CN110918975A - 一种水解膨胀加快铁基植入物生物降解的方法 - Google Patents

一种水解膨胀加快铁基植入物生物降解的方法 Download PDF

Info

Publication number
CN110918975A
CN110918975A CN201911008508.5A CN201911008508A CN110918975A CN 110918975 A CN110918975 A CN 110918975A CN 201911008508 A CN201911008508 A CN 201911008508A CN 110918975 A CN110918975 A CN 110918975A
Authority
CN
China
Prior art keywords
iron
powder
magnesium silicide
based implant
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911008508.5A
Other languages
English (en)
Inventor
帅词俊
高成德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201911008508.5A priority Critical patent/CN110918975A/zh
Publication of CN110918975A publication Critical patent/CN110918975A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L27/427Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of other specific inorganic materials not covered by A61L27/422 or A61L27/425
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Dermatology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种水解膨胀加快铁基植入物生物降解的方法,包括如下步骤:按设计组分配取硅化镁粉及铁粉,在氩气保护下进行机械搅拌混合,随后采用选择性激光熔化工艺得到铁基植入物。本发明的有益效果是利用硅化镁优良的亲水特性,快速与水反应来增大暴露于体液的铁基体面积,增大了腐蚀电流密度,进而加快了铁基体的腐蚀;更重要的是本发明还利用了硅化镁水解膨胀的特性,水解反应产生的膨胀性气体能够使铁降解产生的难溶性沉淀层破裂,这能够让腐蚀性体液穿过表面原本致密的腐蚀产物层,渗入基体内部,从而使铁基植入物更快的降解,解决了常规铁基植入物降解过慢的问题,同时所制备的铁基植入物能提供足够的力学支撑。

Description

一种水解膨胀加快铁基植入物生物降解的方法
技术领域
本发明涉及一种水解膨胀加快铁基植入物生物降解的方法,属于生物医用植入物设计和制造技术领域。
背景技术
由于自然的降解性、良好的机械性能和生物相容性,生物可降解金属在过去几年中成为骨植入物的研究热点。铁能在生理环境中发生腐蚀,是一种典型的生物可降解金属。由于具有高的力学性能,铁在骨承载应用中尤其具有吸引力。动物实验证实,铁作为植入物,既无急性炎症反应,也无全身或局部毒性,生物相容性良好。然而,铁在生理环境中的腐蚀速率过慢,以至于植入动物体内6个月后,仍能保持结构完整,这会阻碍新骨的生长。
为了提高铁的腐蚀速率,研究学者进行了合金化、表面处理、新工艺等方面的研究。有学者在铁中加入锰以降低铁的腐蚀电位,从而提高腐蚀速率。随后,将钯引入铁锰合金中,发现钯通过微电偶腐蚀加速了铁的降解。有学者通过喷砂处理制备SiC薄膜以加速铁降解,他们发现铁的表面形态、表面组成和表面积都发生了变化,从而导致了较大的质量损失。还有学者通过电铸法制造铁植入物并评估了其体外降解行为,发现电铸法增加了铁的结构缺陷,导致了铁的快速腐蚀。这些方法能够在降解初期提高铁的降解速率,但随着降解进行,保护性腐蚀产物会覆盖在铁基体表面,阻碍体液的渗透,从而导致中后期的降解速率大大降低,还是会在一定程度上阻碍新骨的生长。
因此,如何在降解全过程中提高铁的降解速率成为促进其骨植入物应用的关键。
发明内容
针对现有技术中铁基生物材料降解慢的问题,本发明提出了利用选择性激光熔化工艺将铁、硅化镁制备一种铁基植入物,制备工艺简单、生产周期短、安全无毒、能够快速降解。本发明主要是利用硅化镁的膨胀水解特性加快铁的生物降解:硅化镁在体液环境中很容易水解,一方面增大了暴露于体液的铁基体面积,另一方面水解产生膨胀性气体能够打破基体表面覆盖的致密产物层,提供了体液浸入的通道,从而显著加快腐蚀延伸以及铁基植入物的降解。
本发明一种水解膨胀加快铁基植入物生物降解的方法,包括下述制备步骤:
步骤一
在保护气氛下,将铁粉、硅化镁粉混合均匀,得到均匀分散的混合粉末;
步骤二
以步骤一所得均匀分散的混合粉末为原料,以选择性激光熔化为工艺,激光功率为60-130W,扫描速度为20-50mm/s,激光光斑直径为0.1-0.3mm,铺粉厚度为90-150μm,在氩气保护下经熔化固化后得到铁基植入物。
本发明所述一种水解膨胀加快铁基植入物生物降解的方法,以质量百分比计包括下述组分:
硅化镁0.3-3%,优选为0.6-1.5%,进一步优选为0.9%;
铁97-99.7%,优选为98.5-99.4%,进一步优选为99.1%;
所述硅化镁粉的平均粒度为2-10μm,进一步优选为3μm。
所述铁粉的平均粒度为10-50μm,进一步优选为30μm。
作为优选方案,步骤一中,在氩气保护下,将铁粉、硅化镁粉置于混料装置中,进行机械混料20-40分钟,得到均匀分散的混合粉末。
本发明所述一种水解膨胀加快铁基植入物生物降解的方法,所设计和制备的铁基植入物的降解速率为0.29-0.33mm/y。
本发明首次利用激光熔化制备铁/硅化镁复合物,结合铁基植入物降解的特点,巧妙设计了复合物的组分,充分发挥硅化镁水解膨胀的性质,破坏铁基植入物降解过程中产生的致密性保护层,使得铁基植入物能够在降解全过程中保持快速的降解。主要是由于硅化镁优良的亲水特性,能快速与水反应来增大暴露于体液的铁基体面积,从而产生更多的接触面积,增大了腐蚀电流密度,进而加快了铁基体的腐蚀;更重要的是本发明还利用了硅化镁水解膨胀的特性,水解反应产生的膨胀性气体能够使铁降解产生的难溶性沉淀层破裂,这能够让腐蚀性体液穿过表面原本致密的腐蚀产物层,渗入基体内部,从而使铁基植入物更快的降解。而且,由于硅化镁作为第二相均匀分布在铁基体中,上述加快铁基体降解的途径能够持续发挥作用,从而可以实现铁基植入物的持续快速降解。
本发明优化方案中必须严格控制硅化镁的用量,并且选择合适的比例。硅化镁含量过高时极易在基体中团聚,从而降低铁基植入物的成型性能甚至引起严重局部腐蚀,进而导致植入物在服役期间失效,同时过快的降解速度也会引起pH的偏高,还会引起金属离子、非金属离子浓度超过安全数值,引起生物相容性的不确定性;而如果硅化镁添加量太低,则加快降解作用改善效果有限,无法充分发挥硅化镁的作用,还是无法满足使用要求。
本发明铁粉及硅化镁末粒径要进行合理筛选。硅化镁作为添加相,要保证其在基体中充分发挥作用,它的分布至关重要。一般来言,粉末尺寸过大,则不利于其弥散分布,因此粉末颗粒一般要较小;但是粉末尺寸越小,技术、时间成本就越大。因此硅化镁尺寸要尽量减小,但要结合其他因素。对于铁粉尺寸,过小则表面积过大,激光熔化不易成型,过大导致铺粉不平整,并且粉末之间的间隙也会较大,同样也不易成型。因此,激光熔化工艺一般要求铁粉有适当的尺寸,在良好流动性能的情况下提高成型质量。
(1)本发明中,所述硅化镁易于水解,植入物表层硅化镁水解后基体表面留下空位,增大了暴露于体液的铁基体面积,从而增大了腐蚀的接触面,进而加快了铁基体腐蚀。
(2)本发明中,所述硅化镁水解膨胀的特性,能够将铁腐蚀产生的难溶性沉淀物松动,促进体液渗入基体内部,达到铁基体与体液的充分接触,从而保持了快速降解。
(3)本发明中,所述铁基植入物的降解产物对人体没有毒性,添加的硅和镁均为人体必需元素,既能提高降解速率,又能补充身体必需元素,促进骨骼生长。
附图说明
图1实施例1中硅化镁在铁基体中的分布
图2实施例1中降解后的断面形貌
图3实施例2中降解后表面轮廓
图4对比例2中降解后断面形貌
具体实施方式
本发明应用在人体骨组织修复中,采用体外浸泡实验确定降解速率,在37℃的恒温条件下,利用人体模拟体液测定降解速率。
实施例1
采用铁、硅化镁粉末为原料,硅化镁粉的尺寸为3μm,铁粉的粒径控制在30μm,按0.9:99.1的质量比称量0.9g硅化镁粉、99.1g铁粉,在氩气保护下,将上述混合粉末机械搅拌混合30分钟;以上述均匀分散的混合粉末为原料,以选择性激光熔化为工艺,激光功率为95W,扫描速度为20mm/s,激光光斑直径为0.1mm,铺粉厚度为100μm,在氩气保护下经熔化固化后得到铁基植入物。
实施效果:对所制备的铁基植入物进行测试,发现硅化镁粉匀分散在铁基体中(图1),铁基植入物降解比较纯铁快,降解速率为0.32mm/y,降解深度为58μm,腐蚀产物零散分布在基体上,没有形成致密的保护层(图2)。
实施例2
采用铁、硅化镁粉末为原料,硅化镁粉的尺寸为3μm,铁粉的粒径控制在30μm,按0.6:99.4的质量比称量0.6g硅化镁粉、99.4g铁粉,在氩气保护下,将上述混合粉末机械搅拌混合30分钟;以上述均匀分散的混合粉末为原料,以选择性激光熔化为工艺,激光功率为95W,扫描速度为20mm/s,激光光斑直径为0.1mm,铺粉厚度为100μm,在氩气保护下经熔化固化后得到铁基植入物。
实施效果:对所制备的铁基植入物进行测试,发现硅化镁粉匀分散在铁基体中,铁基植入物降解比较纯铁快,降解速率为0.3mm/y,降解深度为45μm,表面腐蚀产物较多(图3),从腐蚀断面来看也没有形成致密的腐蚀层。
实施例3
采用铁、硅化镁粉末为原料,硅化镁粉的尺寸为5μm,铁粉的粒径控制在40μm,按0.9:99.1的质量比称量0.9g硅化镁粉、99.1g铁粉,在氩气保护下,将上述混合粉末机械搅拌混合30分钟;以上述均匀分散的混合粉末为原料,以选择性激光熔化为工艺,激光功率为95W,扫描速度为20mm/s,激光光斑直径为0.1mm,铺粉厚度为100μm,在氩气保护下经熔化固化后得到铁基植入物。
实施效果:所制备的铁基植入物成型性能稍微变差,对所制备的铁基植入物进行测试,发现硅化镁粉匀分散在铁基体中,铁基植入物降解比较纯铁快,降解速率为0.29mm/y,表面腐蚀产物较多,从腐蚀断面来看也没有形成致密的腐蚀层。
在本发明技术开发过程中,还尝试了以下方案(如对比例1、对比例2、对比例3),但所得产品的性能远远差于实施例。
对比例1
其他条件均与实施例1一致,不同之处在于:按5:95的质量比称量5g硅化镁粉、95g铁粉,得到一种铁基植入物,微观结构检测发现,出现了局部孔,这是由于过多的硅化镁在局部团聚,阻碍了成形过程中铁基体的熔合。检测发现铁基植入物产生了较严重的细胞毒性,计算的降解速率0.45mm/y,同时腐蚀表面不平整,出现了严重的局部腐蚀,这可能造成植入失效。
对比例2
其他条件均与实施例1一致,不同之处在于:按0.1:99.9的质量比称量0.1g硅化镁粉、99.9g铁粉,得到一种铁基植入物,浸泡试验检测发现植入物腐蚀表面较为平整,与纯铁的腐蚀表面没有明显的区别,断面发现降解层较为致密,这就阻碍了铁基体的腐蚀(图4),从而不能达到硅化镁加快腐蚀目的。
对比例3
其他条件均与实施例1一致,不同之处在于:铁粉平均粒径70μm,得到一种铁基植入物,检测发现铁颗粒之间不能完全熔化结合,细小空洞和裂纹肉眼看见,这可能是由于铁粉末颗粒尺寸过大,导致粉末流动性差,因此激光成型质量差。
通过实施例1、2、3和对比例1、2及3可以看出,本发明组分和制备工艺是一个有机整体,当其中任意一个或几个关键参数不在本发明保护范围内时,其效果显著下降。通过本发明实施例1、实施例2和实施例3的内在对比发现,本发明的优选方案,起到了意料不到的效果。

