CN110913689A - 治疗神经精神病症的方法 - Google Patents

治疗神经精神病症的方法 Download PDF

Info

Publication number
CN110913689A
CN110913689A CN201880045819.6A CN201880045819A CN110913689A CN 110913689 A CN110913689 A CN 110913689A CN 201880045819 A CN201880045819 A CN 201880045819A CN 110913689 A CN110913689 A CN 110913689A
Authority
CN
China
Prior art keywords
glial
cells
human
scz
mice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880045819.6A
Other languages
English (en)
Inventor
S·A·戈德曼
M·内德加德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Rochester
Original Assignee
University of Rochester
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Rochester filed Critical University of Rochester
Publication of CN110913689A publication Critical patent/CN110913689A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/02Halogenated hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • A61K31/08Ethers or acetals acyclic, e.g. paraformaldehyde
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/095Sulfur, selenium, or tellurium compounds, e.g. thiols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/052Animals comprising random inserted nucleic acids (transgenic) inducing gain of function
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/15Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0085Brain, e.g. brain implants; Spinal cord

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Reproductive Health (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Neurosurgery (AREA)
  • Gynecology & Obstetrics (AREA)
  • Neurology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Transplantation (AREA)
  • Psychiatry (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本公开涉及一种治疗神经精神病症的方法。这种方法涉及选择患有所述神经精神病症的受试者,并且以有效治疗所述受试者中的神经精神病症的剂量向所选择的受试者施用神经胶质祖细胞的制剂。本公开的另一方面涉及一种治疗神经精神病症的方法,所述方法包括选择患有所述神经精神病症的受试者,并且以有效恢复所述选择的受试者的正常脑间质神经胶质K+水平并治疗所述神经精神病症的剂量向所述选择的受试者施用钾(K+)通道活化剂。

