小时,出料;然后在烘箱中110℃条件下烘12小时,烘干后用60目筛网过筛;
(3)预烧:过筛后的料在1150~1250℃下烧结2~4小时,冷却得到预烧陶瓷粉料;
(4)二次球磨:将上述预烧粉料投入球磨机,以二氧化锆球为球磨介质,以去离子水为溶剂,按照混合料:磨球:水的重量比为1:5:1.2进行研磨6小时,出料;然后在烘箱中110℃条件下烘12小时,烘干得到干燥粉体;
(5)造粒:将第三步得到的干燥粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在100~200目;
(6)成型:将粒料放入成型模具中于16MPa压力下干压成型得到生坯;
(7)烧结:生坯于1350~1450℃下烧结2~6小时,冷却制得微波陶瓷材料。
5.权利要求1或2所述的Ca-Ti基高介微波陶瓷基板材料在微波电容器或微带滤波器基板中的应用。
CN201911261807.XA 2019-12-10 2019-12-10 Ca-Ti基高介微波陶瓷基板材料及制备方法和应用 Active CN110950655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911261807.XA CN110950655B (zh) 2019-12-10 2019-12-10 Ca-Ti基高介微波陶瓷基板材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911261807.XA CN110950655B (zh) 2019-12-10 2019-12-10 Ca-Ti基高介微波陶瓷基板材料及制备方法和应用

Publications (2)

Publication Number Publication Date
CN110950655A true CN110950655A (zh) 2020-04-03
CN110950655B CN110950655B (zh) 2022-04-22

Family

ID=69980727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911261807.XA Active CN110950655B (zh) 2019-12-10 2019-12-10 Ca-Ti基高介微波陶瓷基板材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN110950655B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645168A (zh) * 2020-06-13 2020-09-11 哈尔滨农撷科技有限公司 一种自动化5g基站陶瓷滤波器生产系统
CN112851344A (zh) * 2021-01-26 2021-05-28 山东丁鼎科技发展有限公司 一种中介电常数微波介质陶瓷及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356967A (zh) * 2000-04-21 2002-07-03 韩国科学技术研究院 可低温烧结的低损耗介质陶瓷组合物及其制备方法
CN1389433A (zh) * 2001-05-31 2003-01-08 Tdk株式会社 单晶陶瓷粉末的制备方法、单晶陶瓷粉末及其复合材料、电子部件
CN1409334A (zh) * 2001-09-14 2003-04-09 松下电器产业株式会社 陶瓷电容器
US20100008019A1 (en) * 2008-07-08 2010-01-14 Ian Burn Consulting Inc. Sintered Dielectric Ceramic, Composition for Making, and Use Thereof In Multilayer Capacitor And Energy Storage Device
CN101628808A (zh) * 2008-07-17 2010-01-20 清华大学 一种CaTiO3基压敏-电容双功能陶瓷材料及制备方法
CN102503406A (zh) * 2011-11-14 2012-06-20 电子科技大学 一种微波器件陶瓷基板材料及其制备方法
CN103864406A (zh) * 2014-02-12 2014-06-18 同济大学 一种低介电常数微波介质陶瓷及其制备方法
CN106747415A (zh) * 2017-03-03 2017-05-31 华东理工大学 一种低介电损耗钛酸钙陶瓷的制备
US20190131071A1 (en) * 2017-10-27 2019-05-02 Yageo Corporation Ceramic sintered body and passive component including the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356967A (zh) * 2000-04-21 2002-07-03 韩国科学技术研究院 可低温烧结的低损耗介质陶瓷组合物及其制备方法
CN1389433A (zh) * 2001-05-31 2003-01-08 Tdk株式会社 单晶陶瓷粉末的制备方法、单晶陶瓷粉末及其复合材料、电子部件
CN1409334A (zh) * 2001-09-14 2003-04-09 松下电器产业株式会社 陶瓷电容器
US20100008019A1 (en) * 2008-07-08 2010-01-14 Ian Burn Consulting Inc. Sintered Dielectric Ceramic, Composition for Making, and Use Thereof In Multilayer Capacitor And Energy Storage Device
CN101628808A (zh) * 2008-07-17 2010-01-20 清华大学 一种CaTiO3基压敏-电容双功能陶瓷材料及制备方法
CN102503406A (zh) * 2011-11-14 2012-06-20 电子科技大学 一种微波器件陶瓷基板材料及其制备方法
CN103864406A (zh) * 2014-02-12 2014-06-18 同济大学 一种低介电常数微波介质陶瓷及其制备方法
CN106747415A (zh) * 2017-03-03 2017-05-31 华东理工大学 一种低介电损耗钛酸钙陶瓷的制备
US20190131071A1 (en) * 2017-10-27 2019-05-02 Yageo Corporation Ceramic sintered body and passive component including the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LUCHAO RENA等: "Optimization of borosilicate glass/CaTiO3-TiO2 composite via altering pre-firing temperature and particle size", 《INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY》 *
TANG BIN等: "Effect of Mn2+ doping on the temperature coefficient of capacitance of TiO2/SiO2-doped BaTiO3 ceramics", 《INORGANIC MATERIALS》 *
吴顺华等: "中温烧结CaO-TiO2-ZnO系陶瓷", 《电子元件与材料》 *
梁军等: "低温共烧微波介质陶瓷材料研究进展", 《电子元件与材料》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645168A (zh) * 2020-06-13 2020-09-11 哈尔滨农撷科技有限公司 一种自动化5g基站陶瓷滤波器生产系统
CN112851344A (zh) * 2021-01-26 2021-05-28 山东丁鼎科技发展有限公司 一种中介电常数微波介质陶瓷及其制备方法
CN112851344B (zh) * 2021-01-26 2023-03-10 山东丁鼎科技发展有限公司 一种中介电常数微波介质陶瓷及其制备方法