Claims (7)

1.一种水解膨胀加快铁基骨植入物生物降解的方法,其特征在于;包括下述步骤:
步骤一
在保护气氛下,将铁粉、硅化镁粉混合均匀,得到均匀分散的混合粉末;
步骤二
以步骤一所得均匀分散的混合粉末为原料,以选择性激光熔化为工艺,激光功率为60-130W,激光光斑直径为0.1-0.3mm,铺粉厚度为90-150μm,在氩气保护下经熔化固化后得到铁基复合物。
2.根据权利要求1所述的一种水解膨胀加快铁基骨植入物生物降解的方法,其特征在于;所述可降解铁基植入物以质量百分比计包括下述组分:
硅化镁粉0.3-3%;
铁粉97-99.7%。
3.根据权利要求1所述的一种水解膨胀加快铁基骨植入物生物降解的方法,其特征在于;所述可降解铁基植入物以质量百分比计包括下述组分:
硅化镁粉0.6-1.5%;
铁粉98.5-99.4%。
4.根据权利要求1-3所述的一种水解膨胀加快铁基骨植入物生物降解的方法,其特征在于;所述可降解铁基植入物以质量百分比计包括下述组分:
硅化镁粉1%;
铁粉97%。
5.根据权利要求1所述的一种水解膨胀加快铁基骨植入物生物降解的方法,其特征在于;所述硅化镁粉的平均粒度为2-10μm,所述铁粉的平均粒度为10-50μm。
6.根据权利要求1所述的一种水解膨胀加快铁基骨植入物生物降解的方法,其特征在于;在氩气保护下,将铁粉、硅化镁粉置于混料装置中,进行机械混料20-40分钟,得到均匀分散的混合粉末。
7.根据权利要求1-6任意一项所述的一种水解膨胀加快铁基骨植入物生物降解的方法,其特征在于;所述铁基植入物的降解速率为0.29-0.33mm/y。
CN201911008508.5A 2019-10-22 2019-10-22 一种水解膨胀加快铁基植入物生物降解的方法 Pending CN110918975A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911008508.5A CN110918975A (zh) 2019-10-22 2019-10-22 一种水解膨胀加快铁基植入物生物降解的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911008508.5A CN110918975A (zh) 2019-10-22 2019-10-22 一种水解膨胀加快铁基植入物生物降解的方法

Publications (1)

Publication Number Publication Date
CN110918975A true CN110918975A (zh) 2020-03-27

Family

ID=69849152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911008508.5A Pending CN110918975A (zh) 2019-10-22 2019-10-22 一种水解膨胀加快铁基植入物生物降解的方法

Country Status (1)

Country Link
CN (1) CN110918975A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112024895A (zh) * 2020-09-08 2020-12-04 江西理工大学南昌校区 一种铁-氯化钙生物复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3802695B2 (ja) * 1998-11-12 2006-07-26 株式会社神戸製鋼所 プレス成形性およびヘム加工性に優れたアルミニウム合金板
CN104818414A (zh) * 2015-03-19 2015-08-05 中国科学院金属研究所 一种具有多孔结构的金属植骨材料及其制备和应用
CN109172860A (zh) * 2018-08-10 2019-01-11 中南大学 一种可降解铁基植入物及其制备方法
CN110023378A (zh) * 2016-11-30 2019-07-16 Hrl实验室有限责任公司 用于3d打印预陶瓷聚合物的单体配制品和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3802695B2 (ja) * 1998-11-12 2006-07-26 株式会社神戸製鋼所 プレス成形性およびヘム加工性に優れたアルミニウム合金板
CN104818414A (zh) * 2015-03-19 2015-08-05 中国科学院金属研究所 一种具有多孔结构的金属植骨材料及其制备和应用
CN110023378A (zh) * 2016-11-30 2019-07-16 Hrl实验室有限责任公司 用于3d打印预陶瓷聚合物的单体配制品和方法
CN109172860A (zh) * 2018-08-10 2019-01-11 中南大学 一种可降解铁基植入物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MALGORZATA SIKORA-JASINSKA 等: ""Understanding the effect of the reinforcement addition on corrosion behavior of Fe/Mg 2 Si composites for biodegradable implant applications"", 《MATERIALS CHEMISTRY AND PHYSICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112024895A (zh) * 2020-09-08 2020-12-04 江西理工大学南昌校区 一种铁-氯化钙生物复合材料的制备方法
CN112024895B (zh) * 2020-09-08 2023-01-24 江西理工大学南昌校区 一种铁-氯化钙生物复合材料的制备方法

Similar Documents

Publication Publication Date Title
Mostaed et al. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation
EP2063816B1 (en) Implants comprising biodegradable metals and method for manufacturing the same
Seong et al. Development of biodegradable Mg–Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg2Ca phase by high-ratio differential speed rolling
Jeong et al. Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion
Zhang et al. Microstructures and corrosion behavior of biodegradable Mg–6Gd–xZn–0.4 Zr alloys with and without long period stacking ordered structure
Huang et al. Fabrication and characterization of a biodegradable Mg–2Zn–0.5 Ca/1β-TCP composite
NZ587764A (en) Structure for use in seawater, wire-shaped or rod-shaped copper alloy material for constituting the same, and process for production thereof
Huang et al. Microstructure, mechanical properties, and biodegradation response of the grain-refined Zn alloys for potential medical materials
Gerashi et al. Improved corrosion resistance and mechanical properties of biodegradable Mg–4Zn–xSr alloys: effects of heat treatment, Sr additions, and multi-directional forging
CN108913969B (zh) 一种具有均匀可控降解性能的医用镁合金及其制备方法
CN110918975A (zh) 一种水解膨胀加快铁基植入物生物降解的方法
Yang et al. Microstructure refinement in biodegradable Zn-Cu-Ca alloy for enhanced mechanical properties, degradation homogeneity, and strength retention in simulated physiological condition
Tong et al. Biodegradable Zn–Cu–Li alloys with ultrahigh strength, ductility, antibacterial ability, cytocompatibility, and suitable degradation rate for potential bone-implant applications
CN110669979B (zh) 一种介孔碳增强铁基复合材料及其制备方法和应用
Li et al. Effects of thermomechanical processing on microstructures, mechanical properties, and biodegradation behaviour of dilute Zn–Mg alloys
Liu et al. Microstructural evolution, mechanical properties and corrosion mechanisms of additively manufactured biodegradable Zn-Cu alloys
Elen et al. Investigation of microstructure, mechanical and corrosion properties of biodegradable Mg-Ag alloys
Khani et al. Accumulative extrusion bonding of Mg-Mn-Ca/FA+ GNP hybrid biocomposite: On microstructure evaluation, mechanical and corrosion properties
KR20160025898A (ko) 기계적 물성과 생분해성이 우수한 마그네슘 합금 판재 및 그 제조방법
Rokkala et al. Influence of friction stir processing on microstructure, mechanical properties and corrosion behaviour of Mg-Zn-Dy alloy
Erryani et al. Microstructures and mechanical study of Mg Alloy foam based on Mg-Zn-Ca-CaCO3 system
Mohammed et al. Effect of Sn Addition on in vitro Degradation and wear Behaviour of AZ31-xSn/1.5 TiO2 Composites in Simulated Body Fluid
CN110541098A (zh) 一种耐腐蚀生物镁铟合金及其制备方法和应用
Zhang et al. Microstructure and biocorrosion behaviors of solution treated and as-extruded Mg–2.2 Nd–xSr–0.3 Zr alloys
Xu et al. Developing Zn–1.5 Mg Alloy with Simultaneous Improved Strength, Ductility and Suitable Biodegradability by Rolling at Room Temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200327

RJ01 Rejection of invention patent application after publication