Description

治疗神经精神病症的方法
本申请要求2017年5月10日提交的美国临时专利申请序列号62/504,340的权益,所述临时专利申请特此以引用的方式整体并入。
本发明是根据美国国立卫生研究院授予的R01MH099578和R01MH104701在政府支持下进行。政府享有本发明的某些权利。
技术领域
本申请涉及治疗神经精神病症的方法。
背景技术
存在许多独特的人神经系统病症,它们的系统发育外观与人神经胶质进化的系统发育外观相似并且其随着原始人类的出现而加速(Oberheim等人,"AstrocyticComplexity Distinguishes the Human Brain,"Trends in Neurosciences 29:1-10(2006);Oberheim等人,"Uniquely Hominid Features of Adult Human Astrocytes,"TheJournal of Neuroscience:The Official Journal of the Society for Neuroscience29:3276-3287(2009);Horrobin,D.F.,"Schizophrenia:The Illness That Made UsHuman,"Med Hypotheses 50:269-288(1998))。特别地,随着原始人类进化,星形胶质细胞复杂性和多形性显著增加,这表明人神经胶质进化与人选择性神经系统病症的发展之间存在关联。实际上,许多全基因组关联和差异表达研究都突出了例如精神分裂症中星形胶质细胞和少突胶质细胞的神经胶质选择性基因的频繁失调(Walsh等人,"Rare StructuralVariants Disrupt Multiple Genes in Neurodevelopmental Pathways inSchizophrenia,"Science 320:539-543(2008);Aberg等人,"Human QKI,A PotentialRegulator of mRNA Expression of Human Oligodendrocyte-Related Genes Involvedin Schizophrenia,"Proceedings of the National Academy of Sciences of theUnited States of America 103:7482-7487(2006);Roy等人,"Loss of erbB Signalingin Oligodendrocytes Alters Myelin and Dopaminergic Function,A PotentialMechanism for Neuropsychiatric Disorders,"Proceedings of the National Academyof Sciences of the United States of America 104:8131-8136(2007);Takahashi等人,"Linking Oligodendrocyte and Myelin Dysfunction to NeurocircuitryAbnormalities in Schizophrenia,"Prog Neurobiol 93:13-24(2011);Georgieva等人,"Convergent Evidence That Oligodendrocyte Lineage Transcription Factor 2(OLIG2)and Interacting Genes Influence Susceptibility to Schizophrenia,"Proceedings of the National Academy of Sciences of the United States ofAmerica 103:12469-12474(2006);Hof等人,"Molecular and Cellular Evidence for anOligodendrocyte Abnormality in Schizophrenia,"Neurochem Res 27:1193-1200(2002);Hakak等人,"Genome-Wide Expression Analysis Reveals Dysregulation ofMyelination-Related Genes in Chronic Schizophrenia,"Proceedings of theNational Academy of Sciences of the United States of America 98:4746-4751(2001))。
精神分裂症患者的典型特征在于白质的相对缺乏和经常症状明显的髓鞘形成减少(Takahashi等人,"Linking Oligodendrocyte and Myelin Dysfunction toNeurocircuitry Abnormalities in Schizophrenia,"Prog Neurobiol 93:13-24(2011);Connor等人,"White Matter Neuron Alterations in Schizophrenia and RelatedDisorders,"International Journal of Developmental Neuroscience:The OfficialJournal of the International Society for Developmental Neuroscience 29:325-334(2011);McIntosh等人,"White Matter Tractography in Bipolar Disorder andSchizophrenia,"Biological Psychiatry 64:1088-1092(2008);Maniega等人,"ADiffusion Tensor MRI Study of White Matter Integrity in Subjects at HighGenetic Risk of Schizophrenia,"Schizophrenia Research 106:132-139(2008);Fields,R.D.,White Matter in Learning,Cognition and Psychiatric Disorders,"Trends in Neurosciences 31:361-370(2008);Gogtay等人,"Three-Dimensional BrainGrowth Abnormalities in Childhood-Onset Schizophrenia Visualized by UsingTensor-Based Morphometry,"Proceedings of the National Academy of Sciences ofthe United States of America 105:15979-15984(2008))。大量病理学和神经影像学研究均突出了受影响患者的少突神经胶质细胞密度和髓鞘结构的缺陷(Fields,R.D.,WhiteMatter in Learning,Cognition and Psychiatric Disorders,"Trends inNeurosciences 31:361-370(2008);Xia等人,"Behavioral Sequelae of AstrocyteDysfunction:Focus on Animal Models of Schizophrenia,"Schizophrenia Research(2014);Rapoport等人,"The Neurodevelopmental Model of Schizophrenia:Update2005,"Molecular Psychiatry 10:434-449(2005);Langmead等人,"Fast Gapped-ReadAlignment with Bowtie 2,"Nature Methods 9:357-359(2012)),包括在超微结构水平下(Uranova等人,"Ultrastructural Alterations of Myelinated Fibers andOligodendrocytes in the Prefrontal Cortex in Schizophrenia:A PostmortemMorphometric Study,"Schizophrenia Research and Treatment 2011:325789(2011);Uranova等人,"The Role of Oligodendrocyte Pathology in Schizophrenia,"Int JNeuropsychopharmacol 10:537-545(2007);Pruitt等人,"NCBI Reference Sequences(RefSeq):A Curated Non-Redundant Sequence Database of Genomes,Transcripts andProteins,"Nucleic Acids Research 35:D61-65(2007))。此外,最近的研究强调了少突胶质细胞在神经元的代谢支持中的作用,从而表明少突胶质细胞功能障碍可能导致神经元病理学的非髓鞘依赖性机制(Lee等人,"Oligodendroglia Metabolically Support Axonsand Contribute to Neurodegeneration,"Nature 487:443-448(2012);Simons等人,"Oligodendrocytes:Myelination and Axonal Support,"Cold Spring Harb PerspectBiol.(2015))。然而,尽管遗传、细胞、病理学和放射学研究已将神经胶质和髓鞘病理学与精神分裂症相关联,但普遍的观点是精神分裂症患者的临床髓鞘形成减少继发于神经元病理学。因此,尚未很好地研究细胞自主神经胶质功能障碍对精神分裂症的促成,并且因此尚未提出靶向此类功能障碍的疗法。
本公开旨在克服本领域中的这些和其他缺陷。
发明内容
本公开的一个方面涉及一种治疗神经精神病症的方法。这种方法涉及选择患有所述神经精神病症的受试者,并且以有效治疗所述受试者的神经精神病症的剂量向所选择的受试者施用神经胶质祖细胞的制剂。
本公开的另一方面涉及一种治疗神经精神病症的方法。这种方法包括选择患有所述神经精神病症的受试者,并且以有效恢复所选择受试者的正常脑间质神经胶质K+水平和治疗所述神经精神病症的剂量向所选择受试者施用K+通道活化剂。
本公开的另一方面涉及神经精神病症的非人动物模型。这种非人哺乳动物在其胼胝体中至少30%的全部其神经胶质细胞是源自患有神经精神病症的人患者的人神经胶质细胞和/或在其脑白质和/或脑干中至少5%的全部其神经胶质细胞是源自患有神经精神病症的人患者的人神经胶质细胞。
申请人已经确定,可使用人神经胶质嵌合小鼠的新型模型(Windrem等人,"Neonatal Chimerization with Human Glial Progenitor Cells Can Both Remyelinateand Rescue the Otherwise Lethally Hypomyelinated Shiverer Mouse,"Cell StemCell 2:553-565(2008);Han等人,"Forebrain Engraftment by Human Glial ProgenitorCells Enhances Synaptic Plasticity and Learning in Adult Mice,"Cell Stem Cell12:342-353(2013);Goldman等人,"Modeling Cognition and Disease Using HumanGlial Chimeric Mice,"Glia 63:1483-1493(2015),所述文献特此以引用的方式整体并入)与用于从患者特异性人诱导型多能干细胞(hiPSC)产生双潜能星形胶质细胞-少突胶质细胞神经胶质祖细胞(GPC)的方案开发(Wang等人,"Human iPSC-DerivedOligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model ofCongenital Hypomyelination,"Cell Stem Cell 12:252-264(2013),其特此以引用的方式整体并入)相配合来研究细胞自主神经胶质功能障碍神经系统疾病的促成。在这些人神经胶质嵌合小鼠脑中,大多数驻留神经胶质被人神经胶质及其祖细胞替代(Windrem等人,"A Competitive Advantage by Neonatally Engrafted Human Glial ProgenitorsYields Mice Whose Brains are Chimeric for Human Glia,"The Journal ofNeuroscience:The Official Journal of the Society for Neuroscience 34:16153-16161(2014),其特此以引用的方式整体并入),从而允许在活的成年小鼠体内评估人神经胶质生理学、基因表达以及对神经生理功能的影响(Han等人,"Forebrain Engraftment byHuman Glial Progenitor Cells Enhances Synaptic Plasticity and Learning inAdult Mice,"Cell Stem Cell 12:342-353(2013),其特此以引用的方式整体并入)。如本文所述,神经胶质嵌合模型用于评估人神经胶质对精神分裂症疾病表型的促成。为此,从源自从幼年发病型精神分裂症(SCZ)患者或其正常对照取得的成纤维细胞的iPSC制备hGPC。相对于正常受试者的SCZ hGPC的基因表达评估SCZ hGPC的差异基因表达,并将细胞移植到免疫缺陷型新生小鼠中以产生患者特异性人神经胶质嵌合小鼠。然后关于SCZ衍生对体内星形胶质细胞和少突胶质细胞分化以及对行为表型的影响对神经胶质嵌合小鼠进行分析,并且由此获得与疾病相关基因表达相关的数据。使用这种人特异性神经精神疾病模型,申请人已经鉴定了用于治疗本文所述的人神经精神病症和疾患的新颖治疗方法。
附图说明
图1示出了精神分裂症来源的神经胶质祖细胞的功能和基因组评估。此示意图总结了与源自行为正常对照的GPC相比,分析源自患有幼年发病型精神分裂症的个体的神经胶质祖细胞所涉及的步骤。主要输出数据包括SCZ起源对体内少突胶质细胞成熟和髓鞘形成(图3);体内星形胶质细胞分化和表型(图5);体外差异基因表达(图6);以及人神经胶质嵌合宿主动物的行为表型(图10)的影响。
图2A-2H示出CD140a+神经胶质祖细胞由SCZ和正常hiPSC两者有效产生。CD140a/PDGFαR+神经胶质祖细胞的流式细胞术(右图,与左侧的未染色的门控对照物相比)揭示正常对照患者来源的(上图,图2A-2B)和SCZ来源的(下部,图2C-2D)制剂的CD140a限定的细胞的优势比例。图2A-2C和2B-2D作为匹配对运行;图2A和2C示出体外177天和168天(DIV);图2B和2D示出188和196 DIV。图2E-2H示出CD140a分选的细胞的代表性FACS后制剂。图2E是针对olig2(图2F,红色)和PDGFRα(图2G;2H,合并)免疫染色的细胞的相位图像。这些图是正常和SCZ来源的hiPSC品系的GPC培养的典型图。分选的群体用于基因组学评估,而分选的细胞和未分选的细胞两者均用于移植,两者之间没有明显的性能差异。
图3A-3J示出精神分裂症来源的hGPC表现出异常扩散和相对髓鞘形成减少。人iPSC GPC嵌合体通过将新生hGPC注射到shiverer小鼠中而建立。在第19周处死嵌合小鼠。源自对照受试者的GPC(图3A)主要在主要白质束中扩散,而SCZ来源的GPC(15岁男性)(图3B)显示出较少的白质驻留和更快的皮质浸润。图3C-3D是揭示SCZ GPC的胼胝体髓鞘形成(图3D)密度低于对照hGPC的胼胝体髓鞘形成(图3C)的矢状切片。图3E-3F示出来自移植有来自4名对照患者的hGPC的嵌合小鼠(图3E)对比移植有来自4名不同SCZ患者的hGPC的嵌合小鼠(图3F)的较高分辨率图像。图3G示出MBP亮度在19周时证实了CTRL GPC移植小鼠对比SCZ GPC移植小鼠的更大胼胝体髓鞘形成(各自4名不同SCZ和CTRL患者的平均值,n>3只小鼠/患者)(p=0.0002,t-检验)。图3H示出绝对供体细胞密度在SCZ中低于对照hGPC移植的胼胝体(p<0.0001,t-检验),olig2+hGPC和少突胶质细胞(图3I)(p=0.0064,t-检验)和转铁蛋白(TFN)+少突胶质细胞(图3J)(p<0.0001,t检验)的密度也是如此。
图4A-4B示出了精神分裂症来源的GPC在体内表现出异常扩散。由SCZ患者产生的GPC的扩散模式通常与源自正常患者的iPSC hGPC的扩散模式不同,因为SCZ GPC在进展至皮质浸润之前未在白质中保留并扩增,否则正常GPC总是如此。图4A-4B示出4只小鼠,各自植入对照受试者来源的hGPC(品系22)或SCZ患者来源的hGPC(品系51)。所有SCZ hGPC移植的小鼠均显示不成比例的hGPC进入皮质和纹状体灰质,且扩增较小并且因此前脑白质束的净移植较少。在体内评估的所有4种SCZ品系(各自源自不同的患者)中始终注意到hGPC扩散模式相对于其匹配的4种对照品系(从不同的患者类似地获得)的差异(参见图3)。
图5A-5J示出在精神分裂症hGPC嵌合脑中星形胶质细胞分化受损。在免疫缺陷型shiverer宿主中建立人iPSC GPC嵌合体并在19周时处死,以用于星形胶质细胞分化评估。图5A-5B是新生注射了iPSC GPC的小鼠的胼胝体的代表性图像,所述iPSC GPC源自对照(图5A,品系22)或精神分裂症(图5B,品系164)受试者(人核抗原,绿色;神经胶质纤维酸性蛋白,红色)。图5A示出来自所有测试的患者的迅速分化为在胼胝体白质和皮质灰质两者中均具有致密纤维阵列的GFAP+星形胶质细胞的对照hiPSC GPC。相比之下,图5B示出SCZ GPC缓慢成熟,伴随GFAP表达延迟。在第19周时,作为一组(图5C)以及当逐品系分析时(图5D),与SCZ来源的GPC相比,GFAP+星形胶质细胞密度在与对照嵌合的小鼠中显著更大。这不仅是较少胼胝体移植的功能,因为发展GFAP和星形胶质细胞表型的人供体细胞的比例在SCZ移植的小鼠中显著低于对照GPC移植的小鼠(图5E)。对个别星形胶质细胞形态的Sholl分析(Sholl,D.A.,"Dendritic Organization in the Neurons of the Visual and MotorCortices of the Cat,"J.Anat.87:387-406(1953),其特此以引用的方式整体并入)(如在150μm切片中成像并由Neurolucida进行3D重建)(图5J)揭示,SCZ hGPC嵌合体中的星形胶质细胞与其对照hGPC来源的对应物显著不同,较少初级突起(图5F)、较少近端分支(图5G)和更长远端纤维(图5H)。当通过扇入径向分析(MBF Biosciences)(Dang等人,"Formoterol,a Long-acting Beta2 Adrenergic Agonist,Improves Cognitive Functionand Promotes Dendritic Complexity in a Mouse Model of Down Syndrome,"Biol.Psychiatry 75:179-188(2014),其特此以引用的方式整体并入)评估3-D追踪(图5J)时,注意到对照星形胶质细胞过程在所有方向上均一地延伸,但是SCZ星形胶质细胞过程留有空隙,指示不连续的结构域结构(图5I)。***p<0.0001,通过t检验(图5C、5E、5F、5H;图5D中通过双向ANOVA;**图5I中p<0.002;图5G中通过非线性比较p<0.0001。比例尺,图5A-5B=50μm,图5J=25μm。
图6A-6G示出精神分裂症来源的hGPC遏制神经胶质分化相关基因表达。RNA序列分析揭示SCZ hGPC的差异基因表达。图6A示出与合并的对照hGPC相比,通过比较源自4名不同精神分裂症患者的hGPC获得的差异表达基因(DEG)(log2倍数变化>1.00,FDR 5%)的列表的交集。图6B是图6A中所示的交集基因列表的功能注释的网络表示。在上部网络中,绿色和红色节点分别表示下调和上调的基因,并且白色节点表示显著相关的注释术语(FDR校正的p<0.01;注释术语包括GO:BP、GO:MF、途径和基因家族,并且节点按程度进行大小分类)。下部网络突出显示通过社区检测鉴定的4个高度互连的模块。图6C示出针对图6B中的每个模块标识的最重要的注释术语。图6D是与模块1相关的12种保守性差异表达基因的热图表示(图6B中的灰色,32.4%),其包括与神经递质受体和门控通道活性有关的注释。图6E是与模块2相关的15种保守型差异表达基因的热图表示(图6B中的橙色,28.7%),其包括与细胞间信号传导和突触传递有关的注释。图6F是与模块3相关的21种保守性差异表达基因的热图表示(图6B中的深蓝色,28.7%);与CNS以及神经胶质分化和发育有关的注释。图6G是与模块4相关的4种保守性差异表达基因的热图表示(图6B中的淡蓝色,10.2%),其中注释与髓鞘形成和脂质生物合成有关。热图的绝对表达以UQ归一化、log2转换的计数示出(Li等人,"Comparing the Normalization Methods for the Differential Analysis of IlluminaHigh-Throughput RNA-Seq Data,"BMC Bioinformatics 16:347(2015),其特此以引用的方式整体并入)。
图7A-7R示出相对于对照hiPSC GPC,精神分裂症中显著失调的基因的热图。示出相对于源自3种对照来源的iPSC的hGPC的合并的基因表达模式(log2倍数变化>1.0,FDR5%,总共118种基因),由源自4名精神分裂症患者的hiPSC GPC差异表达的共享基因的表达模式。对失调的基因进行人工注释,并基于其功能和细胞定位将其分组为相关的集合。每个热图均可视化分组为以下功能类别的基因的UQ归一化的log2转换的计数,包括编码以下的基因:(图7A)转录调控因子、锌指蛋白和其他核相关蛋白质;(图7B)神经胶质分化相关蛋白质;(图7C)髓鞘相关基因和转录因子;(图7D)Wnt途径效应子;(图7E)代谢酶;(图7F)脂质和脂蛋白代谢;(图7G)激酶和磷酸酶;(图7H)粘附分子、钙粘蛋白和星形肌动蛋白;(图7I)GPCR信号中间体;(图7J)生长因子;(图7K)细胞因子;(图7L)细胞信号传导和突触蛋白;(图7M)离子通道;(图7N)转运蛋白;(图7O)细胞外基质组分;(图7P)其他跨膜蛋白;(图7Q)其他细胞质和膜结合蛋白;以及(图7R)未注释的基因、开放阅读框和长基因间非编码RNA。
图8示出如通过TaqMan低密度阵列(TLDA)RT-qPCR评估的RNA-seq分析鉴定并与对照GPC进行比较的SCZ来源的GPC中失调的选定基因的表达。将表达数据归一化至GAPDH内源性对照。示出针对3种合并的对照GPC品系(n=10),从4种合并的SCZ GPC品系(n=19)计算的平均ddCt值和标准误差范围。通过配对t检验、然后通过Benjamini-Hochberg(BH)程序进行的多重检验校正,评估SCZ和对照GPC中表达的差异(***=p<0.01,**=p<0.05,*=p<0.1)。对48种基因进行了评估。示出45种基因,不包括内源性对照和具有高比例的不确定和不可靠反应的基因LRFN1和NEUROD6。绝大多数基因被证实为在SCZ来源的GPC中失调。TLDA数据的分析在Applied Biosciences提供的ExpressionSuite Software版本1.1中进行。
图9示出神经连接蛋白-1表达在SCZ hGPC中受到遏制。蛋白质印迹揭示,神经连接蛋白-1蛋白质由通过CD140a定向FACS纯化的人GPC大量表达,并且神经连接蛋白-1水平在其他匹配的SCZ hGPC中较低(品系51 SCZ hGPC对比品系22 CTRL hGPC)。
图10A-10G示出精神分裂症来源的人神经胶质嵌合体具有显著行为异常。图10A-10E示出在与3种SCZ或3种对照hGPC品系之一嵌合的小鼠中进行的行为测试,每种品系来自不同的患者。每种细胞系测试了7-20只受体小鼠,雄性和雌性相等。图10A示出前脉冲抑制研究。移植有SCZ hGPC的正常有髓的rag1-/-小鼠在所有前脉冲量下均降低了听觉前脉冲抑制(PPI)(图10A)。在对照(n=13)与SCZ(n=27)hGPC移植的动物之间,PPI的程度显著不同(通过ANOVA p=0.0008,F=11.76[1,114])。图10B示出高架十字迷宫研究。左图示出在高架十字迷宫(旨在评估焦虑的测试)中移植有SCZ hGPC的小鼠相对于与其匹配的正常hGPC移植的对照的累积运动的代表性热图,其中偏好封闭空间和避免开口高度表明更大焦虑。右图示出来自3名SCZ患者的移植有hGPC的小鼠(各自12只植入小鼠,总计n=36只小鼠)在闭合迷宫臂中花费的时间比对照移植的小鼠(n=36,也源自3名患者)(p=0.036,双尾t检验)。图10C示出蔗糖偏好研究。SCZ GPC移植的小鼠不太可能喜欢糖水,从而表明相对快感缺乏(p=0.02,曼-惠特尼t检验;n=30只源自3种SCZ品系的小鼠;n=17只来自3种对照品系的小鼠)。图10D示出3室社会化测试研究。将移植有hGPC的小鼠置于分成3个隔室的盒的中间室,一个容纳空笼子(底部,图10D中的“X”),并且一个含有不熟悉的小鼠(顶部,实心白色圆圈),然后视频追踪10分钟。移植有SCZ hGPC的小鼠(右热图)比对照(左热图)更能避免陌生人(p=0.02;3种SCZ品系,34只小鼠;3种对照品系,36只小鼠)。图10E示出新物体识别研究。移植有SCZ hGPC的小鼠显示出显著较差的新物体识别(p=0.0006;3种SCZ品系,19只小鼠;3种对照品系,28只小鼠)。图10F-10G示出在连续视频记录下,在封闭室(NoldusEthovision)中评估了新生移植有SCZ或CTRL hGPC的成年小鼠(70-80周龄)的昼夜活动和睡眠模式持续72小时。图10F示出在CTRL小鼠(灰色填充,n=8只小鼠;品系22和17)与SCZ小鼠(紫色填充;n=10,品系52)之间计算并比较的72小时内以米/小时行进的平均距离。一天的时间显示为24小时周期,其中深色阶段以灰色背景阴影表示。在整个观察期内,SCZ小鼠的活动性显著高于CTRL移植的小鼠(p<0.0001,ANOVA,F=19.32[1,851]。图10G左侧示出光照阶段期间一小时活动的样本热图(16:00小时,盒中第二天),小鼠的正常睡眠期。对照小鼠(左)在整个小时内保持不活动,而SCZ小鼠在大部分小时中围绕笼子移动。如在右侧示出,SCZ小鼠表现出片段化成比其正常hGPC嵌合对照更短持续时间的周期的睡眠模式(通过ANOVA p=0.0026,F=12.08[1,24]。平均值±SEM;未配对,双尾韦氏校正的t检验。
具体实施方式
本公开的一个方面涉及一种治疗神经精神病症的方法。这种方法涉及选择患有所述神经精神病症的受试者,并且以有效治疗所述受试者的神经精神病症的剂量向所选择的受试者施用神经胶质祖细胞的制剂。
如本文所指的“神经精神病症”包括具有包括但不限于痴呆、遗忘综合征和人格-行为变化的精神症状的任何脑病症。待使用本文所述的方法治疗的示例性神经精神病症包括但不限于精神分裂症、自闭症谱系障碍和双相情感障碍。
精神分裂症是影响人的思维、感觉和行为方式的慢性且严重的精神病症。迄今为止,一直存在所述病症的若干提出的分期模型(Agius等人,“The Staging Model inSchizophrenia,and its Clinical Implications,”Psychiatr.Danub.22(2):211-220(2010);McGorry等人,“Clinical Staging:a Heuristic Model and Practical Strategyfor New Research and Better Health and Social Outcomes for Psychotic andRelated Disorders,”Can.J.Psychiatry 55(8):486-497(2010);Fava和Kellner,“Staging:a Neglected Dimension in Psychiatric Classification,”ActaPsychiatr.Scand.87:225-230(1993),其特此以引用的方式整体并入)。然而,一般来说,精神分裂症在至少三个阶段中发展:前驱期、首次发作和慢性期。个体在所述病症的所有阶段也存在异质性,其中一些个体被认为是精神病的超高风险、临床高风险或处于精神病发作的风险(Fusar-Poli等人,“The Psychosis High-Risk State:a Comprehensive State-of-the-Art Review,”JAMA Psychiatry 70:107-120(2013),其特此以引用的方式整体并入)。
本文所述的方法适用于治疗处于精神分裂症的任何阶段以及处于精神病的任何风险水平的受试者。例如,在一个实施方案中,根据本文所述的方法治疗的受试者是处于发展精神分裂症的风险的受试者。这种受试者可在选自ABCA13、ATK1、C4A、COMT、DGCR2、DGCR8、DRD2、MIR137、NOS1AP、NRXN1、OLIG2、RTN4R、SYN2、TOP3B YWHAE、ZDHHC8或染色体22(22q11)的一种或多种基因中具有与精神分裂症的发展相关的一种或多种遗传突变并且可能或可能不表现出疾病的任何症状。在另一个实施方案中,所述受试者可处于疾病的前驱期并且表现出精神分裂症的一种或多种早期症状,如焦虑、抑郁、睡眠障碍和/或短暂的间歇性精神病综合症。在另一个实施方案中,根据本文所述的方法治疗的受试者正在经历精神分裂症的精神病性症状,例如幻觉、偏执妄想症。
如本文所提及,“自闭症谱系障碍”涵盖包括自闭症、亚斯伯格症(Asperger’sdisorder)、未另外指明的广泛性发育障碍、儿童期崩解性病症和雷特氏病症(Rett’sDisorder)的一组疾患,其症状(包括社交互动、交流困难和不正常行为)的严重性不同(McPartland等人,“Autism and Related Disorders,”Handb Clin Neurol 106:407-418(2012),其特此以引用的方式整体并入)。本文所述的方法适合于治疗自闭症谱系中包括的这些疾患中的每一种。