Also Published As

Publication number Publication date
CN110950655B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
CN1117708C (zh) 可低温烧结的低损耗介质陶瓷组合物及其制备方法
CN106927804B (zh) 一种微波介质陶瓷温频特性调控剂及其ltcc材料
CN101318815B (zh) 铋基钼基超低温烧结微波介质陶瓷材料及其制备
CN1117707C (zh) 可低温烧结的低损耗介质陶瓷组合物及其制备方法
CN103435946A (zh) 一种聚四氟乙烯复合微波陶瓷基板的制备方法
CN103214238B (zh) 一种钛酸锶钡基介电温度稳定型陶瓷电容器材料的制备方法
CN110950655B (zh) Ca-Ti基高介微波陶瓷基板材料及制备方法和应用
CN110015894B (zh) 一种高温下介电稳定的钛酸铋钠基陶瓷及其制备方法和应用
CN102503406A (zh) 一种微波器件陶瓷基板材料及其制备方法
CN113004028A (zh) 一种硅基低介微波介质陶瓷及其制备方法
CN110903085B (zh) TiO2基微波陶瓷基板材料及制备方法和应用
CN114773060B (zh) 一种多层陶瓷电容器用Mg-Ta基介质陶瓷及其低温制备方法
CN114230335B (zh) 一种巨介电常数、低损耗和高电阻率的BaTiO3基细晶陶瓷及其制备方法
CN113666731A (zh) 一种硅酸盐微波介质陶瓷材料及其制备方法
CN108975913B (zh) 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法
KR100546993B1 (ko) 유전체 세라믹용 원료 분말의 제조 방법, 유전체 세라믹및 적층 세라믹 커패시터
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN112851333B (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN110317057B (zh) 一种中介电常数低温共烧陶瓷材料和制备方法
CN102173782A (zh) 钼基钛基温度稳定型微波介质陶瓷材料及其制备方法
CN109650886A (zh) 一种Ba-Mg-Ta系LTCC材料及其制备方法
CN114315344B (zh) 一种负温度系数陶瓷介质材料及其制备方法
CN112898021B (zh) 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法
CN111825446B (zh) 一种bt-brt复合超低损耗多层瓷介电容器用介质陶瓷材料及其制备方法和应用
CN115626823B (zh) 一种钛酸钡基陶瓷电介质材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant