CN110927220A - 用于检测氨气的气敏材料的制备方法及气体传感器 - Google Patents

用于检测氨气的气敏材料的制备方法及气体传感器 Download PDF

Info

Publication number
CN110927220A
CN110927220A CN201911261883.0A CN201911261883A CN110927220A CN 110927220 A CN110927220 A CN 110927220A CN 201911261883 A CN201911261883 A CN 201911261883A CN 110927220 A CN110927220 A CN 110927220A
Authority
CN
China
Prior art keywords
gas
sensitive material
mixed solution
ammonia gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911261883.0A
Other languages
English (en)
Inventor
徐红艳
孙旭辉
吴庆乐
杨宵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201911261883.0A priority Critical patent/CN110927220A/zh
Publication of CN110927220A publication Critical patent/CN110927220A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

本发明提供了一种用于检测氨气的气敏材料的制备方法及气体传感器,制备方法包括以下步骤:称取羧基化碳纳米管,并加入溶剂,以形成第一混合液;向第一混合液中加入分散剂,并进行超声分散处理,以形成第二混合液;对第二混合液进行离心沉降,离心沉降处理后的上层液体为气敏材料;其中,分散剂包括曲拉通和十二烷基硫酸钠,分散剂占羧基化碳纳米管的质量百分比为2%‑55%,气敏材料在室温下可检测到ppb级的氨气气体。本发明的制备方法,通过添加曲拉通和十二烷基硫酸钠作为分散剂,既能解决气敏材料的分散性问题,同时又不影响气敏材料的本身的测试性能,通过该制备方法制备的气敏材料可以在室温下检测到ppb级的氨气气体。

Description

用于检测氨气的气敏材料的制备方法及气体传感器
技术领域
本发明涉及传感器技术领域,特别是涉及一种用于检测氨气的气敏材料的制备方法和用于检测氨气的气体传感器。
背景技术
碳纳米管作为新型的纳米材料其应用十分广泛,在气敏材料领域也是研究的非常多,但是纯碳纳米管测试氨气响应很弱,在高浓度的氨气氛围中有响应,在低浓度下对氨气无响应。
现有技术中用于室温检测低浓度的氨气常用的材料为聚苯胺,但是聚苯胺属于高分子材料,非常不稳定,且随着测试时间的延长,聚苯胺的导电性逐渐变差。即电阻随着测试时间的延长,逐渐增大,直至增大到无穷大,因此不能用于氨气材料的长期稳定性测试。因此,需要开发在室温下检测低浓度氨气的纳米材料。而纳米材料又很容易团聚,使得其应用范围受限,在有些使用中需要纳米材料溶液具有较好的分散性。
纳米材料常见的分散方法有以下几种:
1、电分散法:由于纳米粒子表面存在等电点,通过调节PH值使得等电点的PH值相差最大时,可增加纳米粒子分散的稳定性,但是该方法只适合在水中分散。
2、化学分散法:即对纳米粒子进行表面改性,利用偶联剂、表面活性剂、分散剂等,对纳米粒子进行表面改性处理,改善纳米粒子的分散性。
3、物理分散法:使用高速剪切分散机的高速搅拌,用三辊机、研磨机的研磨分散,或者是球磨机的球磨以及超声分散等方法来实现纳米材料的分散。
其中,化学分散方法是一种运用的比较多的方法,因为化学方法相对来说分散效果最好,但是化学分散方法中加入了一定量的表面活性剂,使得纳米材料在某些应用领域的使用性能得到限制,因此,寻找一种既能解决纳米材料的分散性又不影响纳米材料本身性能的分散剂是非常重要的。
发明内容
本发明的一个目的是要提供一种用于检测氨气的气敏材料的制备方法,在该制备方法中,通过加入合适的分散剂,既能解决气敏材料的分散性问题,即解决了利用该气敏材料封装成的气体传感器的零点电阻的一致性问题,同时又不影响气敏材料的本身的测试性能,通过该制备方法制备的气敏材料可以在室温下检测到ppb级的氨气气体。
特别地,本发明提供了一种用于检测氨气的气敏材料的制备方法,包括以下步骤:
称取羧基化碳纳米管,并加入溶剂,以形成第一混合液;
向所述第一混合液中加入分散剂,并进行超声分散处理,以形成第二混合液;
对所述第二混合液进行离心沉降,离心沉降处理后的上层液体为所述气敏材料;
其中,所述分散剂包括曲拉通和十二烷基硫酸钠,所述分散剂占所述羧基化碳纳米管的质量百分比为2%-55%,所述气敏材料在室温下可检测到ppb级的氨气气体。
进一步地,在形成所述第一混合液的步骤中,称取所述羧基化碳纳米管的质量为1mg-10mg,加入所述溶剂的量为1ml-10ml。
进一步地,所述溶剂为去离子水、DMF和乙醇中的一种或多种。
进一步地,在所述分散剂中,所述曲拉通占所述羧基化碳纳米管的质量百分比为10%-50%,所述十二烷基硫酸钠占所述羧基化碳纳米管的质量百分比为2%-5%。
进一步地,在形成所述第二混合液的步骤中,超声分散的时间为10min-60min。
进一步地,对所述第二混合液进行离心沉降的步骤中,离心速度为5000rmp-10000rmp。
本发明还提供一种用于检测氨气的气体传感器,包括:
基片;
至少两个电极,设在所述基片的表面;
根据上述实施例的制备方法制备的气敏材料,涂覆在所述基片表面,且覆盖至少两个所述电极,以在老化处理后封装成所述气体传感器。
进一步地,所述基片为PCB基底、陶瓷基底、硅基底和PET基底中的一种。
本发明的用于检测氨气的气敏材料的制备方法,在该制备方法中,添加曲拉通和十二烷基硫酸钠作为分散剂,既能解决气敏材料的分散性问题,同时又不影响气敏材料的本身的测试性能,通过该制备方法制备的气敏材料在封装成气体传感器后可以在室温下检测到ppb级的氨气气体。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明实施例的用于检测氨气的气敏材料的制备方法的流程图;
图2是本发明不加分散剂的气体传感器对氨气的响应曲线图;
图3是本发明加入分散剂的气体传感器对氨气的响应曲线图;
图4是本发明加入分散剂的六个气体传感器对氨气的响应曲线图。
具体实施方式
本发明实施例的用于检测氨气的气敏材料的制备方法,包括以下步骤:
S1、称取羧基化碳纳米管,并加入溶剂,以形成第一混合液;
S2、向第一混合液中加入分散剂,并进行超声分散处理,以形成第二混合液;
S3、对第二混合液进行离心沉降,离心沉降处理后的上层液体为气敏材料。
其中,分散剂包括曲拉通(曲拉通的成分为:聚氧乙烯-8-辛基苯基醚)和十二烷基硫酸钠,气敏材料在室温下可检测到ppb级的氨气气体。
具体来说,参见图1,在本发明实施例的用于检测氨气的气敏材料的制备方法中,首先,可以称取羧基化碳纳米管,羧基化碳纳米管相对于纯碳纳米管分散性更好。并向羧基化碳纳米管中加入溶剂,通过振荡或者超声处理可以得到第一混合液。然后,向第一混合液中加入分散剂,分散剂主要包括曲拉通和十二烷基硫酸钠,分散剂占羧基化碳纳米管的质量百分比为2%-55%。在加入分散剂后,可以利用细胞粉碎机对其进行超声分散处理,分散处理后可以得到第二混合液。最后,通过离心机可以对第二混合液进行离心沉降,离心沉降处理后,留下上层液体,即可得到本发明制备的气敏材料。
本发明的上述制备方法,只需要按照正常的配置过程加入溶剂和分散剂,进行超声分散,然后通过离心处理即可制备出用于检测氨气的气敏材料。在本发明的用于检测氨气的气敏材料的制备方法中,通过添加曲拉通和十二烷基硫酸钠作为分散剂,很好地解决了气敏材料的分散性问题,即解决了利用该气敏材料封装成的气体传感器的零点电阻的一致性问题,同时还能提高气敏材料的测试性能,通过该制备方法制备的气敏材料可以在室温下检测到ppb级的氨气气体。在本发明的制备方法中,通过加入上述分散剂,有效提高了测试氨气的响应灵敏度。
在本发明的一些具体实施方式中,称取羧基化碳纳米管的质量为1mg-10mg,加入溶剂的量为1ml-10ml。溶剂可以采用去离子水、DMF和乙醇中的一种或多种。根据本发明的一个优选实施例,在分散剂中,曲拉通占羧基化碳纳米管的质量百分比为10%-50%,十二烷基硫酸钠占羧基化碳纳米管的质量百分比为2%-5%。
根据本发明的一个实施例,在形成第二混合液的步骤中,超声分散的时间为10min-60min。对第二混合液进行离心沉降的步骤中,离心速度为5000rmp-10000rmp。
本发明通过该制备方法制备出的气敏材料在封装成传感器后对其性能进行了测试,参见图2至图4,其中,图2为本发明不加分散剂的气体传感器对氨气的响应曲线图,从图2可以看出,不加分散剂的气敏材料,其在封装成气体传感器后,在常温条件下,测试了500ppb、1ppm、3ppm、5ppm、10ppm、20ppm六个浓度的氨气气体,随着氨气气体浓度的增加,响应逐渐增大,且有浓度梯度,该气体传感器可以检测到3ppm以上的浓度,但对3ppm以下的浓度无响应,20ppm的响应值大概为4.5%。图3为本发明加入分散剂的气体传感器对氨气的响应曲线图,在与图2测试条件相同的情况下,加入分散剂制备的气敏材料封装成的气体传感器对氨气进行响应测试时,同样测试了500ppb、1ppm、3ppm、5ppm、10ppm、20ppm六个浓度,从图3中可以看出随着氨气浓度的增加气体传感器的响应值逐渐增大,且有浓度梯度。并且加入分散剂后制备的气敏材料测试氨气可以检测到500ppb(即0.5ppm)的响应,检测下限可以达到ppb级,测试氨气气体20ppm的响应值可以达到11.7%。因此,在相同浓度等其他相同条件下,比不加曲拉通的气敏材料,气体传感器的测试响应值增大,且响应灵敏度也提高了。图4中为本发明加入分散剂的六个气体传感器对氨气的响应曲线图,图4中测试了基于本发明的制备方法制备的气敏材料封装成的六个气体传感器的测试性能,从图4中,可以看出,该气体传感器测试氨气的一致性非常好。
总而言之,本发明的用于检测氨气的气敏材料的制备方法,在该制备方法中,添加曲拉通与十二烷基硫酸钠作为分散剂,既能解决气敏材料的分散性问题,同时又不影响气敏材料的本身的测试性能,通过该制备方法制备的气敏材料可以在室温下检测到ppb级的氨气气体。
本发明还提供一种用于检测氨气的气体传感器主要由基片、至少两个电极和气敏材料组成。其中,至少两个电极安装在基片的表面,通过上述实施例的制备方法制备的气敏材料,涂覆在带有电极的基片表面,并且覆盖至少两个电极,在将气敏材料涂覆在带有电极的基片之后,进行老化处理,老化处理后可以进行封装前的电阻测试,本发明制备的气敏材料由于具有良好的分散性,因此,能够很好地解决了气体传感器的零点电阻的一致性问题。最后将老化处理后的涂覆有气敏材料的基片进行封装以封装成气体传感器。基片可以采用PCB基底、陶瓷基底、硅基底和PET基底中的一种。当然本申请的气体传感器的其他结构以及工作原理对于本领域技术人员而言都是可以理解并且容易实现的,因此不再详细描述。
本发明通过该制备方法制备出的气敏材料在封装成传感器后对其性能进行了测试,参见图2至图4,其中,图2为本发明不加分散剂的气体传感器对氨气的响应曲线图,从图2可以看出,不加分散剂的气敏材料,其在封装成气体传感器后,在常温条件下,测试了500ppb、1ppm、3ppm、5ppm、10ppm、20ppm六个浓度的氨气气体,随着氨气气体浓度的增加,响应逐渐增大,且有浓度梯度,该气体传感器可以检测到3ppm以上的浓度,但对3ppm以下的浓度无响应,20ppm的响应值大概为4.5%。图3为本发明加入分散剂的气体传感器对氨气的响应曲线图,在于图2测试条件相同的情况下,加入分散剂制备的气敏材料封装成的气体传感器对氨气进行响应测试时,同样测试了500ppb、1ppm、3ppm、5ppm、10ppm、20ppm六个浓度,从图3中可以看出随着氨气浓度的增加气体传感器的响应值逐渐增大,且有浓度梯度。并且加入分散剂后制备的气敏材料测试氨气可以检测到500ppb(即0.5ppm)的响应,检测下限可以达到ppb级,测试氨气气体20ppm的响应值可以达到11.7%。因此,在相同浓度等其他相同条件下,比不加分散剂的气敏材料,气体传感器的测试响应值增大,且响应灵敏度也提高了。图4中为本发明加入分散剂的六个气体传感器对氨气的响应曲线图,图4中测试了基于本发明的制备方法制备的气敏材料封装成的六个气体传感器的测试性能,从图4中,可以看出,该气体传感器测试氨气的一致性非常好。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (8)

1.一种用于检测氨气的气敏材料的制备方法,其特征在于,包括以下步骤:
称取羧基化碳纳米管,并加入溶剂,以形成第一混合液;
向所述第一混合液中加入分散剂,并进行超声分散处理,以形成第二混合液;
对所述第二混合液进行离心沉降,离心沉降处理后的上层液体为所述气敏材料;
其中,所述分散剂包括曲拉通和十二烷基硫酸钠,所述分散剂占所述羧基化碳纳米管的质量百分比为2%-55%,所述气敏材料在室温下可检测到ppb级的氨气气体。
2.根据权利要求1所述的用于检测氨气的气敏材料的制备方法,其特征在于,在形成所述第一混合液的步骤中,称取所述羧基化碳纳米管的质量为1mg-10mg,加入所述溶剂的量为1ml-10ml。
3.根据权利要求1所述的用于检测氨气的气敏材料的制备方法,其特征在于,所述溶剂为去离子水、DMF和乙醇中的一种或多种。
4.根据权利要求1所述的用于检测氨气的气敏材料的制备方法,其特征在于,在所述分散剂中,所述曲拉通占所述羧基化碳纳米管的质量百分比为10%-50%,所述十二烷基硫酸钠占所述羧基化碳纳米管的质量百分比为2%-5%。
5.根据权利要求1所述的用于检测氨气的气敏材料的制备方法,其特征在于,在形成所述第二混合液的步骤中,超声分散的时间为10min-60min。
6.根据权利要求1所述的用于检测氨气的气敏材料的制备方法,其特征在于,对所述第二混合液进行离心沉降的步骤中,离心速度为5000rmp-10000rmp。
7.一种用于检测氨气的气体传感器,其特征在于,包括:
基片;
至少两个电极,设在所述基片的表面;
根据权利要求1-6中任一项所述的用于检测氨气的气敏材料,涂覆在所述基片表面,且覆盖至少两个所述电极,以在老化处理后封装成所述气体传感器。
8.根据权利要求7所述的用于检测氨气的气体传感器,其特征在于,所述基片为PCB基底、陶瓷基底、硅基底和PET基底中的一种。
CN201911261883.0A 2019-12-10 2019-12-10 用于检测氨气的气敏材料的制备方法及气体传感器 Pending CN110927220A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911261883.0A CN110927220A (zh) 2019-12-10 2019-12-10 用于检测氨气的气敏材料的制备方法及气体传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911261883.0A CN110927220A (zh) 2019-12-10 2019-12-10 用于检测氨气的气敏材料的制备方法及气体传感器

Publications (1)

Publication Number Publication Date
CN110927220A true CN110927220A (zh) 2020-03-27

Family

ID=69858733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911261883.0A Pending CN110927220A (zh) 2019-12-10 2019-12-10 用于检测氨气的气敏材料的制备方法及气体传感器

Country Status (1)

Country Link
CN (1) CN110927220A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413374A (zh) * 2020-04-20 2020-07-14 苏州慧闻纳米科技有限公司 室温检测硫化氢的气敏材料的制备方法及气体传感芯片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050012556A (ko) * 2003-07-25 2005-02-02 한국과학기술원 탄소나노튜브가 강화된 금속 나노복합분말 및 그 제조방법
CN101893592A (zh) * 2010-06-24 2010-11-24 浙江大学 一种碳纳米管气敏传感器的制备方法
CN102004127A (zh) * 2010-11-16 2011-04-06 上海交通大学 基于碳纳米管-酞菁的气敏传感杂化材料及其制备方法
CN103058173A (zh) * 2013-02-04 2013-04-24 苏州纳格光电科技有限公司 纳米金属氧化物功能化碳纳米管的制备方法及气体传感器
CN103336032A (zh) * 2013-06-28 2013-10-02 苏州大学 基于碳纳米管-聚吡咯复合网络结构气敏传感器的制备方法
CN104085879A (zh) * 2014-07-16 2014-10-08 哈尔滨工业大学 一种高浓度碳纳米管分散液的制备方法
CN108609611A (zh) * 2018-04-12 2018-10-02 华南理工大学 高稳定性的环保型碳纳米管的水分散液及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050012556A (ko) * 2003-07-25 2005-02-02 한국과학기술원 탄소나노튜브가 강화된 금속 나노복합분말 및 그 제조방법
CN101893592A (zh) * 2010-06-24 2010-11-24 浙江大学 一种碳纳米管气敏传感器的制备方法
CN102004127A (zh) * 2010-11-16 2011-04-06 上海交通大学 基于碳纳米管-酞菁的气敏传感杂化材料及其制备方法
CN103058173A (zh) * 2013-02-04 2013-04-24 苏州纳格光电科技有限公司 纳米金属氧化物功能化碳纳米管的制备方法及气体传感器
CN103336032A (zh) * 2013-06-28 2013-10-02 苏州大学 基于碳纳米管-聚吡咯复合网络结构气敏传感器的制备方法
CN104085879A (zh) * 2014-07-16 2014-10-08 哈尔滨工业大学 一种高浓度碳纳米管分散液的制备方法
CN108609611A (zh) * 2018-04-12 2018-10-02 华南理工大学 高稳定性的环保型碳纳米管的水分散液及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李清文: "《碳纳米管纤维》", 31 July 2018, 国防工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413374A (zh) * 2020-04-20 2020-07-14 苏州慧闻纳米科技有限公司 室温检测硫化氢的气敏材料的制备方法及气体传感芯片
CN111413374B (zh) * 2020-04-20 2024-01-16 苏州慧闻纳米科技有限公司 室温检测硫化氢的气敏材料的制备方法及气体传感芯片

Similar Documents

Publication Publication Date Title
Hazrol et al. Electrical properties of sugar palm nanocrystalline cellulose reinforced sugar palm starch nanocomposites
Ngai et al. Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide
Lim et al. Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes
CN106290488B (zh) 一种氨基功能化碳纳米管电阻型甲醛气体传感器及其制备方法
Pang et al. Magnetic field dependent electro-conductivity of the graphite doped magnetorheological plastomers
Santos et al. Analytical potentialities of carbon nanotube/silicone rubber composite electrodes: determination of propranolol
Sadeghi et al. Electrochemical determination of vitamin B6 in water and juice samples using an electrochemical sensor amplified with NiO/CNTs and Ionic liquid
CN110927220A (zh) 用于检测氨气的气敏材料的制备方法及气体传感器
CN110794015A (zh) 用于壬基酚检测的石墨烯/聚吡咯纳米复合材料修饰的分子印迹传感器的制备方法及应用
Andreoli et al. Electrochemical conversion of copper‐based hierarchical micro/nanostructures to copper metal nanoparticles and their testing in nitrate sensing
Yadav et al. Nanostructured nickel oxide film for application to fish freshness biosensor
Rais et al. Simultaneously determination of bisphenol A and uric acid by zinc/aluminum-layered double hydroxide-2-(2, 4-dichlorophenoxy) propionate paste electrode
Zhang et al. A partially reduced C 60-grafted macroporous carbon composite for the enhanced electrocatalysis of nitroaromatic compounds
Yasri et al. Azo dye functionalized graphene nanoplatelets for selective detection of bisphenol A and hydrogen peroxide
CN110927218A (zh) 用于检测二氧化氮的气敏材料的制备方法及气体传感器
Priya et al. Exfoliated 2D Graphitic-Carbon Nitride Nanosheets as Sensor for Electrochemical Detection of Furazolidone
Liang et al. Potentiometric sensor based on an ion-imprinted polymer for determination of copper
Xie et al. Mesopores cellular foam-based electrochemical sensor for sensitive determination of ractopamine
Pan et al. Electrochemical sensors of octylphenol based on molecularly imprinted poly (3, 4-ethylenedioxythiophene) and poly (3, 4-ethylenedioxythiophene–gold nanoparticles)
Guan et al. Facile Synthesis of Nitrogen‐Doped Porous Carbon‐Gold Hybrid Nanocomposite for Mercury (II) Ion Electrochemical Determination
CN107746476A (zh) 一种高强度自修复导电磁性电子皮肤材料及其制备方法
Liu et al. Porous hollow carbon nanospheres as a novel sensing platform for sensitive detection of nitrite in pickle directly
Agrahari et al. Ion selective electrode for uranium based on composite multiwalled carbon nanotube-benzo-15-crown-5 in PVC matrix coated on graphite rod
CN107607600A (zh) 检测邻苯二酚及no2‑的传感器及其构建方法和应用
Pei et al. Polyaniline/al bismuthate composite nanorods modified glassy carbon electrode for the detection of benzoic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200327