如本文所提及,“双相情感障碍”是特征在于长期情绪不稳定、昼夜节律紊乱以及能量水平、情绪、睡眠以及自我和其他观点的波动的一组疾患。“双相情感障碍”涵盖I型双相情感障碍、II型双相情感障碍、循环情感性障碍和未另外指明的双相情感障碍。处于发展双相情感障碍的最高风险的个体是具有所述疾患的家族史的那些个体。迄今为止,一直存在所述病症的若干提出的分期模型(McGorry等人,“Clinical Staging:a HeuristicModel and Practical Strategy for New Research and Better Health and SocialOutcomes for Psychotic and Related Disorders,”Can.J.Psychiatry 55(8):486-497(2010);McNamara等人,“Preventative Strategies for Early-Onset BipolarDisorder:Towards a Clinical Staging Model,”CNS Drugs 24:983-996(2010);Kapczinski等人,“Clinical Implications of a Staging Model for BipolarDisorders,”Expert Rev Neurother 9:957-966(2009),其特此以引用的方式整体并入)。但是,一般来说,双相情感障碍是进行性疾患,其在至少三个阶段中发展:前驱期、症状期和残余期。
本文所述的方法适用于治疗患有前述双相情感障碍中的任一种的受试者和处于特定双相情感障碍的任何阶段的受试者。本文所述的方法适用于治疗患有前述双相情感障碍中的任一种的受试者和处于特定双相情感障碍的任何阶段的受试者。例如,在一个实施方案中,根据本文所述的方法治疗的受试者是处于前驱期早期的受试者,所述受试者表现出情绪不稳/摇摆、抑郁、思绪翻腾、愤怒、易怒、身体躁动和焦虑的症状。在另一个实施方案中,根据本文所述的方法治疗的受试者是处于症状期或残余期的受试者。
如本文所用,术语“受试者”明确包括人类和非人哺乳动物受试者。如本文所用的术语“非人哺乳动物”延伸至但不限于家庭宠物和家养动物。此类动物的非限制性实例包括灵长类动物、牛、绵羊、雪貂、小鼠、大鼠、猪、骆驼、马、家禽、鱼、兔、山羊、狗和猫。
根据本文所示的方面,待施用至所选受试者的神经胶质祖细胞的制剂可以是人或非人的。在一个实施方案中,神经胶质祖细胞的制剂是人神经胶质祖细胞的制剂。
优选地,神经胶质祖细胞是双潜能神经胶质祖细胞。在一实施方案中,神经胶质祖细胞偏向于产生少突胶质细胞。在另一个实施方案中,神经胶质祖细胞偏向于产生星形胶质细胞。本文描述了用于产生和区分星形胶质细胞偏向和少突胶质细胞偏向的神经胶质祖细胞的方法和标志物。
适用于本文所述的方法的神经胶质祖细胞可使用本领域已知或本文所述的方法源自多潜能细胞(例如神经干细胞)或多能细胞(例如胚胎干细胞或诱导型多能干细胞)。
在一个实施方案中,神经胶质祖细胞是源自胚胎干细胞。胚胎干细胞是源自早期哺乳动物胚胎的全能细胞并且能够在体外无限制、未分化的增殖。如本文所用,术语“胚胎干细胞”是指从胚胎、胎盘或脐带分离的细胞,或这种细胞的永生化型式,即胚胎干细胞系。合适的胚胎干细胞系包括但不限于品系WA-01(H1)、WA-07、WA-09(H9)、WA-13和WA-14(H14)(Thomson等人,“Embryonic Stem Cell Lines Derived from Human Blastocytes,”Science 282(5391):1145-47(1998)和Thomson等人的美国专利号7,029,913,其特此以引用的方式整体并入)。其他合适的胚胎干细胞系包括HAD-C100细胞系(Tannenbaum等人,“Derivation of Xeno-free and GMP-grade Human Embryonic Stem Cells–Platformsfor Future Clinical Applications,”PLoS One 7(6):e35325(2012),其特此以引用的方式整体并入)、WIBR4、WIBR5、WIBR6细胞系(Lengner等人,“Derivation of Pre-xInactivation Human Embryonic Stem Cell Line in Physiological OxygenConditions,”Cell 141(5):872-83(2010),其特此以引用的方式整体并入)和人胚胎干细胞系(HUES)品系1-17(Cowan等人,“Derivation of Embryonic Stem-Cell Lines fromHuman Blastocytes,”N.Engl.J.Med.350:1353-56(2004),其特此以引用的方式整体并入)。
在一个实施方案中,神经胶质祖细胞是源自诱导型多能细胞(iPSC)。如本文所用的“诱导型多能干细胞”是指源自非多能细胞,如体细胞或组织干细胞的多能细胞。例如但不限于,iPSC可源自来自外周血、脐带血和骨髓的胚胎、胎儿、新生儿和成人组织(参见例如,Cai等人,“Generation of Human Induced Pluripotent Stem Cells from UmbilicalCord Matrix and Amniotic Membrane Mesenchymal Cells,”J.Biol.Chem.285(15):112227-11234(2110);Giorgetti等人,“Generation of Induced Pluripotent StemCells from Human Cord Blood Cells with only Two Factors:Oct4 and Sox2,”NatureProtocols,5(4):811-820(2010);Streckfuss-Bomeke等人,“Comparative Study ofHuman-Induced Pluripotent Stem Cells Derived from Bone Marrow Cells,HairKeratinocytes,and Skin Fibroblasts,”Eur.Heart J.doi:10.1093/eurheartj/ehs203(2012年7月12日);Hu等人,“Efficient Generation of Transgene-Free InducedPluripotent Stem Cells from Normal and Neoplastic Bone Marrow and Cord BloodMononuclear Cells,”Blood doi:10.1182/blood-2010-07-298331(2011年2月4日);Sommer等人,“Generation of Human Induced Pluripotent Stem Cells fromPeripheral Blood using the STEMCCA Lentiviral Vector,”J.Vis.Exp.68:e4327 doi:10.3791/4327(2012),其特此以引用的方式整体并入)。可使用的示例性体细胞包括成纤维细胞(如通过皮肤样品或活检获得的真皮成纤维细胞)、来自滑膜组织的滑膜细胞、角质形成细胞、成熟B细胞、成熟T细胞、胰腺β细胞、黑素细胞、肝细胞、包皮细胞、面颊细胞或肺成纤维细胞(参见例如,Streckfuss-Bomeke等人,“Comparative Study of Human-InducedPluripotent Stem Cells Derived from Bone Marrow Cells,Hair Keratinocytes,andSkin Fibroblasts,”Eur.Heart J.doi:10.1093/eurheartj/ehs203(2012),其特此以引用的方式整体并入)。尽管皮肤和面颊提供适当细胞的容易获得且易于达成的来源,但实际上任何细胞都可使用。适用于iPSC产生的示例性干细胞或祖细胞包括但不限于骨髓祖细胞、造血干细胞、脂肪干细胞、神经干细胞和肝祖细胞。
自体的、同种异体的或异种的非多能细胞可用于产生用以产生治疗性神经胶质祖细胞的iPSC。例如,从健康供体(即,未患神经精神病症的供体)和/或具有合适的免疫组织相容性的供体来源收获用于产生iPSC的同种异体细胞。可从猪、猴或任何其他合适的哺乳动物收获异种细胞用于产生iPSC。也可从待治疗的同一受试者收获自体非多能细胞。然而,此类自体细胞需要在治疗性施用之前的遗传操作和/或其他治疗。特别地,如本文所述,在神经精神病症中许多基因的表达(参见表2)失调。因此,优选地对自体细胞进行遗传修饰和/或以其他方式进行处理以纠正失调,以使得它们在施用前表现出正常的、非疾病相关的表达和/或活性水平。
诱导型多能干细胞可通过在体细胞中表达重编程因子的组合来产生。促进并诱导iPSC产生的合适的重编程因子包括Oct4、Klf4、Sox2、c-Myc、Nanog、C/EBPα、Esrrb、Lin28以及Nr5a2中的一种或多种。在某些实施方案中,至少两种重编程因子在体细胞中表达以成功地对体细胞进行重编程。在其他实施方案中,至少三种重编程因子在体细胞中表达以成功地对体细胞进行重编程。在其他实施方案中,至少四种重编程因子在体细胞中表达以成功地对体细胞进行重编程。
iPSC可通过本领域中已知的方法得到,包括使用整合型病毒载体(例如慢病毒载体、诱导型慢病毒载体和逆转录病毒载体)、可切除载体(例如转座子和floxed慢病毒载体)和非整合载体(例如腺病毒和质粒载体)来递送上述促进细胞重编程的基因(参见例如,Takahashi和Yamanaka,Cell 126:663-676(2006);Okita.等人,Nature 448:313-317(2007);Nakagawa等人,Nat.Biotechnol.26:101-106(2007);Takahashi等人,Cell 131:1-12(2007);Meissner等人Nat.Biotech.25:1177-1181(2007);Yu等人Science 318:1917-1920(2007);Park等人Nature451:141-146(2008);以及美国专利申请公布号2008/0233610,其特此以引用的方式整体并入)。用于产生IPS细胞的其他方法包括在以下中公开的那些:WO2007/069666、WO2009/006930、WO2009/006997、WO2009/007852、WO2008/118820、美国专利申请公布号Ikeda等人的2011/0200568、Egusa等人的2010/0156778、Musick的2012/0276070和Nakagawa的2012/0276636;Shi等人,Cell Stem Cell 3(5):568-574(2008);Kim等人,Nature 454:646-650(2008);Kim等人,Cell 136(3):411-419(2009);Huangfu等人,Nature Biotechnology 26:1269-1275(2008);Zhao等人,Cell Stem Cell3:475-479(2008);Feng等人,Nature Cell Biology 11:197-203(2009);以及Hanna等人,Cell 133(2):250-264(2008),其特此以引用的方式整体并入。
用于获得不含转基因序列的iPSC的无整合方法,即使用非整合和可切除载体的那些方法在治疗背景下是特别适合的。利用非整合载体的iPSC产生的合适方法包括使用腺病毒载体(Stadtfeld等人,“Induced Pluripotent Stem Cells Generated without ViralIntegration,”Science 322:945-949(2008)和Okita等人,“Generation of MouseInduced Pluripotent Stem Cells without Viral Vectors,”Science 322:949-953(2008),其特此以引用的方式整体并入)、仙台病毒载体(Fusaki等人,“EfficientInduction of Transgene-Free Human Pluripotent Stem Cells Using a Vector Basedon Sendi Virus,an RNA Virus That Does Not Integrate into the Host Genome,”Proc Jpn Acad.85:348-362(2009),其特此以引用的方式整体并入)、多顺反子微环载体(Jia等人,“A Nonviral Minicircle Vector for Deriving Hyman iPS Cells,”Nat.Methods 7:197-199(2010),其特此以引用的方式整体并入)和自我复制性选择性游离基因(Yu等人,“Human Induced Pluripotent Stem Cells Free of Vector andTransgene Sequences,”Science 324:797-801(2009),其特此以引用的方式整体并入)的方法。使用可切除载体产生iPSC的合适方法由以下描述:Kaji等人,“Virus-FreeInduction of Pluripotency and Subsequent Excision of Reprogramming Factors,”Nature 458:771-775(2009);Soldner等人,“Parkinson’s Disease Patient-DerivedInduced Pluripotent Stem Cells Free of Viral Reprogramming Factors,”Cell 136:964-977(2009);Woltjen等人,“PiggyBac Transposition Reprograms Fibroblasts toInduced Pluripotent Stem Cells,”Nature 458:766-770(2009);以及Yusa等人,“Generation of Transgene-Free Induced Pluripotent Mouse Stem Cells by thePiggyBac Transposon,”Nat.Methods 6:363-369(2009)。用于iPSC产生的合适方法还包括涉及直接递送重编程因子如重组蛋白(Zhou等人,“Generation of Induced PluripotentStem Cells Using Recombinant Proteins,”Cell Stem Cell 4:381-384(2009),其特此以引用的方式整体并入)或如分离自ESC的全细胞提取物(Cho等人,“Induction ofPluripotent Stem Cells from Adult Somatic Cells by Protein-BasedReprogramming without Genetic Manipulation,”Blood 116:386-395(2010),其特此以引用的方式整体并入)的方法。
上述iPSC产生的方法可被修改为包括增强重编程效率或甚至取代重编程因子的小分子。这些小分子包括但不限于表观遗传调节剂,如DNA甲基转移酶抑制剂5'-氮杂胞苷、组蛋白脱乙酰酶抑制剂VPA和G9a组蛋白甲基转移酶抑制剂BIX-01294以及BayK8644(一种L型钙通道激动剂)。其他小分子重编程因子包括靶向信号转导途径的那些,如TGF-β抑制剂和激酶抑制剂(例如坎帕罗酮)(参见Sommer和Mostoslavsky,“Experimental Approachesfor the Generation of Induced Pluripotent Stem Cells,”Stem Cell Res.Ther.1:26doi:10.1186/scrt26(2010)的综述,其特此以引用的方式整体并入)。
可按照以下中描述的程序获得源自成体成纤维细胞的合适的iPSC:Streckfuss-Bomeke等人,“Comparative Study of Human-Induced Pluripotent Stem Cells Derivedfrom Bone Marrow Cells,Hair Keratinocytes,and Skin Fibroblasts,”Eur.HeartJ.doi:10.1093/eurheartj/ehs203(2012),其特此以引用的方式整体并入)。可如以下中所描述获得源自脐带血细胞的iPSC:Cai等人,“Generation of Human Induced PluripotentStem Cells from Umbilical Cord Matrix and Amniotic Membrane MesenchymalCells,”J.Biol.Chem.285(15):112227-11234(2110)和Giorgetti等人,“Generation ofInduced Pluripotent Stem Cells from Human Cord Blood Cells with only TwoFactors:Oct4 and Sox2,”Nature Protocols,5(4):811-820(2010),其特此以引用的方式整体并入。可使用以下中描述的方法获得源自骨髓细胞的iPSC:Streckfuss-Bomeke等人,“Comparative Study of Human-Induced Pluripotent Stem Cells Derived from BoneMarrow Cells,Hair Keratinocytes,and Skin Fibroblasts,”Eur.Heart J.doi:10.1093/eurheartj/ehs203(2012年7月12日)和Hu等人,“Efficient Generation ofTransgene-Free Induced Pluripotent Stem Cells from Normal and Neoplastic BoneMarrow and Cord Blood Mononuclear Cells,”Blood doi:10.1182/blood-2010-07-298331(2011年2月4日),其特此以引用的方式整体并入)。可按照以下中描述的方法获得源自外周血的iPSC:Sommer等人,“Generation of Human Induced Pluripotent Stem Cellsfrom Peripheral Blood using the STEMCCA Lentiviral Vector,”J.Vis.Exp.68:e4327doi:10.3791/4327(2012),其特此以引用的方式整体并入。考虑用于本文所述的方法的iPS细胞不限于以上参考文献中描述的那些iPS细胞,而是包括通过任何方法制备的细胞,只要所述细胞已从除多能干细胞以外的细胞人工诱导即可。
适合于治疗如本文所述的神经精神病症的从iPSC或胚胎干细胞(例如人胚胎干细胞)获得少突胶质细胞祖细胞的高度富集制剂的方法公开于Goldman和Wang的WO2014/124087以及Wang等人,“Human iPSC-Derived Oligodendrocyte Progenitors CanMyelinate and Rescue a Mouse Model of Congenital Hypomyelination,”Cell StemCell 12(2):252-264(2013)中,其特此以引用的方式整体并入。
简言之,少突胶质细胞祖细胞是使用引导多能细胞通过神经和神经胶质祖细胞分化的连续阶段的方案源自多能细胞群体,即iPSC或胚胎干细胞。谱系限制的每个阶段均通过某些细胞蛋白质的表达来表征和鉴定。这种过程的阶段1涉及在有效诱导胚状体形成的条件下培养多能细胞群体。如本文所述,多能细胞群体可在胚胎干细胞(ESC)培养基(例如,含有合适的血清替代物和bFGF的DMEM/F12)中在与其他细胞如胚胎成纤维细胞的共培养中维持。当集落直径为大约250-300μm时,使多能细胞在达到100%汇合(例如80%汇合)之前传代。使用针对SSEA4、TRA-1-60、OCT-4、NANOG和/或SOX2的标志物可容易地评估细胞的多能状态。
为了产生作为多能干细胞的复杂三维细胞聚集体的胚状体(EB)(阶段2),一旦多能干细胞培养物实现约80%汇合且集落直径在或约250-300μm,就使所述多能干细胞培养物解离。初始地将EB在没有bFGF的ESC培养基中悬浮培养,且然后切换至补充有bFGF和肝素的神经诱导培养基。为了诱导神经上皮分化(阶段3),将EB在补充有bFGF、肝素、层粘连蛋白的神经诱导培养基中接种并培养,然后切换至补充有视黄酸的神经诱导培养基。通过PAX6和SOX1的共表达来评估神经上皮分化,所述PAX6和SOX1表征中枢神经干细胞和祖细胞。
为了诱导前-少突胶质细胞祖细胞(“前-OPC”)分化,在包括视黄酸、B27补充物和音猬(shh)激动剂(例如,嘌吗啡胺(purmophamine))的其他因子存在下培养神经上皮细胞集落。通过OLIG2和/或NKX2.2表达的存在来评估前OPC集落的出现。虽然OLIG2和NKX2.2两者均由中心少突胶质细胞祖细胞表达,但NKX2.2是少突神经胶质细胞分化的更具体指标。因此,早期前少突胶质细胞祖细胞阶段以OLIG+/NKX2.2-细胞集落为标志。通过用bFGF替代视黄酸,使OLIG+/NKX2.2-早期前-OPC分化为后期OLIG+/NKX2.2+前-OPC。在阶段5结束时,如由OLIG2+/NKX2.2+表达谱所指示,显著百分比的细胞是前-OPC。
前OPC通过在神经胶质诱导培养基中培养而进一步分化为双潜能少突胶质细胞祖细胞,所述神经胶质诱导培养基补充有生长因子如三碘甲腺原氨酸(T3)、神经营养因子3(NT3)、胰岛素生长因子(IGF-1)和血小板源性生长因子-AA(PDGF-AA)(阶段6)。在需要时,这些培养条件可延长3-4个月或更长时间,以使形成髓鞘的少突胶质细胞祖细胞最大化。适于移植到适当受试者中的细胞制剂被鉴定为含有PDGFRα+少突胶质细胞祖细胞。
本领域中已知的从iPSC或胚胎干细胞获得少突胶质细胞祖细胞的制剂的替代方法也可用于产生适合于治疗如本文所述的神经精神病症的治疗性细胞群体。在又一个实施方案中,可通过使用启动子特异性分离技术直接从含有混合细胞群体的胚胎组织、胎儿组织或成体脑组织提取神经胶质祖细胞,如Goldman的美国专利申请公布号20040029269和20030223972中所描述,其特此以引用的方式整体并入。根据这一实施方案,神经胶质祖细胞从脑的脑室或脑室下区或皮质下白质分离。
在一些实施方案中,可能优选在施用前富集包含少突胶质细胞祖细胞的细胞制剂以增加治疗性少突胶质细胞祖细胞的浓度和/或纯度。因此,在一个实施方案中,在发育或分化过程的早期识别并结合至存在于神经胶质祖细胞上的神经节苷脂的A2B5单克隆抗体(mAb)可用于从混合细胞群体中分离神经胶质祖细胞(Nunes等人,“Identification andIsolation of Multipotential Neural Progenitor Cells From the SubcorticalWhite Matter of the Adult Human Brain.,”Nat Med.9(4):439-47(2003),其特此以引用的方式整体并入)。使用A2B5mAb,可从混合细胞类型群体中分离、富集或纯化神经胶质祖细胞。在另一个实施方案中,采用CD140α/PDGFRα阳性细胞的选择来产生双潜能神经胶质祖细胞的纯化或富集制剂。在另一个实施方案中,采用CD9阳性细胞的选择来产生少突胶质细胞偏向的祖细胞的纯化或富集制剂。在又一个实施方案中,采用CD140α/PDGFRα和CD9阳性细胞选择来产生少突胶质细胞祖细胞的纯化或富集制剂。在另一实施方案中,采用CD44阳性细胞的选择来产生星形胶质细胞偏向的祖细胞的纯化或富集制剂(Liu等人,“CD44Expression Identifies Astrocyte-Restricted Precursor Cells,”Dev.Biol.276(1):31-46(2004),其特此以引用的方式整体并入)。在另一个实施方案中,采用CD140α/PDGFRα和CD44阳性细胞选择来产生少突胶质细胞祖细胞的纯化或富集制剂。在另一个实施方案中,采用CD140α/PDGFRα、CD9和CD44阳性细胞选择来产生少突胶质细胞祖细胞的纯化或富集制剂。
所施用的神经胶质祖细胞制剂任选地对PSA-NCAM标志物和/或其他神经元谱系标志物呈阴性,和/或对一种或多种炎性细胞标志物呈阴性,例如,对CD11标志物呈阴性、对CD32标志物呈阴性和/或对CD36标志物呈阴性(它们是小神经胶质细胞的标志物)。任选地,神经胶质祖细胞的制剂对这些另外标志物的任何组合或子集呈阴性。因此,例如,神经胶质祖细胞的制剂对这些另外标志物中的任何一个、两个、三个或四个呈阴性。
根据治疗如本文所述的神经精神病症的方法,所选择的施用的神经胶质祖细胞制剂包含至少约80%的神经胶质祖细胞,包括例如约80%、85%、90%、95%、96%、97%、98%、99%、100%的神经胶质祖细胞。所选择的神经胶质祖细胞制剂可相对缺乏(例如,含有少于20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2%或1%)其他细胞类型,如神经元或神经元谱系的细胞、纤维状星形胶质细胞和纤维状星形胶质细胞谱系的细胞、多潜能细胞和多能干细胞(如ES细胞)。任选地,示例性细胞群体是基本上纯的神经胶质祖细胞群体。
对目标细胞标志物(例如,PDGFRα标志物、A2B5标志物和/或CD44标志物)的阳性和/或阴性选择可连续地或顺序地进行,并且可使用本领域中已知的常规方法如免疫淘选进行。选择方法任选地涉及使用荧光分选(FACS)、磁性分选(MACS)或允许快速、有效的细胞分选的任何其他方法。用于细胞分选的方法的实例例如在Goldman的美国专利号6,692,957中教导,所述专利至少关于细胞选择和分选的组合物和方法特此以引用的方式整体并入。
通常,细胞分选方法使用可检测的部分。可检测的部分包括任何合适的直接或间接标记,包括但不限于酶、荧光团、生物素、发色团、放射性同位素、有色珠、电化学、化学修饰或化学发光部分。常见荧光部分包括荧光素、花青染料、香豆素、藻红蛋白、藻胆蛋白、丹磺酰氯、德克萨斯红和镧系元素络合物或其衍生物。
本领域技术人员容易理解如何选择特定标志物或针对特定标志物进行选择。因此,通过举例的方式,针对特定标志物分选的细胞群体包括鉴定对所述特定标志物呈阳性的细胞并保留那些细胞用于进一步使用或进一步选择步骤。针对特定标志物分选的细胞群体包括鉴定对所述特定标志物呈阳性的细胞并且排除那些细胞用于进一步使用或进一步选择步骤。
本文所述的神经胶质祖细胞制剂(包括富集的制剂)可任选地在培养物中扩增以增加用于治疗性施用的细胞总数。可通过连续或脉冲式暴露于PDGF-AA或AB作为支持少突胶质细胞祖细胞的扩增的有丝分裂原来使细胞扩增;它们可暴露于成纤维细胞生长因子,包括FGF2、FGF4、FGF8和FGF9,所述成纤维细胞生长因子可支持神经胶质祖细胞的有丝分裂扩增、但可使它们的分化偏向于星形胶质细胞以及少突胶质细胞的混合群体。也可在补充有FGF2、PDGF和NT3组合的培养基中扩增细胞,所述培养基可任选地补充有血小板消减的或全血清(参见Nunes等人“Identification and Isolation of Multipotent NeuralProgenitor Cells from the Subcortical White Matter of the Adult Human Brain,”Nature Medicine 9:239-247;Windrem等人,“Fetal and Adult Human OligodendrocyteProgenitor Cell Isolates Myelinate the Congenitally Dysmyelinated Brain,”Nature Medicine 10:93-97(2004),
其关于其中所述的方法和组合物以引用的方式并入)。
根据本文所述的方法,将神经胶质祖细胞群体双侧施用至如以下中所述的所治疗受试者的多个部位中:Han等人,“Forebrain Engraftment by Human Glial ProgenitorCells Enhances Synaptic Plasticity and Learning Adult Mice,”Cell Stem Cell12:342-353(2013)和Wang等人,“Human iPSCs-Derived Oligodendrocyte ProgenitorCells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination,”Cell Stem Cell 12:252-264(2013),其特此以引用的方式整体并入)。用于将神经组织和细胞移植到宿主脑中的方法由以下描述:Bjorklund和Stenevi(编辑),Neural Graftingin the Mammalian CNS,Ch.3-8,Elsevier,Amsterdam(1985);Gage等人的美国专利号5,082,670;以及Weiss等人的美国专利号6,497,872,其特此以引用的方式整体并入。典型的程序包括脑内、脑室内、鞘内和脑池内施用。
可将神经胶质祖细胞制剂直接递送至前脑皮层下部,特别是递送至胼胝体的前部和后部间叶原基。神经胶质祖细胞也可被递送至小脑脚白质,以进入主要小脑束和脑干束。神经胶质祖细胞也可被递送至脊髓。
或者,可将细胞置于室,例如脑室中。脑室中的移植细胞可通过注射供体细胞或通过生长细胞在诸如30%胶原的基质中以形成实体组织塞(所述实体组织塞然后可植入脑室中以防止移植细胞错位)来完成。对于硬膜下移植,可在硬脑膜中切开缝隙后将细胞注入脑表面周围。
细胞向受试者的递送可包括直接一步或多步注射到神经系统中。尽管成人和胎儿少突胶质细胞前体细胞广泛分散在移植接受者的脑中,但对于广泛神经精神病症,可进行多个注射部位以优化治疗。任选地将注射引导至中枢神经系统的区域,如白质束,像胼胝体(例如,进入前部和后部间叶原基)、背柱、小脑脚、大脑脚。可使用精确的定位方法,如立体定向手术、任选地与伴随成像方法(例如,高分辨率MRI成像)单侧或双侧进行此类注射。本领域的技术人员认识到脑区域跨物种变化;然而,本领域技术人员还认识到跨哺乳动物物种的可比较的脑区域。
在一个实施方案中,将少突胶质细胞祖细胞制剂作为解离的细胞注射。在另一个实施方案中,少突胶质细胞祖细胞制剂作为未离解的细胞提供。在任一情况下,细胞移植物任选地包含可接受的溶液。此类可接受的溶液包括避免不希望的生物活性和污染的溶液。合适的溶液包括适当量的药学上可接受的盐以使制剂等渗。药学上可接受的溶液的实例包括但不限于盐水、汉克氏平衡盐溶液、林格氏溶液、葡萄糖溶液和培养基。溶液的pH优选地是约5至约8,并且更优选约7至约7.5。
解离的细胞移植物的注射可以是跨注射装置的进入路径、离开路径或进入路径和离开路径两者进行的流式注射。合适的注射装置包括套管、针、插入管、由插入管引导的套管。自动化和立体定向定位系统可用于以均匀的进入和离开速度以及注射速度和体积向靶向区域提供精确递送。
根据接受者的大小和种类以及需要细胞置换的组织的体积,在每次施用(例如注射部位)施用至受试者的神经胶质祖细胞的数量可在约102-109的范围内。对于移植接受者患者,单次施用(例如注射)剂量可跨越1x 103–9x 103、1x 104–9x 104、1x 105–9x 105、1x106–9x 106、1x 107–9x 107、1x 108–9x 108、1x 109–9x 109、1x 103–9x 103的范围,或总计的任何量。在一个实施方案中,所施用的剂量是1x 107–4x 107个细胞。为了实现此类剂量,制备具有1-2x 103个细胞/μl、1-2x 104个细胞/μl、1-2x 105个细胞/μl、1-2x 106个细胞/μl、1-2x 107个细胞/μl的药学上可接受的载体的浓度的细胞制剂。在一个实施方案中,用于施用的细胞制剂在约25μl至约50μl的总体积内具有1x 105–2x 105个细胞/μl的浓度。
由于CNS是具有免疫特权的部位,所施用的细胞(包括异种)可存活,并且任选地在治疗方法中不使用免疫遏制剂药物或免疫遏制剂的典型方案。然而,任选地,也可在接受细胞疗法之前和之后向受试者施用免疫遏制剂。免疫遏制剂和它们的给药方案是本领域技术人员已知的,并且包括诸如硫唑嘌呤、硫唑嘌呤钠、环孢菌素、达曲班、三盐酸胍立莫司、西罗莫司、吗替麦考酚(MMF)和他克莫司的剂。在一个实施方案中,将任何上述免疫遏制剂的组合施用至受试者。在一个实施方案中,将MMF和他克莫司的组合施用至受试者。方案的剂量范围和持续时间可随以下因素而变化:所治疗的病症;排斥程度;所使用的特定免疫遏制剂的活性;受试者的年龄、体重、总体健康状况、性别和饮食;施用时间;施用途径;所使用的特定免疫遏制剂的排泄率;治疗的持续时间和频率;以及组合使用的药物。本领域技术人员可确定免疫遏制的可接受剂量和持续时间。如果有任何禁忌症或受试者状态的变化,那么剂量方案可由个别医师调节。
在一个实施方案中,在细胞施用前10周开始向受试者施用一种或多种免疫遏制剂。在一个实施方案中,在细胞施用前9周、8周、7周、6周、5周、4周、3周、2周、1周、7天、6天、5天、4天、3天、2天、1天、<24小时开始向受试者施用一种或多种免疫遏制剂。在一个实施方案中,在细胞施用当天开始并在施用后持续1、2、3、4、5、6、7、8、9、10、11、12个月向受试者施用一种或多种免疫遏制剂。在一个实施方案中,在施用后向受试者施用一种或多种免疫遏制剂持续>1年。
如本文所用,“治疗(treating)”或“(treatment)”是指改善损伤、病理或疾患的任何成功迹象,包括任何客观或主观参数,如减轻;缓解;削弱症状或使损伤、病理或疾患更可被患者耐受;减缓退化或衰退的速率;使退化终点的致虚弱性较小;或改善受试者的身体或精神健康。症状的治疗或改善可基于客观或主观参数;包括身体检查、神经病学检查和/或精神病学评价的结果。“治疗”包括施用神经胶质祖细胞以预防或延迟、减轻或阻止或抑制与精神分裂症、自闭症谱系障碍、双相情感障碍或任何其他神经精神病症相关的症状或疾患的发展。“治疗作用”是指减轻、消除或预防受试者的疾病、疾病的症状或疾病、疾患或病症的副作用。治疗可以是预防性的(以预防或延迟疾病、疾患或病症的发作或恶化,或预防其临床或亚临床症状的表现)或在疾病、疾患或病症表现后症状的治疗性遏制或缓解。
如本文所用,“有效治疗的剂量”是指有效产生所需结果的细胞的量。这种量例如取决于待治疗个体的健康和身体状况、个体的心智和情感能力、所需的保护程度、制剂、主治医师对医学情况的评估以及其他相关因素而变化。
本公开的另一方面涉及一种治疗神经精神病症的方法。这种方法包括选择患有所述神经精神病症的受试者,并且以有效恢复所选择受试者的正常脑间质神经胶质K+水平和治疗所述神经精神病症的剂量向所选择受试者施用钾(K+)通道活化剂。
上文公开了适合于根据本公开的这一方面进行治疗的合适的受试者以及神经精神病症。待使用本文所述的方法治疗的示例性神经精神病症包括但不限于精神分裂症、自闭症谱系障碍和双相情感障碍。
如本文所述,神经精神病症如精神分裂症涉及促成和/或引起受损的神经胶质细胞分化的许多神经胶质祖细胞基因的表达失调。特别地,在疾病状态下许多钾通道基因的表达水平显著下调。这些结果表明在诸如精神分裂症、自闭症和双相情感障碍的神经精神病症中神经胶质钾通道功能和神经胶质钾水平失调的作用。因此,患有神经精神病症的受试者将从一种或多种K+通道活化剂的施用在治疗上受益,以恢复正常、健康的脑间质神经胶质K+水平。
如本文所用,“K+通道”是指在可兴奋细胞中参与接收、传导和传输信号的蛋白质或多肽。钾通道通常在包括神经胶质细胞的可电兴奋细胞中表达,并且可形成例如由孔形成和调控亚基组成的异源多聚体结构。钾通道的实例包括:(1)电压门控钾通道,(2)内向整流通道,(3)串联孔通道以及(3)配体门控通道。关于钾通道的详细描述,参见Kandel E.R.等人,Principles of Neural Science,第二版,(Elsevier Science Publishing Co.,Inc.,N.Y.(1985)),其特此以引用的方式整体并入。
中枢神经系统中的钾调控由净钾摄取和钾空间缓冲介导(Kofuji和Newman.,“Regulation of Potassium by Glial Cells in the Central Nervous System,”Springer Science&Business Media(2008),其特此以引用的方式整体并入)。对于K+摄取,过量的细胞外K+通过Na+、K+-ATP酶的作用或通过穿过转运蛋白或K+通道的K+通量的作用而被吸收并螯合在神经胶质细胞内(Kofuji和Newman.,“Regulation of Potassium byGlial Cells in the Central Nervous System,”Springer Science&Business Media(2008),其特此以引用的方式整体并入)。在空间缓冲中,K+通过流过神经胶质细胞的电流(即,神经胶质K+传导性)从K+浓度升高的区域转移至较低K+浓度的区域(参见Orkand等人,“Effect of Nerve Impulses on the Membrane Potential of Glial Cells in theCentral Nervous System of Amphibia,”J Neurophysiol 29:788–806(1966),其特此以引用的方式整体并入)。
根据本公开的这一方面,患有神经精神病症的所选受试者具有失调的神经胶质K+通道功能,其特征在于缺陷型神经胶质K+传导性、缺陷型神经胶质K+摄取和/或缺陷型神经胶质K+通道表达。
特异性地或非特异性地作用于K+通道的若干K+通道活化剂是本领域已知的并且适合用于本发明中以恢复通道活性。此类K+活化剂包括但不限于[2-氨基-4-[[(4-氟苯基)甲基]氨基]苯基]氨基甲酸乙酯(瑞替加滨)、N-[2-氨基-6-[[4-氟苯基)甲基]氨基]-3-吡啶基]氨基甲酸马来酸乙酯(氟吡汀)、N-[3,5-双(三氟甲基)苯基]-N'-[2,4-二溴-6-(2H-四唑-5-基)苯基]脲(NS 5806)、N-(2-氯-5-嘧啶基)-3,4-二氟苯甲酰胺(ICA69673)、4-氯-N-(6-氯-3-吡啶基)苯甲酰胺(ICA 110381)、5-(2-氟苯基)-1,3-二氢-3-(1H-吲哚-3-基甲基)-1-甲基-2H-1,4-苯并二氮杂
Figure BDA0002360174470000281
-2-酮(L-364373)、N-(2,4,6-三甲基苯基)-双环[2.2.1]庚烷-2-甲酰胺(ML 213)、(2R)-N-[4-(4-甲氧基苯基)-2-噻唑基]-1-[(4-甲基苯基)磺酰基]-2-哌啶甲酰胺(ML 277)、N,N'-双[2-羟基-5-(三氟甲基)苯基]脲(NS 1643)、N-[4-溴-2-(1H-四唑-5-基-苯基]-N'-[3-(三氟甲基)苯基]-脲(NS 3623)、5-(2,6-二氯-5-氟-3-吡啶基)-3-苯基-2-(三氟甲基)-吡唑并[1,5-a]嘧啶-7(4H)-酮(QO58)、2-[[4-[2-(3,4-二氯苯基)乙基]苯基]氨基]苯甲酸(PD 118057)、反式-3,4-二氢-3-羟基-2,2-二甲基-4-(2-氧代-1-吡咯烷基)-2H-1-苯并吡喃-6-甲腈(克罗卡林)、7-氯-3-甲基-2H-1,2,4-苯并噻二嗪1,1-二氧化物(二氮嗪)、(3S,4R)-3,4-二氢-3-羟基-2,2-二甲基-4-(2-氧代-1-吡咯烷基)-2H-1-苯并吡喃-6-甲腈(左色满卡林)、6-(1-哌啶基)-2,4-嘧啶二胺3-氧化物(米诺地尔)、N-(3,4-二氟苯基)-N'-(3-甲基-1-苯基-1H-吡唑-5-基)脲(ML 297)、N-[2-(硝基氧基)乙基]-3-吡啶甲酰胺(尼可地尔)、N-氰基-N'-(1,1-二甲基丙基)-N”-3-吡啶基胍(P1075)、(Z)-5-氯-2,3-二氢-3-(羟基-2-噻吩基亚甲基)-2-氧代-1H-吲哚-1-甲酰胺(替尼达普)、N-[(3S,4R)-6-氰基-3,4-二氢-3-羟基-2,2-二甲基-2H-1-苯并吡喃-4-基]-N-羟乙酰胺(Y-26763)、N-[(3S,4R)-6-氰基-3,4-二氢-3-羟基-2,2-二甲基-2H-1-苯并吡喃-4-基]-N-(苯基甲氧基)乙酰胺(Y-27152)、N-(4-苯基磺酰基苯基)-3,3,3-三氟-2-羟基-2-甲基丙酰胺(ZM 226600)、N-(6-氯-吡啶-3-基)-3,4-二氟-苯甲酰胺(ICA-27243)、ICA-105665、2-(2,6-二氯苯胺基)苯乙酸(双氯芬酸)及其结构类似物(例如NH6)、(3R,4R)-4-[3-(6-甲氧基喹啉-4-基)-3-氧代-丙基]-1-[3-(2,3,5-三氟-苯基)-丙-2-炔基]-哌啶-3-羧酸(RPR260243)、2-[[2-(3,4-二氯苯基)-2,3-二氢-1H-异吲哚-5-基]氨基]烟酸(PD307243)、一氧化氮、氟烷、17β-雌二醇、二硫苏糖醇、柚皮苷、(3S)-(+)-(5-氯-2-甲氧基苯基)-1,3-二氢-3-氟-6-(三氟甲基)-2H-吲哚-2-酮(BMS 204352)、异氟烷、2-卤代乙醇、卤代甲烷、七氟烷和地氟烷。
在本公开的这一方面的一个实施方案中,所施用的K+通道活化剂增加神经胶质G蛋白活化的内向整流K+通道的活性。G蛋白活化的内向整流钾(K+)通道GIRK是内向整流钾通道Kirs的较大家族的成员。顾名思义,GIRK通道可通过与G蛋白的β/γ亚基1-3相互作用而被Gi亚型的百日咳毒素敏感的G蛋白偶联受体活化。然而,GIRK调控是复杂的,并且已经通过Gs和Gq GPCR以及经由其他间接机制观察到正调节和负调节。据信由GPCR进行的GIRK调控与多种GPCR激动剂(包括阿片类药物、乙酰胆碱和GABA受体激动剂巴氯芬)的生物学效应有关。
GIRK通道由分别由基因KCNJ3、KCNJ6、KCNJ9和KCNJ5编码的四种亚基GIRK1-4(亦称Kir3.1-3.4)组成。这四种亚基可形成具有独特生物物理性质、调控和分布的均四聚体和异四聚体。发现GIRK在脑中广泛表达,其中GIRK1/2亚基组合在皮质、海马、小脑和各种其他大脑区域中最常见和广泛,而其他亚基组合(如GIRK1/4)显示在脑中的非常有限表达。
活化神经胶质G蛋白活化的内向整流K+通道(特异性地或非特异性地)的适用于治疗神经精神病症的示例性药物包括但不限于氟吡汀、一氧二氮、氟烷、17β-雌二醇、二硫苏糖醇、柚皮苷以及其衍生物和类似物。
在另一个实施方案中,所施用的K+通道活化剂增加神经胶质K+电压门控通道的活性。K+电压门控(Kv)通道家族尤其包括:(1)延迟的整流钾通道,其在每个动作电位后使膜重新极化以使细胞准备再次激发;以及(2)快速失活的(A型)钾通道,其主要在亚阈值电压下具有活性并且用于降低可兴奋细胞达到激发阈值的速率的作用。除了对动作电位传导至关重要外,Kv通道还控制对去极化(例如突触)输入的应答并在神经递质释放中起作用。作为这些活动的结果,电压门控钾通道是神经元兴奋性的关键调控因子(Hille B.,IonicChannels of Excitable Membranes,第二版,Sunderland,M A:Sinauer,(1992),其特此以引用的方式整体并入)。
Kv钾通道超家族内存在巨大的结构和功能多样性。这种多样性通过多种基因的存在以及从同一基因产生的RNA转录物的选择性剪接而产生。然而,已知的Kv钾通道的氨基酸序列显示高度相似性。全部似乎都由四个孔形成α-亚基组成,并且一些已知具有四种细胞质(β-亚基)多肽(Jan L.Y.等人Trends Neurosci 13:415-419(1990);Pongs,O.等人SemNeurosci 7:137-146(1995),其特此以引用的方式整体并入)。
因此,在一个实施方案中,所施用的K+通道活化剂增加神经胶质A型电压门控K+通道的活性。活化神经胶质A型电压门控K+通道(特异性地或非特异性地)的适合用于治疗神经精神病症的示例性剂包括但不限于N-[3,5-双(三氟甲基)苯基]-N'-[2,4-二溴-6-(2H-四唑-5-基)苯基]脲(NS5806)及其衍生物和类似物。
在另一个实施方案中,所施用的K+通道活化剂增加神经胶质延迟整流K+通道的活性。用于本公开的这一方面的示例性延迟整流K+通道活化剂包括但不限于瑞替加滨及其衍生物和类似物。
K+通道活化剂还可影响神经胶质串联孔结构域K+通道。串联孔结构域K+通道包括来自称为“泄漏通道”的15个成员的家族。这些通道允许K+恒定通过并由KCNK1和KCNK18编码。
因此,在一个实施方案中,所施用的K+通道活化剂增加神经胶质串联孔结构域K+通道的活性,包括由KCNK1至KCNK18,包括KCNK1和KCNK18编码的钾泄漏通道。活化串联孔结构域K+通道(特异性地或非特异性地)的适合用于治疗神经精神病症的示例性剂包括但不限于氟烷、异氟烷、2-卤代乙醇、卤代甲烷、七氟烷和地氟烷及其衍生物和类似物。
在一个实施方案中,K+通道活化剂不是Kv7(KCNQ)K+通道活化剂。在另一个实施方案中,K+通道活化剂对神经胶质KCNQ通道具有特异性,即对活化神经胶质细胞上的KCNQ通道具有选择性或靶向活化神经胶质细胞上的KCNQ通道但不活化非神经胶质细胞上的KCNQ通道的KCNQ通道活化剂。
根据治疗患有神经精神病症的受试者的方法,可将K+通道活化剂以游离碱或药学上可接受的酸加成盐的形式施用至受试者。在后一种情况下,通常优选盐酸盐,但也可使用源自有机或无机酸的其他盐。此类酸的实例包括但不限于氢溴酸、磷酸、硫酸、甲烷磺酸、亚磷酸、硝酸、高氯酸、乙酸、酒石酸、乳酸、琥珀酸、柠檬酸、苹果酸、马来酸、乌头酸、水杨酸、邻苯二甲酸、帕莫酸、庚酸等。
施用至受试者的K+通道活化剂的每日总剂量应至少是预防、减轻或消除与神经精神病症相关的一种或多种症状所需的量。典型的每日剂量将在20与400mg之间,并且一般而言,每日剂量不应超过1600mg。较高的剂量由一些患者可耐受,并且在接受用可降低K+通道活化剂的浓度和半衰期的剂伴随药物治疗的受试者中,可考虑2,000mg或更高的每日剂量。这些剂量只是指南,主治医师将基于临床状况且使用本领域熟知的方法确定为个体受试者选择的实际剂量。合适的K+通道活化剂可以单剂量或多剂量方案或按所需方案提供。例如,可每天、每周或每月向受试者施用K+通道活化剂。或者,根据特定的神经精神疾患、疾患的阶段或进展、个体症状以及获得的缓解的程度和持续时间,可能需要每天一次、两次或大于两次向受试者施用K+通道活化剂。
K+通道活化剂的合适施用途径包括但不限于皮下、肌内、静脉内或吸入。因此,合适的剂型包括粉末剂、气雾剂、胃肠外水性悬浮剂、溶液和乳剂。也可使用缓释剂型。K+通道活化剂可作为唯一活性剂或与其他用于治疗神经精神病症或减轻神经精神病症的进展的治疗活性药物组合施用。
本公开的另一方面涉及神经精神病症的非人哺乳动物模型。这种非人哺乳动物在其胼胝体中至少30%的全部其神经胶质细胞是源自患有神经精神病症的人患者的人神经胶质细胞和/或在其脑白质和/或脑干中至少5%的全部其神经胶质细胞是源自患有神经精神病症的人患者的人神经胶质细胞。
包含源自患有神经精神病症的患者的人神经胶质细胞的非人哺乳动物表现出与神经精神病症相关的行为特征和表型。例如,当神经精神病症是精神分裂症时,非人哺乳动物表现出精神分裂症的行为表型,其特征在于如在本文的实施例中所描述的减少的前脉冲抑制、较高焦虑和社交回避。
在一个实施方案中,人神经胶质细胞构成非人哺乳动物的胼胝体中所有神经胶质细胞的至少50%。在另一个实施方案中,人神经胶质细胞构成非人哺乳动物的胼胝体中所有神经胶质细胞的至少70%。在另一个实施方案中,人神经胶质细胞构成非人哺乳动物的胼胝体中所有神经胶质细胞的至少90%。在一个实施方案中,非人哺乳动物的脑和/或脑干的白质中所有神经胶质细胞的至少10%是人神经胶质细胞。在另一个实施方案中,非人哺乳动物的脑和/或脑干的白质中所有神经胶质细胞的至少15%是人神经胶质细胞。在另一个实施方案中,非人哺乳动物的脑和/或脑干的白质中所有神经胶质细胞的至少20%或更多是人神经胶质细胞。在另一个实施方案中,小脑白质中所有神经胶质细胞的至少50%是人神经胶质细胞。
本文所述的非人哺乳动物模型的人神经精神病症特异性神经胶质细胞可源自任何合适的神经胶质细胞来源,例如像但不限于,源自患有神经精神病症的受试者的人诱导型多能干细胞(iPSC),或源自使用上述方法从患有神经精神病症的受试者的脑组织分离的神经胶质祖细胞。
根据产生人神经精神病症的非人哺乳动物模型的方法,所施用的人神经精神病症特异性神经胶质细胞的所选择制剂包含至少约80%的神经胶质细胞,包括例如约80%、85%、90%、95%、96%、97%、98%、99%、100%的神经胶质细胞。所选择的神经胶质细胞制剂可相对缺乏(例如,含有少于20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2%或1%)其他细胞类型,如神经元或神经元谱系的细胞、纤维状星形胶质细胞和纤维状星形胶质细胞谱系的细胞和多能干细胞(如ES细胞)。任选地,示例性细胞群体是基本上纯的神经胶质细胞群体。
另一个方面涉及产生神经精神病症的非人哺乳动物模型的方法,所述模型用人患病的神经胶质细胞置换非人哺乳动物脑中的天然神经胶质细胞。这种方法涉及提供源自患有神经精神病症的患者的分离的人神经胶质细胞群体,将所述分离的人神经胶质细胞群体引入非人类哺乳动物的前脑和/或脑干内的多个位置中,并且使以人神经胶质细胞置换脑中的天然神经胶质细胞的非人哺乳动物恢复。
使用人胎儿细胞制备非人哺乳动物的方法描述于Goldman的美国专利7,524,491和Windrem等人,“Neonatal Chimerization With Human Glial Progenitor Cells CanBoth Remyelinate and Rescue the Otherwise Lethally Hypomyelinated ShivererMouse,”Cell Stem Cell 2:553-565(2008)中,其特此以引用的方式整体并入。还参见Goldman的美国专利申请公布号US20160317681,其特此以引用的方式整体并入。
非人哺乳动物可以是任何新生儿、少年或成年非人哺乳动物。示例性非人哺乳动物包括但不限于小鼠、大鼠、豚鼠和其他小型啮齿动物、狗、猫、绵羊、山羊和猴。在一个实施方案中,非人哺乳动物是小鼠。通常用作疾病模型的小鼠的合适品系包括但不限于
Figure BDA0002360174470000341
裸鼠、NU/NU小鼠、BALB/C裸鼠、BALB/C小鼠、NIH-III小鼠、
Figure BDA0002360174470000342
小鼠、远系杂交
Figure BDA0002360174470000343
小鼠、SCID Beige小鼠、C3H小鼠、C57BL/6小鼠、DBA/2小鼠、FVB小鼠、CB17小鼠、129小鼠、SJL小鼠、B6C3F1小鼠、BDF1小鼠、CDF1小鼠、CB6F1小鼠、CF-1小鼠、Swiss Webster小鼠、SKH1小鼠、PGP小鼠以及B6SJL小鼠。
可将人神经精神病症特异性神经胶质细胞引入非人哺乳动物的前脑和/或脑干内的多个位置。合适的施用方法包括但不限于脑内、脑室内、鞘内和脑池内施用。神经精神病症特异性神经胶质细胞可替代地经由实质内或胼胝体内移植来施用。引入非人哺乳动物的人神经精神病症特异性神经胶质细胞的数量可在103-105个细胞之间的范围内。
期望非人哺乳动物宿主接受具有很少或没有不良免疫识别的人神经胶质细胞。因此,在一些实施方案中,非人哺乳动物是无免疫能力、免疫缺陷或免疫遏制的。
免疫遏制可通过施用免疫遏制性药物如环孢菌素、西罗莫司或他克莫司或通过采用局部施加的免疫遏制剂的策略来实现。局部免疫遏制由Gruber,Transplantation 54:1-11(1992)公开,其特此以引用的方式并入。Rossini的美国专利号5,026,365(其特此以引用的方式整体并入)公开了也适用于局部免疫遏制的囊封方法。
作为采用免疫遏制技术的替代方案,如由Smithies等人Nature 317:230-234(1985)(其特此以引用的方式整体并入)所教导的,使用同源重组的基因置换或敲除方法可应用于供体神经胶质细胞用于消除主要组织相容性复合物(MHC)基因。缺乏MHC表达的供体神经胶质细胞将允许富集的神经胶质细胞群体跨同种异体并且可能甚至是异种的组织相容性屏障的移植,而无需对接受者进行免疫遏制。Gruber,Transplantation 54:1-11(1992)也公开了使用重组方法来降低供体细胞的抗原性的一般性综述和引文,所述文献特此以引用的方式整体并入。通过表面修饰降低移植物的免疫原性的示例性方法在Faustman的WO92/04033中公开,其特此以引用的方式整体并入。
或者,可通过使用具有使其免疫缺陷的基因突变的任何非人哺乳动物宿主来降低移植的细胞的免疫原性。示例性动物模型包括具有破坏重组活化基因2(Rag2)(Shinkai等人,Cell 68:855-867(1992),其特此以引用的方式整体并入)或Rag1基因(Mombaerts等人,Cell 68:869-877(1992)和Schultz等人,Transplantation 76:1036-42(2003),其特此以引用的方式整体并入)的突变的那些动物模型。可用于实践本文所述的产生非人哺乳动物的其他免疫缺陷型动物模型包括在Prkdc基因中具有突变的任何严重联合免疫缺陷型小鼠(SCID)。在方面中使用的优选的SCID小鼠模型包括NOD-SCID、NOD-SCID-IL2rg和NOG(NOD-SCID/γc无效)小鼠模型。另外,携带Foxn1基因中的突变的裸鼠模型也可用于产生人神经精神病症的非人哺乳动物模型。
在将分离的人神经精神病症特异性神经胶质细胞群体引入非人哺乳动物的前脑和/或脑干之后,所述非人哺乳动物得以恢复。如本文所用,术语“恢复非人哺乳动物”是指使引入的人类神经胶质细胞在功能上移植到非人哺乳动物的脑中的过程或方法。上文描述了在回收的非人哺乳动物模型的脑和脑干的白质和/或胼胝体中存在的人神经胶质细胞的示例性百分比。
本公开的另一方面涉及鉴定适合于治疗神经精神病症的剂的方法,所述方法包括提供如上所述的神经精神病症的非人哺乳动物模型并且提供候选剂。所述方法还包括向所述非人哺乳动物施用所述候选剂,以及作为所述施用的结果,评估所述候选剂适于治疗神经精神病症的治疗潜力。
实施例
以下实施例意图举例说明本公开的实施方案的实践,但绝不意图限制其范围。
实施例的材料和方法
患者鉴定、保护和采样.从其获得这些品系的患者被诊断为患有在早期青春期发作的失能程度的精神分裂症;根据Case Western医学院批准的方案,所有患者及其监护人均经过儿童精神科医生(RLF)的同意,对随后的品系指定不知情,并且没有任何研究人员获得患者标识符。
iPSC品系获得和GPC的产生.从患有幼年发病型精神分裂症(年龄为10至17岁)和对照(年龄为24至32岁)的患者获得皮肤的穿孔活检。使用可切除的floxed多顺反子hSTEMCCA慢病毒载体从患者样品中获得诱导型多能干细胞(iPSC)系。基于短串联重复序列(STR)的DNA指纹图谱用于确认iPSC身份,作为原始患者或对照供体的匹配。使用IlluminaOmni5 SNP阵列进行了另外的基因分型。然后使用先前描述的方案(Wang等人,"HumaniPSC-Derived Oligodendrocyte Progenitor Cells can Myelinate and Rescue aMouse Model of Congenital Hypomyelination,"Cell Stem Cell 12:252-264(2013),其特此以引用的方式整体并入)将iPSC驱动朝向神经胶质祖细胞(GPC)命运。在160-240DIV之间收获细胞,此时最通常表达双潜能GPC标志物PDGFαR/CD140a,而剩余为A2B5+/CD140a-星形胶质细胞。在神经胶质细胞分化过程中评估了所有iPSC品系的核型,以确保在此呈现的所有实验中使用的细胞的基因型稳定性(WiCell,Madison,WI的核型分析)。除品系51外,所有iPSC均显示正常核型,品系51被发现具有染色体13(先前异常地与幼年发病型精神分裂症相关)的平衡罗伯逊易位(Graw等人,"Isochromosome 13in a Patient withChildhood-Onset Schizophrenia,ADHD,and Motor Tic Disorder,"Mol Cytogenet 5:2(2012),其特此以引用的方式整体并入)。
宿主移植.在C3h背景(Taconic,Germantown,NY,USA)下,将纯合的shiverer小鼠(The Jackson Laboratory,Bar Harbor,ME)与纯合的rag2-无效免疫缺陷型小鼠杂交(Shinkai等人,"RAG2-Deficient Mice Lack Mature Lymphocytes Owing to Inabilityto Initiate V(D)J Rearrangement,"Cell 68:855-867(1992),其特此以引用的方式整体并入),以产生shi/shi x rag2-/-髓鞘缺乏的免疫缺陷型小鼠(Windrem等人,"NeonatalChimerization with Human Glial Progenitor Cells can both Remyelinate andRescue the Otherwise Lethally Hypomyelinated Shiverer Mouse,"Cell Stem Cell2:553-565(2008),其特此以引用的方式整体并入)。此外,rag1-/-正常有髓免疫缺陷型小鼠(B6.129S7-Rag1tm1Mom/J)从Jackson Laboratory获得,并在实验室中进行繁殖。将hiPSC来源的GPC的单细胞或小簇悬浮液离心至100,000个细胞/μl。如所描述的(Windrem等人,"Fetal and Adult Human Oligodendrocyte Progenitor Cell Isolates Myelinate theCongenitally Dysmyelinated Brain,"Nat.Med.10:93-97(2004),其特此以引用的方式整体并入),将新生儿通过冷却而麻醉,并且被在胼胝体中双侧移植有总计200,000个细胞。在3月龄时(shi/shi x rag2-/-)或在6-9个月完成行为测试后(仅rag1-/-),将移植的小鼠用戊巴比妥麻醉,然后用冷HBSS+/+、随后4%多聚甲醛(PF)灌注固定,在冷PF中固定后2小时。所有程序均已获得罗切斯特大学动物资源委员会(University of Rochester’s Committeeon Animal Resources.)的批准。
免疫标记.将脑冷冻保存,包埋在OCT(Tissue-Tek OCT,Sakura Finetek,Torrance,CA)中,并在低温恒温器上以矢状或冠状切片为20μm。用小鼠抗人核,克隆235-1以1:800(MAB1281,EMD Millipore,Billerica,MA)鉴定人细胞。将髓鞘碱性蛋白以1:25用大鼠抗MBP(Ab7349,Abcam,Cambridge,MA)标记,少突胶质细胞祖细胞用抗人特异性PDGF受体α(D13C6,
Figure BDA0002360174470000382
兔mAb 5241,1:300,Cell Signaling Technology)标记,少突胶质细胞用小鼠抗人特异性转铁蛋白(克隆HT1/13.6.3,08691231,MP Biomedicals)标记,星形胶质细胞用抗人特异性GFAP(1:1000的SMI 21,Covance,Princeton,NJ)标记。Alexa Fluor二级抗体山羊抗小鼠、大鼠和兔488、568、594和647以1:400使用(Life Technologies,Carlsbad,CA)。
所使用的抗体和稀释度
Figure BDA0002360174470000381
Figure BDA0002360174470000391
蛋白质印迹.通过FACS将源自CWRU22和CWRU51的GPC在DIV160-200下针对CD140a在冰上直接分选到具有蛋白酶抑制剂(Roche,183617025)的细胞裂解缓冲液(NP40,Invitrogen,FNN0021)中。通过在4℃下以12,000g离心5分钟除去不溶性级分,并使用BCATM蛋白质测定试剂盒(Thermo,23227)分析上清液的总蛋白质。通过SDS-PAGE电泳(XCellSureLock,Invitrogen,071210)在4%-12%梯度凝胶上分离10μg样品等分试样。将分离的蛋白质转移至PVDF膜,将其用5%乳粉封闭且顺序地与兔多克隆抗神经连接蛋白-1抗血清(Millipore,ABN161-1,1:1000)在4℃下孵育过夜,然后洗涤,并且然后依次与小鼠单克隆抗β肌动蛋白(Abcam,ab173838,1:5000)在室温下孵育1小时,和与抗小鼠和抗兔二级抗体(GE Healthcare,95107-322和95107-328,1:10000)在室温下孵育1小时。通过化学发光(Mix ECLTM试剂,GE Healthcare,RPN2236)通过X射线胶片曝光使膜可视化。用3组不同的细胞重复实验3次。
成像和定量组织学.为了对人核的分布作图或在低分辨率下拍摄髓鞘的总体分布,在Leica LMD 6500上对全脑切片进行了成像。在由Stereo Investigator软件(MBF,Williston,VT)驱动的Olympus BX51上进行了表型计数的成像。
星形胶质细胞形态测量.将Shiverer x rag2-无效小鼠在4.5个月大时处死,并评估其白质星形胶质细胞形态。通过Vibratome在Bregma-1.0mm处从对照(22、37和C27)或SCZ(51、164、193)hGPC移植的小鼠取得150μm厚的冠状切片,将其在小鼠抗hGFAP中孵育1周,然后在Alexa 568山羊抗小鼠中孵育4小时。将切片固定在载玻片上,并通过共聚焦(LeicaSP8)以100x成像。使用Neurolucida 360(MicroBrightfield,Inc.)追踪图像。以中间深度从胼胝体的中间选择单个星形胶质细胞,以捕获细胞及其整个过程。通过Neurolucida与Sholl分析来分析9个细胞/大脑(作为分别在中线外侧500、1000和1500μm处采集的3个细胞/切片和3个切片/脑)。对于CTRL和SCZ移植的组,针对从单独患者产生的三种品系中的每种评估了两个或三个脑,总计8个脑和72种示踪细胞/条件。为了进行Sholl分析,将以直径连续增加5μm放置的同心壳层置于细胞主体的中心上,并对细胞过程与壳层之间的相交数量进行计数(Sholl,DA.,"Dendritic Organization in the Neurons of the Visual andMotor Cortices of the Cat,"J.Anat.87:387-406(1953),其特此以引用的方式整体并入)。为了评估和定量描述星形胶质细胞纤维3D体系结构,如先前所述使用扇入分析(MBFBiosciences)用于研究树突状拓扑结构(Dang等人,"Formoterol,a Long-Acting Beta2Adrenergic Agonist,Improves Cognitive Function and Promotes DendriticComplexity in a Mouse Model of Down Syndrome,"Biol.Psychiatry 75:179-188(2014),其特此以引用的方式整体并入)。
髓鞘亮度分析.为了测量前脑髓鞘形成,基于髓鞘碱性蛋白(MBP)免疫荧光的测量的亮度分析。如所述,对均匀间隔且均匀采样的冠状切片进行MBP染色,并使用Nikon Ni-E和Nikon DS-Fi1相机以10x拍摄图像。选择胼胝体作为目标区域,并使用NIS Elementsv.4.5获得平均强度值。
行为.使用ANY-迷宫(Stoelting,Wood Dale,IL)或EthoVision(Noldus)对行为测试进行评分。行为测试在25周(针对前脉冲抑制)或30-36周(所有其他测试)开始,并且通常持续3周;开始年龄在实验与对照之间相匹配。每个细胞系移植并测试总计6-12只接受者小鼠,或者每组17-36只小鼠用于每种行为比较,雄性(M)和雌性(F)接受者大致相等平衡。对所有小鼠以相同的顺序进行测试,并且测试包括:1)高架十字迷宫。将每只测试小鼠放置在由2个闭合的臂和2个开放的臂组成的升高的十字形状装置的中央,面向开放的臂(Walf等人,"The Use of the Elevated Plus Maze as an Assay of Anxiety-Related Behaviorin Rodents,"Nat Protoc 2:322-328(2007),其特此以引用的方式整体并入)。对每只测试的小鼠进行录像,并对开放臂对闭合臂中花费的时间进行评分。2)三室社会选择.测试装置是分为带有连接门的三部分的有机玻璃外壳(Ugo Basile,Italy)(Yang等人,"AutomatedThree-Chambered Social Approach Task for Mice,"Curr Protoc Neurosci,第8章,第8单元,26(2011),其特此以引用的方式整体并入)。首先使每只测试小鼠适应中心室或5分钟。然后将外室的门移除,并且让测试小鼠探索所有三个室10分钟。然后引导测试小鼠返回中心室,并将相同性别和年龄的陌生小鼠放在一侧室中的圆柱形容器中,同时将空的圆柱形容器置于相对侧室中。然后记录小鼠10分钟,并关于与陌生小鼠相对于空隔室所花费的时间量进行评分。3)新物体识别.将每只测试小鼠在空的1ft2测试室中放置5分钟以适应环境,然后取出,并将两个相同的物体放置在所述室内。将小鼠返回带有直接背对它们放置的物体的室中,记录10分钟并对靠近每个物体所花费的时间进行评分(Bevins等人,"ObjectRecognition in Rats and Mice:A One-Trial Non-Matching-to-Sample Learning Taskto Study'Recognition Memory',"Nat Protoc 1:1306-1311(2006),其特此以引用的方式整体并入)。一小时后,重复实验,将两个物体之一替换为新物体。4)前脉冲抑制.将每只小鼠放置在更大隔离柜内的约束室内,所述隔离柜配备有声音、灯光和空气喷气发生器(SR-LAB,San Diego Instruments),并且如所述评估听觉PPI(Geyer等人,"Measurement ofStartle Response,Prepulse Inhibition,and Habituation,"Curr Protoc Neurosci,第8章,第8单元,7(2001),其特此以引用的方式整体并入)。5)蔗糖偏好.该实验总是最后进行,因为将小鼠单独圈养以测量液体消耗。蔗糖偏好由消耗的蔗糖水占所有消耗的水的百分比确定(Willner等人,"Reduction of Sucrose Preference by ChronicUnpredictable Mild Stress,and its Restoration by a Tricyclic Antidepressant,"Psychopharmacology(Berl)93:358-364(1987),其特此以引用的方式整体并入)。通过Hydropac(Lab Products,Inc.)将水递送到集落中,因此向笼中添加额外的含有蔗糖水的Hydropac,并且每天称重两包。
活动和睡眠评估.在黑暗阶段,在12/12光照/黑暗条件下使用红外相机在12”x12”x 13.5”丙烯酸室中视频记录单独圈养的小鼠连续72小时。通过Noldus Ethovision软件计算以米/小时行进的距离,并将跨8只CTRL小鼠(灰色填充,品系22和17)和10只SCZ小鼠(紫色填充,品系52)求平均值。此外,就每30分钟测量块不动性的连续秒数占总不动性(AnyMaze,Stoelting)的百分比,分析了光周期的阶段之间的转换(在光变化之前30分钟和之后30分钟测量),如所描述(McShane等人,"Characterization of the Bout Durationsof Sleep and Wakefulness,"J.Neurosci.Methods193:321-333(2010);Pack等人,"NovelMethod for High-Throughput Phenotyping of Sleep in Mice,"Physiol.Genomics 28:232-238(2007),其特此以引用的方式整体并入)。
统计分析.除非另有说明,否则分析在GraphPad Prism v.7中进行。如每个实验所述进行单独的测试。所有数据均呈现为平均值±SEM。
RNA-seq和生物信息学.首先如所描述基于细胞表面标志物CD140a(BDPharmingen),通过荧光活化细胞分选针对基因表达评估的hGPC(图3)(Sim等人,"CD140aIdentifies a Population of Highly Myelinogenic,Migration-Competent andEfficiently Engrafting Human Oligodendrocyte Progenitor Cells,"NatureBiotechnology 29:934-941(2011),其特此以引用的方式整体并入)。使用聚A-选择,从这些PDGFRα+hGPC中分离mRNA,所述PDGFRα+hGPC来源于从4名幼年发病型精神分裂症患者(SCZ品系编号8[n=4种独立的细胞制剂]、29[n=3]、51[n=7]和164[n=8]);以及3名人口统计学上相似的健康对照(CTR品系22[n=3]、37[n=4]和205[n=7])制备的iPSC。使用TruSeq RNA v2试剂盒制备了测序文库,并在Illumina HiSeq 2500平台上测序每个样品大约4500万个1x100 bp读段。通过使用Trimmomatic修剪3'末端的衔接子和低质量序列来对测序读段进行预处理(Bolger等人,"Trimmomatic:A Flexible Trimmer for IlluminaSequence Data,"Bioinformatics 30:2114-2120(2014),其特此以引用的方式整体并入)。使用FastQC(D'Antonio等人,"RAP:RNA-Seq Analysis Pipeline,A New Cloud-Based NGSWeb Application,"BMC Genomics 16:S3(2015),其特此以引用的方式整体并入)评估预处理之前和之后的读段质量,并且然后将预处理的读段与RefSeq NCBI参考人基因组版本GRCh38(Pruitt等人,"NCBI Reference Sequences(RefSeq):A Curated Non-RedundantSequence Database of Genomes,Transcripts and Proteins,"Nucleic Acids Research35:D61-65(2007),其特此以引用的方式整体并入)用Subread读段比对器(Liao等人,"TheSubread Aligner:Fast,Accurate and Scalable Read Mapping by Seed-and-Vote,"Nucleic Acids Research 41:e108(2013),其特此以引用的方式整体并入)使用汉明距离来打破多于一个最佳作图位置之间的联系来进行比对。使用featureCounts工具从BAM比对文件中获得原始基因计数(Liao等人,"Feature Counts:An Efficient General PurposeProgram for Assigning Sequence Reads to Genomic Features,"Bioinformatics 30:923-930(2014),其特此以引用的方式整体并入)。在消除整个数据集中在多于5个样品中计数<5个读段的低表达转录物后,使用RUVSeq(Risso等人,"Normalization of RNA-SeqData Using Factor Analysis of Control Genes or Samples,"Nat Biotechnol 32:896-902(2014),其特此以引用的方式整体并入)R Bioconductor软件包(Gentleman等人,"Bioconductor:Open Software Development for Computational Biology andBioinformatics,"Genome Biology 5:R80(2004),其特此以引用的方式整体并入)对计数数据进行归一化以解决方差。如RUVSeq手册中所述,在以下三步骤程序中完成归一化:1)通过edgeR(Robinson等人,"EdgeR:A Bioconductor Package for DifferentialExpression Analysis of Digital Gene Expression Data,"Bioinformatics 26:139-140(2010),其特此以引用的方式整体并入)和DESeq2(Love等人,"Moderated Estimationof Fold Change and Dispersion for RNA-Seq Data with DESeq2,"Genome Biology15:550(2014),其特此以引用的方式整体并入)R Bioconductor软件包的首过差异表达分析,采用FDR调整的P值>0.75的基因来确定计算机阴性对照基因,如通过两种方法所计算(大约7000个基因不受目标条件的影响);2)然后将阴性对照基因用于RUVSeq软件包的RUV函数中,以计算方差因子;以及3)使用原始计数执行用于确定疾病失调基因的两次过差异表达分析(5%FDR和log2倍数变化>1),通过在edgeR和DESeq2软件包中实施的多因子GLM模型调整RUV计算的方差因子。
通过过滤低表达的转录物的这种三步分析用于比较每个SCZ来源的hGPC细胞系与合并的CTR来源的hGPC。所得差异表达基因的4个单独列表的交集被视为SCZ失调基因的保守代表性列表。在每个比较的归一化程序中,如通过用本机R函数执行的主成分和层次聚类分析所确定,RUV计算的方差因子的数量对于品系29限制为1,对于品系8和164限制为3,并且对于品系51限制为7。为了获得所有4种SCZ hGPC品系中失调基因的平均倍数变化和P值,通过相同的过滤和分析工作流程进行合并的SCZ与合并的CTR品系的差异表达比较,其中方差因子的数量限制为9。
对于所有差异表达比较,在下游分析中仅使用在edgeR与DESeq2方法之间达成一致的显著结果。一旦相对于对照品系确立了所有4种SCZ hGPC品系中失调基因的个体倍数变化和P值,就进行合并的SCZ与合并的CTR品系的差异表达。对于每个SCZ细胞系,针对每个对照品系进行单独的DE比较,并且将DE基因的交集作为所述SCZ品系相对于对照群体的代表性列表。所报告的倍数变化和FDR调整的P值通过edgeR进行计算。使用ToppCluster(Kaimal等人,"ToppCluster:A Multiple Gene List Feature Analyzer forComparative Enrichment Clustering and Network-Based Dissection of BiologicalSystems,"Nucleic Acids Research 38:W96-102(2010),其特此以引用的方式整体并入)和Ingenuity Pathway Analysis(IPA)对SCZ失调基因的保守组进行了功能注释。在Gephi(Jacomy等人,"ForceAtlas2,A Continuous Graph Layout Algorithm for HandyNetwork Visualization Designed for the Gephi Software,"PloS one 9:e98679(2014),其特此以引用的方式整体并入)图形可视化软件中进行了网络可视化和功能注释结果的分析。
为了简化上述数据处理和分析例程的执行,开发了一组Python和R脚本。所有基因组数据已保存到GEO,保藏号为GSE86906。
实时PCR.通过TaqMan低密度阵列(TLDA)实时PCR测定通过RNA-seq鉴定的选定靶基因在SCZ和对照来源的GPC中的表达水平。原始数据在Applied Biosystems提供的EspressionSuite软件版本1.1中进行了分析,并导出到HTqPCR R程序包中(Chambers等人,"Highly Efficient Neural Conversion of Human ES and iPS cElls by DualInhibition of SMAD Signaling,"Nat Biotechnol 27:275-280(2009),其特此以引用的方式整体并入)以进行相对定量分析。
实施例1–从患有幼年发病型精神分裂症的患者产生iPSC
招募患有幼年发病型精神分裂症的患者以及没有已知精神疾病的健康年轻成年人对照,并从每个中获得皮肤活检样品。尽管年龄、性别、种族、诊断和用药史伴随着细胞系标识符,但除主治精神病医生外,研究人员无法获得患者标识符。然后从每个样品中分离成纤维细胞,从这些中,从8例患者样品(5例幼年发病型精神分裂症患者和3例健康性别匹配和年龄相似的对照)中获得11种新的独立hiPS细胞系(表1)。
表1
Figure BDA0002360174470000461
本研究中使用的患者和细胞系。总计11种新的独立iPS细胞系源自8名受试者;5名幼年发病型精神分裂症患者和3名健康对照;先前已公开了来自另外正常受试者的已确立的对照系(C27)(Wang等人,"Human iPSC-Derived Oligodendrocyte Progenitor Cellscan Myelinate and Rescue a Mouse Model of Congenital Hypomyelination,"CellStem Cell 12:252-264(2013);Chambers等人,"Highly Efficient Neural Conversionof Human ES and iPS cElls by Dual Inhibition of SMAD Signaling,"NatBiotechnol 27:275-280(2009),其特此以引用的方式整体并入)。如所述,将源自这些细胞的hGPC分配给各个实验。C,高加索人;AA,非洲裔美国人;NA,不可获得。
使用编码Oct4、Sox2、Klf4和c-Myc的可切除的floxed多顺反子hSTEMCCA慢病毒(Zou等人,"Establishment of Transgene-Free Induced Pluripotent Stem CellsReprogrammed from Human Stem Cells of Apical Papilla for NeuralDifferentiation,"Stem Cell Res Ther 3:43(2012);Somers等人,"Generation ofTransgene-Free Lung Disease-Specific Human Induced Pluripotent Stem CellsUsing a Single Excisable Lentiviral Stem Cell Cassette,"Stem Cells 28:1728-1740(2010),其特此以引用的方式整体)产生iPSC(Takahashi等人,“Induction ofPluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors,"Cell131:861-872(2007);Welstead等人,"Generating iPS Cells from MEFS Through ForcedExpression of Sox-2,Oct-4,c-Myc,and Klf4,"J Vis Exp(2008),其特此以引用的方式整体并入)。通过RNA测序使用全局转录组谱分析来评估多能基因表达以及对Oct4、Nanog和SSEA4进行免疫染色对所有品系进行初始表征并验证为多能。使用基于短串联重复序列(STR)的DNA指纹图谱,确认每种iPSC系的身份与亲本供体成纤维细胞相匹配。与这些实验同时,还对iPSC系分离株进行核型分析,以确认基因组完整性。还使用另外明确表征的hiPSC对照系C27(Chambers等人,"Highly Efficient Neural Conversion of Human ESand iPS Cells by Dual Inhibition of SMAD Signaling,"Nat Biotechnol 27:275-280(2009),其特此以引用的方式整体并入),以确保对照移植和分化数据与先前的研究一致(Wang等人,"Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinateand Rescue a Mouse Model of Congenital Hypomyelination,"Cell Stem Cell 12:252-264(2013),其特此以引用的方式整体并入)。总而言之,从源自5名SCZ患者的7种iPSC品系和源自4位对照受试者的5种iPSC品系评价hGPC制剂(表1)。然后如前所述指示iPSC细胞达到GPC命运(Wang等人,"Human iPSC-Derived Oligodendrocyte Progenitor CellsCan Myelinate and Rescue a Mouse Model of Congenital Hypomyelination,"CellStem Cell 12:252-264(2013),其特此以引用的方式整体并入),并且在神经胶质分化条件下体外(DIV)≥105天后,使用流式细胞术针对CD140a/PDGFαR对每个细胞群体的主要GPC表型进行了验证(图2)(Sim等人,"CD140a Identifies a Population of HighlyMyelinogenic,Migration-Competent and Efficiently Engrafting HumanOligodendrocyte Progenitor Cells,"Nature Biotechnology 29:934-941(2011),其特此以引用的方式整体并入)。为了在体内优化神经胶质分化,移植物限于大多数细胞为CD140a+GPC且其余为星形胶质细胞的那些制剂。
首先问到SCZ hGPC与野生型hGPC在髓鞘形成能力上是否不同。为此,将SCZ hGPC植入新生儿免疫缺陷型shiverer小鼠(rag2-/-x MBPshi/shi),一种缺乏髓鞘碱性蛋白(MBP)的先天髓鞘形成不足突变体(Rosenbluth,J.,"Central Myelin in the Mouse MutantShiverer,"J Comp Neurol 194:639-648(1980);Roach等人,"Characterization ofCloned cDNA Representing Rat Myelin Basic Protein:Absence of Expression inBrain of Shiverer Mutant Mice,"Cell 34:799-806(1983),其特此以引用的方式整体并入)。随着这些否则缺乏髓鞘的小鼠成熟,它们的移植hGPC分化为星形胶质细胞和髓鞘生成少突胶质细胞,从而产生针对各个患者来源的神经胶质嵌合的小鼠(Windrem等人,"Neonatal Chimerization with Human Glial Progenitor Cells Can Both Remyelinateand Rescue the Otherwise Lethally Hypomyelinated Shiverer Mouse,"Cell StemCell 2:553-565(2008);Windrem等人,"A Competitive Advantage by NeonatallyEngrafted Human Glial Progenitors Yields Mice Whose Brains are Chimeric forHuman Glia,"The Journal of Neuroscience:The Official Journal of the Societyfor Neuroscience 34:16153-16161(2014),其特此以引用的方式整体并入)。通过这种方式,建立了具有源自SCZ或对照受试者的患者特异性、在很大程度上人源化的前脑白质的小鼠(图3A-3D)。
实施例2–SCZ神经胶质嵌合小鼠均匀地髓鞘形成不足
首先注意到SCZ hGPC在新生儿移植后表现出异常的迁移模式。正常对照hGPC在定植皮质灰质之前始终扩增通过白质(图3A),如先前在胎儿组织-和hiPSC GPC-移植的shiverer小鼠中所指出的(Windrem等人,"Neonatal Chimerization with Human GlialProgenitor Cells Can Both Remyelinate and Rescue the Otherwise LethallyHypomyelinated Shiverer Mouse,"Cell Stem Cell 2:553-565(2008);Wang等人,"HumaniPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue aMouse Model of Congenital Hypomyelination,"Cell Stem Cell 12:252-264(2013),其特此以引用的方式整体并入)。相比之下,SCZ GPC优先早期迁移至shiverer小鼠的灰质中,大量遍历而不在胼胝体白质中停滞(n=4种来自4名不同患者的品系,各自具有>3只小鼠/患者,各自对比配对的对照)(图3B和图4)。这导致移植有SCZ GPC的shiverer的白质中的供体hGPC显著更少(图3H-3I和图4)。重要的是,这与如通过MBP免疫染色(图3C-3D和3E-3F)和髓鞘亮度(图3G)所反映的这些小鼠中的中央髓鞘形成显著减少相关。
由于SCZ hGPC移植的shiverer表现出不足的髓鞘形成,询问这是由于SCZ hGPC相对不能保留在白质中,还是由于髓鞘形成中的细胞内在衰竭。检查19周龄的SCZ和对照hGPC移植的shiverer小鼠,在SCZ hGPC移植的shiverer白质中发现与相同移植有对照hGPC的小鼠中相比(69,970±4,091/mm3;n=32;通过双尾t检验p<0.0001)显著更少的人核抗原(hNA)限定的供体来源的细胞(40,615±2,189x 103个hNA+细胞/mm3,n=18)(Fagerland等人,"Performance of five Two-Sample Location Tests For Skewed Distributionswith Unequal Variances,"Contemp Clin Trials 30:490-496(2009);Merman,D.W.,"ANote on Preliminary Tests of Equality of Variances,"Br J Math Stat Psychol57:173-181(2004),其特此以引用的方式整体并入)(图3H)。此外,共表达少突神经胶质细胞谱系标志物Olig2的hNA+供体细胞的数量相对于对照hGPC移植小鼠(46,139±2,858/mm3,n=17;p<0.002)在SCZ hGPC移植小鼠中类似地降低(33,619±2,435/mm3,n=26)(图3I)。在此基础上,接下来发现在SCZ hGPC嵌合体的胼胝体白质中,转铁蛋白限定的人少突神经胶质的密度类似地比对照hGPC嵌合体中更低(分别8,778±892.2/mm3,n=25;相对于17,754±2,023/mm3,n=17;p=0.0006,曼-惠特尼)(图3J)。这些数据表明,SCZ GPC不仅在其前脑白质的定殖中缺陷,而且在其少突胶质细胞分化中缺陷,从而导致中心髓鞘形成被遏制。总之,这些发现表明SCZ hGPC异常迁移,遍历而不是归巢至正在发育的白质,因此相对于正常GPC产生相对较差的白质移植、髓鞘形成不足和过早皮质进入。
实施例3–表现出发育迟缓的星形胶质细胞成熟的SCZ神经胶质嵌合小鼠
接下来询问过早进入灰质的SCZ hGPC在所述环境中是否替代分化为星形胶质细胞,或者它们是否宁可表现出谱系进展的损害,这也阻止其星形胶质细胞分化。使用物种特异性抗人GFAP抗体,在新生儿移植后19周将SCZ和对照hGPC移植的shiverer脑两者进行星形胶质细胞神经胶质纤维酸性蛋白(GFAP)免疫染色。发现来自移植的hGPC的星形胶质细胞成熟在SCZ hGPC移植的脑中明显不足(n=19,源自3种SCZ患者品系,并且n=12只对照小鼠,来自3个对照患者)(图5A-5B)。在胼胝体白质以及纹状体和皮质灰质中,SCZ hGPC进行的星形胶质细胞分化显著小于对照GPC,使得尽管所有对照hGPC前脑均表现出致密的人GFAP+星形胶质细胞成熟,但少得多的SCZ hGPC表现出hGFAP表达和星形胶质细胞表型(对照:胼胝体中6,616±672.3GFAP+细胞/mm3,n=12;SCZ:1,177±276.6个GFAP+胼胝体细胞/mm3,n=19;通过双向t检验p<0.0001(图5C)。与源自3名正常受试者的对照GPC移植的小鼠(n=12)相比,在源自评估的3名SCZ患者的所有小鼠(n=19)中始终观察到星形胶质细胞分化的这种缺陷(图5D),并且部分反映了在SCZ HGPC移植的脑中移植的人细胞中发育的GFAP+星形胶质细胞的比例较低(图5E)。此外,对个别星形胶质细胞形态的Sholl分析(Sholl,D.A.,"Dendritic Organization in the Neurons of the Visual and Motor Corticesof the Cat,"J.Anat.87:387-406(1953),其特此以引用的方式整体并入)(如在150μm切片中成像并在Neurolucida中重建)(图5J)揭示,SCZ hGPC嵌合体中的星形胶质细胞与其对照hGPC来源的对应物显著不同,较少初级突起(图5F)、较少近端分支(图5G)、更长的远端纤维(图5H)以及不太连贯的结构域结构(图5I)。因此,源自多个患者的SCZ hGPC在表型成熟中表现出常见缺陷,并且因此被证明缺乏星形胶质细胞分化以及髓鞘形成。
实施例4–SCZ hGPC显示出分化相关基因的细胞自主错误表达
为了更好地定义SCZ GPC移植小鼠中终末神经胶质分化的明显障碍的分子基础并定义所述缺陷的哪些方面可能是细胞自主的,使用RNA-seq分析来相对于对照来源的神经胶质的那些鉴定SCZ iPSC来源的GPC的差异表达基因。测序数据用于重建来自4名不同SCZ患者和3名对照患者的hGPC的转录模式。在体外154至242天范围内的时间点获得hGPC,并使用靶向CD140a的FACS对hGPC进行分选。使用5%FDR和2的倍数变化阈值,鉴定了总计118种mRNA,所述mRNA由CD140a分选的SCZ hGPC相对于其对照iPSC hGPC差异表达(图6A-6B)。在CD140a分选的SCZ hGPC中最大差异表达的那些基因中是许多神经胶质分化相关基因,特别是与早期少突神经胶质细胞和星形胶质细胞谱系进展相关的那些基因,所述基因相对于它们的正常对照在SCZ hGPC中均匀下调(图6C和6F)。这些包括关键GPC谱系转录因子OLIG1、OLIG2、SOX10和ZNF488的连贯集合,以及编码参与髓鞘形成的阶段调控蛋白的基因,如GPR17、UGT8、OMG和FA2H(图6G;关于详细的基因表达数据参见表2和图7)。
表2
Figure BDA0002360174470000521
Figure BDA0002360174470000531
Figure BDA0002360174470000541
Figure BDA0002360174470000551
Figure BDA0002360174470000561
表2.相对于对照GPC,SCZ中显著失调的基因。这些表列出相对于源自3种对照来源的iPSC的hGPC的合并的基因表达模式,由源自4名精神分裂症患者的hiPSC GPC差异表达的共享基因(log2倍数变化>1.0,FDR 5%,总共116种基因,红色,对比CTRL在SCZ中上调;绿色,在SCZ GPC中下调;颜色强度与差异失调成比例)。在此显示的倍数变化(FC)和FDR调整的p值从合并的精神分裂症来源的GPC细胞系与合并的对照来源的GPC细胞系的比较得出。失调的基因根据它们的细胞作用和定位分组为功能集合。
这些表达数据表明,SCZ hGPC移植的shiverer脑的髓鞘形成减少反映了来自移植的SCZ hGPC的异常少突胶质细胞分化。类似地,由于hGPC产生星形胶质细胞以及少突胶质细胞,因此RNA表达数据暗示星形胶质细胞分化的类似障碍。考虑到星形胶质细胞在突触发育和功能中的关键作用,后者的功能后果尤其深远;实际上,SCZ hGPC对星形胶质细胞分化的相对遏制表明神经胶质对精神分裂症中观察到的突触功能受损的促成作用。在这方面,对SCZ相关的失调hGPC基因的进一步功能分析将通道和受体活性以及突触传递鉴定为除神经胶质分化外受影响差异最大的功能(图6D-6E)。这些疾病相关的通道和突触相关的基因在SCZ hGPC中被大大下调,并且包括许多钾通道基因(图6D),包括KCND2、KCNJ9、KCNK9和KCNA3,以及与突触发育和功能相关的许多转录物(图6E和表2)。后者尤其包括NXPH1、NLGN3和LINGO1(表3),其失调先前一直与SCZ和自闭症谱系障碍相关的突触基因(Sudhof,TC,C.,"Neuroligins and Neurexins Link Synaptic Function to Cognitive Disease,"Nature455:903-911(2008);Andrews等人,"A Decade From Discovery to Therapy:Lingo-1,the Dark Horse in Neurological and Psychiatric Disorders,"NeurosciBiobehav Rev 56:97-114(2015);Fernandez-Enright等人,"Novel Implications ofLingo-1and its Signaling Partners in Schizophrenia,"Translational psychiatry4:e348(2014);Mackowiak等人,"Neuroligins,Synapse Balance and NeuropsychiatricDisorders,"Pharmacol Rep 66:830-835(2014);Salyakina等人,"Copy Number Variantsin Extended Autism Spectrum Disorder Families Reveal Candidates PotentiallyInvolved in Autism Risk,"PloS one 6:e26049(2011),其特此以引用的方式整体并入)。
表3
Figure BDA0002360174470000581
表3.来自4名不同患者的SCZ来源的hGPC的基因组分析揭示,相对于其正常对照,这些细胞中许多突触基因(包括神经配蛋白-3、神经外营养蛋白-1、LINGO1和DSCAML1)显著且共同下调(红色,对比CTRL在SCZ中上调;绿色,在SCZ GPC中下调;颜色强度与差异失调成比例)。其他突触相关基因(如SLITRK 2-5)在源自4名患者中的3名的GPC中显著并急剧下调(品系8、51和164)。品系08、29、51和164:精神分裂症患者来源的,不同患者;合并的对照,3种品系,每种品系来自不同的患者。示出各个SCZ品系数据以及合并的SCZ数据,以突出显示源自不同患者的SCZ GPC之间的共性和区别。Log2FC:表达的log2倍数变化。NS:不显著。
尽管这些后者基因的表达在源自所有4名SCZ患者的hGPC中受到遏制,但其他突触相关基因(如NRXN1、NLGN1、DSCAML1和SLITRK 2-5)在源自4名患者中的3名的hGPC中急剧下调,但在第四名中则没有(表3)。然而其他突触相关转录物如NXPH3和NTRNG2在一些患者中类似地下调,而在其他患者中则没有。TaqMan低密度阵列用于这些和其他失调的目标转录物的定量实时PCR验证,并且验证了这些分化和突触功能相关基因的显著差异下调(表4和图8)。
总之,这些数据表明神经胶质相关的突触基因表达在精神分裂症中的重要性,同时强调了可能在其失调中机制复杂的途径的异质性。这些数据还突出了以下观点:尽管早已认识到这些突触蛋白的神经元定位,但是尽管细胞类型特异性转录数据库已注意到这些基因的显著神经胶质表达,但尚未具体地论述它们通过神经胶质进行的合成及其突触贡献(Zhang等人,"An RNA-Sequencing Transcriptome and Splicing Database of Glia,Neurons,and Vascular Cells of the Cerebral Cortex,"The Journal ofNeuroscience:The Official Journal of the Society for Neuroscience 34:11929-11947(2014),其特此以引用的方式整体并入)。由于NRXN1(一种与精神分裂症密切相关的突触相关转录物)(Sudhof,T.C.,"Neuroligins and Neurexins Link Synaptic Functionto Cognitive Disease,"Nature 455:903-911(2008),其特此以引用的方式整体并入)是患者中最强烈且持续性下调的神经胶质基因之一,因此通过SCZ和对照hGPC的免疫印迹CD140a分选的不含神经元的分离株验证SCZ神经胶质对其表达的下调。蛋白质印迹揭示,神经连接蛋白-1确实由人GPC大量表达,并且神经连接蛋白-1蛋白质水平在其他匹配的SCZhGPC中明显较低(图9)。
表4
Figure BDA0002360174470000591
Figure BDA0002360174470000601
表4.通过TaqMan低密度阵列(TLDA)RT-qPCR对通过RNA-seq分析鉴定为在SCZ来源的GPC中失调的选定基因的表达进行了评估,并与对照GPC进行了比较。将表达数据归一化至GAPDH内源性对照。示出针对3种合并的对照GPC品系(n=10),从4种合并的SCZ GPC品系(n=19)计算的平均表达比率。通过配对t检验、然后通过Benjamini-Hochberg(BH)程序进行的多重检验校正,评估SCZ和对照GPC中表达的差异。示出BH-校正的P值(***=P<0.01,**=P<0.05,*=P<0.1)。对48种基因进行了评估。示出45种基因,不包括内源性对照和具有高比例的不确定和不可靠反应的基因LRFN1和NEUROD6。绝大多数基因在SCZ来源的GPC中被证实为失调,所述SCZ来源的GPC确实表现出分化、钾通道和突触功能相关基因的显著差异下调。TLDA数据的分析在Applied Biosciences提供的ExpressionSuite Software版本1.1中进行。
实施例5–SCZ神经胶质嵌合产生疾病特异性行为表型
接下来询问在移植有SCZ hGPC的小鼠中观察到的神经胶质分布和分化的改变是否可改变宿主小鼠的行为表型。特别地,假设一旦成熟,hGPC及其衍生的星形胶质细胞向发育中皮质的异常浸润可能影响皮质内的信息处理。如所述,过去的研究已经报告了星形胶质细胞网络对突触功效和可塑性的影响,以及原始人类神经胶质在这方面的差异能力(Oberheim等人,"Uniquely Hominid Features of Adult Human Astrocytes,"J.Neurosci.29:3276-3287(2009);Han等人,"Forebrain Engraftment by Human GlialProgenitor Cells Enhances Synaptic Plasticity and Learning in Adult Mice,"Cell Stem Cell 12:342-353(2013),其特此以引用的方式整体并入)。人神经胶质嵌合小鼠表现出较低的海马长时程增强(LTP)阈值并且学习更快速,在各种学习任务中具有优异表现,所述学习任务包括听觉恐惧条件作用、新物体和位置识别以及Barnes迷宫导航。在这些测试中的每一个中(但不在社交互动或原始感知的任何测试中),与同种异体移植或未移植的对照相比,人神经胶质嵌合体更快地获得新的因果联系(Han等人,"ForebrainEngraftment by Human Glial Progenitor Cells Enhances Synaptic Plasticity andLearning in Adult Mice,"Cell Stem Cell 12:342-353(2013),其特此以引用的方式整体并入)。因此,移植的人GPC及其子神经胶质可整合到发育中神经网络中并对其进行实质性修饰(Franklin等人,"Do Your Glial Cells Make You Clever?,"Cell Stem Cell 12:265-266(2013),其特此以引用的方式整体并入)。在此基础上,假定SCZ神经胶质嵌合体中观察到的正常神经胶质发育的破坏可产生学习和行为的疾病相关改变。为了解决这个问题,相对于移植有对照来源的GPC的匹配宿主,评估了免疫缺陷型、但另外新生移植有SCZGPC的野生型小鼠的行为表型。对于这些实验,使用正常有髓的宿主而不是shiverer小鼠,以便产生仅对人GPC和星形胶质细胞嵌合、而不对少突胶质细胞嵌合的小鼠,从而隔离对SCZ hGPC和星形胶质细胞的任何观察到的行为影响。
首先询问移植的神经胶质的精神分裂症起源是否影响前脉冲抑制(PPI)(临床精神分裂症及其动物模型的一种行为标志)(Ewing等人,"Evidence for Impaired SoundIntensity Processing During Prepulse Inhibition of the Startle Response in aRodent Developmental Disruption Model of Schizophrenia,"Journal ofPsychiatric Research(2013),其特此以引用的方式整体并入)。PPI反映CNS中感觉运动门控的协调,并且其减少可预测精神分裂症表型的各方面(Ivleva等人,"Smooth PursuitEye Movement,Prepulse Inhibition,and Auditory Paired Stimuli ProcessingEndophenotypes Across the schizophrenia-Bipolar Disorder Dimension,"Schizophrenia Bulletin(2013);Kohl等人,"Prepulse Inhibition in PsychiatricDisorders--Apart from Schizophrenia,"Journal of Psychiatric Research 47:445-452(2013),其特此以引用的方式整体并入)。发现在6个月龄进行评估时–能够可靠地评估rag1-/-小鼠的C57Bl/6背景品系的最近时间点,因为这些小鼠遭受过早的听觉丧失,其可能以其他方式降低听觉PPI–移植有SCZ hGPC的小鼠表现出显著降低的听觉前脉冲抑制(图10A),并且在所有前脉冲量下均如此。鉴于SCZ神经胶质嵌合对PPI的强大影响,接下来询问SCZ神经胶质嵌合是否可能与关于认知和社会化测试的行为变化相关。为此,在一系列行为测试中对SCZ和对照嵌合体进行了比较,所述行为测试包括:1)高架十字迷宫(焦虑的一种量度)(Walf等人,"The Use of the Elevated Plus Maze as an Assay of Anxiety-Related Behavior in Rodents,"Nat Protoc 2:322-328(2007),其特此以引用的方式整体并入);2)3室社交挑战(Yang等人,"Automated Three-Chambered Social ApproachTask for Mice,"Curr Protoc Neurosci,第8章,第8单元,26(2011),其特此以引用的方式整体并入);3)新物体识别(执行记忆的一种集中量度)(Bevins等人,"Object Recognitionin Rats and Mice:A One-Trial Non-Matching-to-Sample Learning Task to Study'Recognition Memory',"Nat Protoc 1:1306-1311(2006),其特此以引用的方式整体并入),以及4)对蔗糖水的偏好(用于快感缺乏的一种测试)(Barnes等人,"Anhedonia,Avolition,and Anticipatory Deficits:Assessments in Animals with Relevance tothe Negative Symptoms of Schizophrenia,"Eur Neuropsychopharmacol 24:744-758(2014);Willner等人,"Reduction of Sucrose Preference by Chronic UnpredictableMild Stress,and its Restoration by a Tricyclic Antidepressant,"Psychopharmacology(Berl)93:358-364(1987),其特此以引用的方式整体并入)。在每个中,比较了与3种SCZ或3种对照患者来源的品系之一嵌合的小鼠;每种品系均源自不同的患者。每个细胞系移植并测试6-12只之间的接受者小鼠,或者对于每种行为比较每组17-36只小鼠,雄性和雌性接受者通常相等平衡。在30-36周龄之间开始对这些动物进行测试,并且测试通常持续3周。在所测试的年龄范围内,SCZ GPC嵌合小鼠相对于其对照hGPC移植的对应物表现出许多显著行为差异。正常对照移植的小鼠显著更可能探索开放臂(水平区段),而SCZ小鼠花费大部分时间在闭合的迷宫臂(垂直区段)中,这与更大的焦虑一致(p=0.036,双尾t检验)。与其正常hGPC移植的对照相比,SCZ hGPC小鼠在高架十字迷宫中表现出对开放臂的更大避免(n=36小鼠/组,每组包括移植有来自3名患者中的每个的hGPC的12只小鼠;p=0.036,双尾t检验),从而表明SCZ hGPC小鼠在激发时容易出现较高的焦虑(图10B)。此外,SCZ hGPC小鼠显示出对蔗糖水的较少偏好),与相对快感缺乏一致(图10C),在3室社交测试中对陌生小鼠的兴趣较小(图10D),以及相对较差的新物体识别(图10E),从而反映出执行记忆的相对受损。
作为SCZ相关行为的另一度量,然后评估了人SCZ和CTRL神经胶质嵌合体的睡眠和昼夜活动模式,直接比较移植有SCZ(品系52)或匹配的对照(品系22)hGPC的小鼠。发现移植有SCZ GPC的小鼠比移植有正常hGPC的对照小鼠显著更活跃。如通过每小时移动的米数来测量,在72小时的录像过程中(Noldus Ethovision),SCZ hGPC嵌合小鼠与其正常hGPC移植的对照相比移动显著更多(双向ANOVA,F=48.35;p<0.0001)(图10F)。令人感兴趣的是,尽管SCZ相关的活动增加主要发生在夜间的清醒时段,但SCZ小鼠也表现出中断的睡眠模式,如通过不活动的周期的持续时间(EEG验证的睡眠的替代物)所测量(Pack等人,"NovelMethod for High-Throughput Phenotyping of Sleep in Mice,"Physiol.Genomics 28:232-238(2007);
McShane等人,"Characterization of the Bout Durations of Sleep andWakefulness,"J.Neurosci.Methods193:321-333(2010),其特此以引用的方式整体并入)(图10G)。在从黑暗到明亮的相变后的半小时内(当小鼠正常睡眠时),CTRL小鼠具有更连续、不间断的睡眠模式,平均睡眠周期为511.5±36.4秒(8.53分钟),而SCZ小鼠睡眠306.2±43.7秒,或每个周期5.1分钟(通过双向ANOVAp<0.01,采用Boneferroni事后t检验)。在正常白天过渡到睡眠期间,SCZ hGPC小鼠表现出的较短无活动平均时期表明SCZ hGPC嵌合破坏了正常的白天睡眠模式,同时增加了夜间活动。总之,这些结果表明,SCZ神经胶质嵌合足以在移植的接受者中产生更高的焦虑和恐惧,以及在社交、认知和睡眠模式方面的疾病相关缺陷(与人精神分裂症相关的所有特征)。
实施例1-7的讨论
这些数据表明细胞自主神经胶质病理学对幼年发病型精神分裂症的发生和发展的重要促成作用。在这些人神经胶质嵌合小鼠中,相对于年龄和性别匹配的对照iPSChGPC,精神分裂症来源的iPSC hGPC表现出异常的迁移,以及在中央白质中的移植不足。尽管确实保留在白质中的那些SCZ hGPC中的一部分分化为正常的髓鞘生成少突胶质细胞,但SCZ hGPC移植小鼠的白质中过早皮质涌入且因此供体来源的细胞的较低密度导致后者相对于移植有对照GPC的小鼠的明显髓鞘形成减少。因此,SCZ hGPC似乎遍历而不是归巢至新生的白质中,从而导致稀疏hGPC定殖,以及因此前脑髓鞘形成不足。SCZ hGPC的异常扩散模式表明,SCZ GPC可能不识别发育终止信号,所述信号使祖细胞在定殖于皮质套膜之前在假定白质中栖居并扩增,并且可能替代偏向于快速进入皮质灰质。鉴于精神分裂症患者的充分描述的髓鞘形成减少,在人SCZ胶质嵌合小鼠中的这些观察结果尤其令人感兴趣(Voineskos等人,"Oligodendrocyte Genes,White Matter Tract Integrity,andCognition in Schizophrenia,"Cereb Cortex 23:2044-2057(2013);Najjar等人,"Neuroinflammation and White Matter Pathology in Schizophrenia:SystematicReview,"Schizophrenia Research 161:102-112(2015);Davis等人,"White MatterChanges in Schizophrenia:Evidence for Myelin-Related Dysfunction,"Archives ofGeneral Psychiatry 60:443-456(2003);Sigmundsson等人,"Structural Abnormalitiesin Frontal,Temporal,and Limbic Regions and Interconnecting White MatterTracts in Schizophrenic Patients with Prominent Negative Symptoms,"Am JPsychiatry 158:234-243(2001),
其特此以引用的方式整体并入),在早期发作疾病中尤其如此(Gogtay等人,"Three-Dimensional Brain Growth Abnormalities in Childhood-Onset SchizophreniaVisualized by Using Tensor-Based Morphometry,"Proceedings of the NationalAcademy of Sciences of the United States of America 105:15979-15984(2008);Samartzis等人,"White Matter Alterations in Early Stages of Schizophrenia:ASystematic Review of Diffusion Tensor Imaging Studies,"J Neuroimaging 24:101-110(2014);Gogtay等人,"Childhood-Onset Schizophrenia:Insights FromNeuroimaging Studies,"Journal of the American Academy of Child and AdolescentPsychiatry 47:1120-1124(2008),其特此以引用的方式整体并入)。
鉴于SCZ hGPC的差异基因表达模式,这些解剖学观察结果尤其令人感兴趣,其揭示细胞不仅在早期神经胶质分化相关的转录物方面缺乏,而且在编码通常与转导活性依赖性信号相关的突触蛋白的基因中也缺乏(Sudhof,T.C.,"Neuroligins and NeurexinsLink Synaptic Function to Cognitive Disease,"Nature 455:903-911(2008),其特此以引用的方式整体并入)。总之,这些解剖和转录数据表明,SCZ hiPSC来源的GPC可能遭受受损的表型分化,这可能导致它们忽略了通常调控GPC扩增和成熟的局部神经元信号(Barres等人,"Proliferation of Oligodendrocyte Precursor Cells Depends onElectrical Activity in Axons,"Nature 361:258-260(1993),其特此以引用的方式整体并入);这可能导致它们快速通过白质进入上层皮层,并且因此降低了胼胝体GPC密度和SCZ嵌合shiverer小鼠的髓鞘形成减少(图3)。因此,SCZ hGPC嵌合体的髓鞘形成缺陷的出现是由于缺陷型少突胶质细胞分化和白质中剩余的SCZ hGPC的相对缺乏。此外,鉴于成熟少突胶质细胞对局部星形胶质细胞的代谢依赖性,来自SCZ hGPC的星形胶质细胞分化也受到损害,并且可能进一步促成SCZ神经胶质嵌合体的髓鞘形成减少(Amaral等人,"MetabolicAspects of Neuron-Oligodendrocyte-Astrocyte Interactions,"Front Endocrinol(Lausanne)4:54(2013);John,G.R.,"Investigation of Astrocyte-OligodendrocyteInteractions in Human Cultures,"Methods Mol Biol 814:401-414(2012),其特此以引用的方式整体并入)。
重要的是,SCZ hGPC的缺陷型星形胶质细胞成熟也可能对发育突触形成和回路形成以及髓鞘形成产生深远影响。神经连接性和突触发育两者均紧密依赖于星形胶质细胞指导(Clarke等人,"Glia Keep Synapse Distribution Under Wraps,"Cell 154:267-268(2013);Ullian等人,"Control of Synapse Number by Glia,"Science 291:657-661(2001),其特此以引用的方式整体并入),并且因此也依赖于星形胶质细胞出现和成熟的适当时机。结果,如在每种研究的SCZ品系中观察到的,SCZ hGPC对星形胶质细胞成熟的任何破坏都可能预期显著混淆SCZ hGPC所在的那些神经网络的构造和功能架构。此外,神经胶质祖细胞本身可能与局部神经元具有显著相互作用(Sakry等人,"OligodendrocytePrecursor Cells Modulate the Neuronal Network by Activity-DependentEctodomain Cleavage of Glial NG2,"PLoS Biol 12:e1001993(2014),其特此以引用的方式整体并入),以使得其功能障碍可能破坏局部神经元响应阈值和回路形成。
除了SCZ hGPC嵌合体中星形胶质细胞成熟不足的解剖学观察结果外,对SCZ来源的hGPC的基因组分析还揭示,源自所有4名SCZ患者的hGPC中许多突触基因(包括神经配蛋白-3、神经外营养蛋白-1和LINGO1)相对于其正常对照的显著下调(表3和表4;图8)。其他突触相关的基因,如神经连接蛋白-1和DSCAML1在源自3名患者(品系8、29和51)的GPC中显著且急剧下调,而在第四名(品系164)中则没有。类似地,SLITRK 2-5在源自3名患者(品系8、51和164)的GPC中显著且急剧下调,而在第4名(品系29)中则没有,这而是与LINGO1、DSCAML1以及若干神经连接蛋白和神经外营养蛋白的急剧下调相关;这些数据表明转录功能障碍的异质性可导致SCZ中涉及神经胶质的突触功能障碍的最终常见途径(表2和3)。这些转录物是突触稳定和功能的关键促成因素(Sudhof,T.C.,"Neuroligins and NeurexinsLink Synaptic Function to Cognitive Disease,"Nature 455:903-911(2008),其特此以引用的方式整体并入),但虽然通常被认为是神经元,也可由神经胶质细胞大量产生(Zhang等人,"An RNA-Sequencing Transcriptome and Splicing Database of Glia,Neurons,and Vascular Cells of the Cerebral Cortex,"J.Neurosci.34:11929-11947(2014),其特此以引用的方式整体并入)。SCZ hGPC对这些基因的相对下调可能反映这些细胞中成熟的神经胶质转录物的遏制,与其在神经胶质分化中的相对阻滞相一致。这进而可能导致SCZ hGPC及其来源的星形胶质细胞相对无法向其神经元配偶体提供这些关键蛋白,以及神经胶质祖细胞接受突触输入以响应于传入刺激的部分的潜在失败(De Biase等人,"Excitability and Synaptic Communication Within the Oligodendrocyte Lineage,"JNeurosci 30:3600-3611(2010);Lin等人,"Synaptic Signaling Between GABAergicInterneurons and Oligodendrocyte Precursor Cells in the Hippocampus,"Nat.Neurosci.7:24-32(2004),其特此以引用的方式整体并入)。因此,除了在没有正常星形胶质细胞支持的情况下形成的皮质连接体可能预期的结构破坏外,还可能预期由于SCZ神经胶质向正常突触维持和功能所需的关键星形胶质蛋白的突触间隙提供不良而使所形成网络的突触结构不稳定。
精神分裂症在遗传上是异质的,从而使得在与源自不同患者的GPC嵌合的动物中,解剖学和行为病理学可能显著不同。因此,至关重要的是,从用对照hiPSC GPC建立的嵌合体获得的结果在供体细胞的两个不同品系之间以及在接受者小鼠之间都是稳定的。因此,在解剖学上比较了从3名不同SCZ患者的hGPC建立的嵌合脑与从源自3名对照患者的GPC建立的那些。没有一个对照表现出SCZ hGPC嵌合体的避免白质扩散模式。类似地,白质的这种SCZ hGPC避免模式从未在其他研究中移植有任何胎儿组织来源的(Windrem等人,"Neonatal Chimerization with Human Glial Progenitor Cells Can Both Remyelinateand Rescue the Otherwise Lethally Hypomyelinated Shiverer Mouse,"Cell StemCell 2:553-565(2008);Windrem等人,"A Competitive Advantage by NeonatallyEngrafted Human Glial Progenitors Yields Mice Whose Brains are Chimeric forHuman Glia,"J.Neurosci.34:16153-16161(2014),其特此以引用的方式整体并入)或正常iPSC来源的(Wang等人,"Human iPSC-Derived Oligodendrocyte Progenitor Cells CanMyelinate and Rescue a Mouse Model of Congenital Hypomyelination,"Cell StemCell 12:252-264(2013),其特此以引用的方式整体并入)hGPC的数百种人神经胶质嵌合体中的任一种观察到。
除了它们的清晰解剖表型外,SCZ hGPC嵌合小鼠还表现出稳健的行为表型。相对于对照移植的小鼠,它们表现出显著减弱的前脉冲抑制、相对快感缺乏、过度焦虑、缺乏社交与避免同种个体以及昼夜活动和睡眠模式破坏。这些数据证明,SCZ神经胶质移植可沿行为轴在接受者小鼠中产生异常的行为表型,所述行为轴代表了人的精神分裂症行为病理学的选定方面。在该方面,尽管大量文献将GPC(De Biase等人,"Excitability and SynapticCommunication Within the Oligodendrocyte Lineage,"J Neurosci 30:3600-3611(2010);Bergles等人,"Neuron-Glia Synapses in the Brain,"Brain Res Rev 63:130-137(2010),其特此以引用的方式整体并入)以及星形胶质细胞(Kang等人,"Astrocyte-Mediated Potentiation of Inhibitory Synaptic Transmission,"NatureNeuroscience 1:683-692(1998);Araque等人,"Glutamate-Dependent AstrocyteModulation of Synaptic Transmission Between Cultured Hippocampal Neurons,"European J.Neurosci.10(1998),其特此以引用的方式整体并入)牵涉于突触可塑性和学习的调节中(Han等人,"Forebrain Engraftment by Human Glial Progenitor CellsEnhances Synaptic Plasticity and Learning in Adult Mice,"Cell Stem Cell 12:342-353(2013),其特此以引用的方式整体并入),但这些数据并未暗示在SCZ神经胶质嵌合对行为的调节中一种表型优于另一种;嵌合小鼠通过供体来源的人GPC及其来源的星形胶质细胞两者定殖。也就是说,在由源自多个独立患者的hGPC共有的SCZ神经胶质成熟中存在明显缺陷各自与髓鞘形成不足和星形胶质细胞分化破坏相关以及与所产生的SCZ GPC嵌合体的异常行为表型相结合的观察结果一起表明神经胶质病理学对精神分裂症的强烈因果关系促成作用。此外,这些数据突出疾病特异性人源化嵌合体在限定神经胶质和神经元功能障碍在神经系统疾病的发生和过程中的相应促成作用的潜力。
尽管本文已经详细示出和描述了优选实施方案,相关领域技术人员显而易见的是可在不脱离本发明的精神的情况下进行各种修改、添加、替换等,并因此,这些修改、添加、替换等被认为在如以下权利要求书中定义的本发明的范围内。

Claims (24)

1.一种治疗神经精神病症的方法,所述方法包括:
选择患有所述神经精神病症的受试者;以及
以有效治疗所述受试者中的所述神经精神病症的剂量向选择的受试者施用神经胶质祖细胞的制剂。
2.如权利要求1所述的方法,其中所述神经胶质祖细胞的制剂是人神经胶质祖细胞。
3.如权利要求1所述的方法,其中所述制剂的神经胶质祖细胞是A2B5+、CD140a+和/或CD44+
4.如权利要求1所述的方法,其中所述施用通过脑内、脑室内、鞘内或脑池内施用来进行。
5.根据权利要求1所述的方法,其中所述神经精神病症选自由以下组成的组:精神分裂症、自闭症谱系障碍和双相情感障碍。
6.根据权利要求5所述的方法,其中所述神经精神病症是精神分裂症。
7.如权利要求1所述的方法,其中所述受试者是人。
8.如权利要求1所述的方法,其中所述人神经胶质祖细胞能够产生星形胶质细胞。
9.如权利要求1所述的方法,其中所述人神经胶质祖细胞能够产生少突胶质细胞。
10.如权利要求1所述的方法,其中所述神经胶质祖细胞源自胎儿组织、胚胎干细胞或诱导型多能干细胞。
11.一种治疗神经精神病症的方法,所述方法包括:
选择患有所述神经精神病症的受试者;以及
以有效恢复所述选择的受试者的正常脑间质神经胶质K+水平并治疗所述神经精神病症的剂量向选择的受试者施用钾(K+)通道活化剂,条件是所述K+通道活化剂不是KCNQ通道活化剂。
12.如权利要求11所述的方法,其中所述选择的受试者具有失调的神经胶质K+通道功能,其特征在于缺陷型神经胶质K+传导性、缺陷型神经胶质K+摄取和/或缺陷型神经胶质K+通道表达。
13.如权利要求11所述的方法,其中所述K+通道活化剂增加神经胶质G蛋白活化的内向整流K+通道的活性。
14.如权利要求13所述的方法,其中所述K+通道活化剂选自由以下组成的组:氟吡汀、一氧二氮、氟烷、17β-雌二醇、二硫苏糖醇以及柚皮苷。
15.如权利要求11所述的方法,其中所述K+通道活化剂增加神经胶质K+电压门控通道的活性。
16.如权利要求15所述的方法,其中所述K+通道活化剂增加神经胶质A型电压门控K+通道的活性。
17.如权利要求16所述的方法,其中所述K+通道活化剂是N-[3,5-双(三氟甲基)苯基]-N'-[2,4-二溴-6-(2H-四唑-5-基)苯基]脲(NS5806)。
18.如权利要求15所述的方法,其中所述K+通道活化剂增加神经胶质延迟整流K+通道的活性。
19.如权利要求11所述的方法,其中所述K+通道活化剂增加神经胶质串联孔结构域K+通道的活性,包括由包括KCNK1和KCNK18在内的KCNK1至KCNK18编码的钾泄漏通道。
20.如权利要求19所述的方法,其中所述K+通道活化剂选自由以下组成的组:氟烷、异氟烷、2-卤代乙醇、卤代甲烷、七氟烷以及地氟烷。
21.如权利要求19所述的方法,其中所述施用通过吸入、皮下、肌内或静脉内施用来进行。
22.根据权利要求11所述的方法,其中所述神经精神病症选自由以下组成的组:精神分裂症、自闭症谱系障碍和双相情感障碍。
23.根据权利要求11所述的方法,其中所述神经精神病症是精神分裂症。
24.如权利要求11所述的方法,其中所述受试者是人。
CN201880045819.6A 2017-05-10 2018-05-10 治疗神经精神病症的方法 Pending CN110913689A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762504340P 2017-05-10 2017-05-10
US62/504,340 2017-05-10
PCT/US2018/031961 WO2018209022A2 (en) 2017-05-10 2018-05-10 Methods of treating neuropsychiatric disorders

Publications (1)

Publication Number Publication Date
CN110913689A true CN110913689A (zh) 2020-03-24

Family

ID=64105738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880045819.6A Pending CN110913689A (zh) 2017-05-10 2018-05-10 治疗神经精神病症的方法

Country Status (5)

Country Link
US (2) US11690876B2 (zh)
EP (1) EP3621434A4 (zh)
JP (2) JP7457505B2 (zh)
CN (1) CN110913689A (zh)
WO (1) WO2018209022A2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2283116B1 (en) 2008-05-08 2016-09-28 University Of Rochester Treating myelin diseases with optimized cell preparations
US9724432B2 (en) 2015-04-30 2017-08-08 University Of Rochester Non-human mammal model of human degenerative disorder, uses thereof, and method of treating human degenerative disorder
US11690876B2 (en) 2017-05-10 2023-07-04 University Of Rochester Methods of treating neuropsychiatric disorders
KR102237349B1 (ko) * 2019-10-23 2021-04-07 한국과학기술연구원 니코틴 중독 또는 금단 증상 예방 또는 치료용 약학 조성물
AU2021241643A1 (en) 2020-03-25 2022-11-24 Sana Biotechnology, Inc. Hypoimmunogenic neural cells for the treatment of neurological disorders and conditions
AU2022414087A1 (en) * 2021-12-14 2024-08-01 Trustees Of Tufts College Use of hyperpolarizing agents alone and in combination with other therapeutic agents for treating cancers including glioblastoma

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169902A1 (en) * 2003-12-15 2005-08-04 Borlongan Cesario V. Compositions and methods for enhancing neuroprotection via administration of stem cells and blood brain barrier permeabilizers
CN101115736A (zh) * 2005-03-14 2008-01-30 神经研究公司 钾通道调节剂和它们的医药用途
CN102065897A (zh) * 2008-04-29 2011-05-18 法奈科斯公司 通过调节细胞应激反应治疗阿茨海默病和相关病症的新治疗手段
CN102159535A (zh) * 2008-07-22 2011-08-17 特拉维夫大学拉莫特有限公司 钾离子通道调节剂及其用途
CN102666495A (zh) * 2009-11-25 2012-09-12 雅培制药有限公司 钾通道调节剂
CA2887569A1 (en) * 2012-10-11 2014-04-17 Brandeis University Treatment of amyotrophic lateral sclerosis
CN103764136A (zh) * 2011-02-18 2014-04-30 雀巢产品技术援助有限公司 用于治疗、减轻或预防动物神经系统损害的方法和组合物
US9724432B2 (en) * 2015-04-30 2017-08-08 University Of Rochester Non-human mammal model of human degenerative disorder, uses thereof, and method of treating human degenerative disorder

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753357A (en) 1970-12-14 1973-08-21 Ovitron Res Corp Method and apparatus for the preservation of cells and tissues
US4199022A (en) 1978-12-08 1980-04-22 The United States Of America As Represented By The Department Of Energy Method of freezing living cells and tissues with improved subsequent survival
US4559298A (en) 1982-11-23 1985-12-17 American National Red Cross Cryopreservation of biological materials in a non-frozen or vitreous state
US5026365A (en) 1987-04-29 1991-06-25 The University Of Massachusetts Method and apparatus for therapeutically treating immunological disorders and disease states
US5082670A (en) 1988-12-15 1992-01-21 The Regents Of The University Of California Method of grafting genetically modified cells to treat defects, disease or damage or the central nervous system
US5283058A (en) 1990-08-30 1994-02-01 The General Hospital Corporation Methods for inhibiting rejection of transplanted tissue
US6497872B1 (en) 1991-07-08 2002-12-24 Neurospheres Holdings Ltd. Neural transplantation using proliferated multipotent neural stem cells and their progeny
DK0669973T4 (da) 1992-10-28 2007-08-27 Neurospheres Holdings Ltd Biologiske faktorer og neurale stamceller
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US6245564B1 (en) 1997-01-23 2001-06-12 Cornell Research Foundation, Inc. Method for separating cells
US6361996B1 (en) 1997-05-07 2002-03-26 University Of Utah Research Foundation Neuroepithelial stem cells and glial-restricted intermediate precursors
US6235527B1 (en) 1997-11-29 2001-05-22 University Of Utah Research Foundation Lineage restricted glial precursors from the central nervous system
US6734015B1 (en) 1997-07-04 2004-05-11 University Of Utah Research Foundation Isolation of lineage-restricted neuronal precursors
US20020012653A1 (en) 1997-12-19 2002-01-31 Kevin Pang Bile duct progenitor cells and methods of use
US6812027B2 (en) 1998-03-25 2004-11-02 Cornell Research Foundation, Inc. Discovery, localization, harvest, and propagation of an FGF2 and BDNF-responsive population of neural and neuronal progenitor cells in the adult human forebrain
US8263402B1 (en) 1998-10-19 2012-09-11 Cornell Research Foundation, Inc. Method for isolating and purifying oligodendrocytes and oligodendrocyte progenitor cells
US7115256B1 (en) 1999-04-09 2006-10-03 Titan Pharmaceuticals, Inc. Methods of treating schizophrenia
US7468277B2 (en) 1999-12-23 2008-12-23 Cornell Research Foundation, Inc. Enriched preparation of human fetal multipotential neural stem cells
EP1287116A2 (en) 2000-05-17 2003-03-05 Geron Corporation Neural progenitor cell populations
US6852532B2 (en) 2001-03-21 2005-02-08 University Of Utah Research Foundation Method of isolating human neuroepithelial precursor cells from human fetal tissue
WO2002097069A1 (en) 2001-06-01 2002-12-05 University Of Sydney Purification of lineage-specific cells and uses therefor
US7150989B2 (en) 2001-08-10 2006-12-19 Cornell Research Foundation, Inc. Telomerase immortalized neural progenitor cells
AU2002325712C1 (en) 2001-08-30 2008-07-31 Stem Cell Therapeutics Inc. Differentiation of neural stem cells and therapeutic use theeof
WO2003061392A1 (en) 2002-01-23 2003-07-31 University Of Utah Research Foundation Pure populations of astrocyte restricted precursor cells and methods for isolation and use thereof
EP1480521B1 (en) 2002-02-15 2015-02-25 Cornell Research Foundation, Inc. Myelination of congenitally dysmyelinated forebrains using oligodendrocyte progenitor cells
US20040029269A1 (en) 2002-05-07 2004-02-12 Goldman Steven A Promoter-based isolation, purification, expansion, and transplantation of neuronal progenitor cells, oligodendrocyte progenitor cells, or neural stem cells from a population of embryonic stem cells
US7285415B2 (en) 2002-07-11 2007-10-23 The Regents Of The University Of California Oligodendrocytes derived from human embryonic stem cells for remyelination and treatment of spinal cord injury
JP2004129561A (ja) 2002-10-10 2004-04-30 Masahiro Sakanaka 神経系前駆細胞及びその作製方法
EP1587545A2 (en) 2003-01-13 2005-10-26 Mahendra S. Rao Persistent expression of candidate molecule in proliferating stem and progenitor cells for delivery of therapeutic products
US8642332B2 (en) 2003-03-07 2014-02-04 Cornell Research Foundation, Inc. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain
JP4966958B2 (ja) 2005-03-14 2012-07-04 ノイロサーチ アクティーゼルスカブ カリウムチャネル調節剤及び医療における使用
JP4428296B2 (ja) 2005-06-10 2010-03-10 セイコーエプソン株式会社 表示パネルモジュールおよび表示装置
US8048999B2 (en) 2005-12-13 2011-11-01 Kyoto University Nuclear reprogramming factor
EP3400800A1 (en) 2007-01-16 2018-11-14 University Of Rochester Non-human animals with human-glial chimeric brains
CN101743306A (zh) 2007-03-23 2010-06-16 威斯康星校友研究基金会 体细胞重编程
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
US8227247B2 (en) 2007-12-20 2012-07-24 Wisconsin Alumni Research Foundation Method of generating myelinating oligodendrocytes
EP2283116B1 (en) 2008-05-08 2016-09-28 University Of Rochester Treating myelin diseases with optimized cell preparations
CA2738866A1 (en) * 2008-08-06 2010-02-11 Bionevia Pharmaceuticals, Inc. Flupirtine hydrochloride maleic acid cocrystal
WO2010017562A2 (en) 2008-08-08 2010-02-11 Mayo Foundation For Medical Education And Research Induced pluripotent stem cells
WO2010075500A1 (en) 2008-12-23 2010-07-01 Stemcells California, Inc Target populations of oligodendrocyte precursor cells and methods of making and using same
WO2010108126A2 (en) 2009-03-19 2010-09-23 Fate Therapeutics, Inc. Reprogramming compositions and methods of using the same
EP3269803A3 (en) 2009-11-12 2018-04-25 Q Therapeutics, Inc. Methods and compositions for expanding, identifying, characterizing and enhancing potency of mammalian-derived glial restricted progenitor cells
US20120276070A1 (en) 2009-11-17 2012-11-01 Vitro Diagnositics, Inc. Induced Pluripotent Stem Cells and Related Methods
JP5827220B2 (ja) 2010-01-22 2015-12-02 国立大学法人京都大学 人工多能性幹細胞の樹立効率改善方法
US8206669B2 (en) 2010-07-27 2012-06-26 Air Products And Chemicals, Inc. Method and apparatus for treating a sour gas
CN103429734A (zh) 2010-10-26 2013-12-04 卡斯西部储备大学 用于产生神经胶质细胞的群体的分化方法
ES2732938T3 (es) 2011-01-12 2019-11-26 Oligogen Inc Método de cultivo para obtener y conservar una población pura o enriquecida de células madre neurales y/o de células progenitoras neurales de mamífero que son propensas a diferenciarse en células del linaje de oligodendrocitos in vitro
US10450546B2 (en) 2013-02-06 2019-10-22 University Of Rochester Induced pluripotent cell-derived oligodendrocyte progenitor cells for the treatment of myelin disorders
US10779519B2 (en) 2014-05-13 2020-09-22 University Of Rochester Human glial chimeric model for drug candidate assessment in human gliotrophic viral infections and progressive multifocal encephalopathy
WO2017152081A1 (en) 2016-03-03 2017-09-08 New York Stem Cell Foundation, Inc. Microglia derived from pluripotent stem cells and methods of making and using the same
US11690876B2 (en) 2017-05-10 2023-07-04 University Of Rochester Methods of treating neuropsychiatric disorders
KR20210056324A (ko) 2018-06-18 2021-05-18 유니버시티 오브 로체스터 정신분열증 및 다른 신경정신장애를 치료하는 방법
CN112654366A (zh) 2018-06-21 2021-04-13 罗切斯特大学 治疗或抑制亨廷顿病发作的方法
CA3122289A1 (en) 2018-12-11 2020-06-18 University Of Rochester Methods of treating schizophrenia and other neuropsychiatric disorders
CA3144687A1 (en) 2019-07-18 2021-01-21 Steven A. Goldman Cell-type selective immunoprotection of cells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169902A1 (en) * 2003-12-15 2005-08-04 Borlongan Cesario V. Compositions and methods for enhancing neuroprotection via administration of stem cells and blood brain barrier permeabilizers
CN101115736A (zh) * 2005-03-14 2008-01-30 神经研究公司 钾通道调节剂和它们的医药用途
CN102065897A (zh) * 2008-04-29 2011-05-18 法奈科斯公司 通过调节细胞应激反应治疗阿茨海默病和相关病症的新治疗手段
CN102159535A (zh) * 2008-07-22 2011-08-17 特拉维夫大学拉莫特有限公司 钾离子通道调节剂及其用途
CN102666495A (zh) * 2009-11-25 2012-09-12 雅培制药有限公司 钾通道调节剂
CN103764136A (zh) * 2011-02-18 2014-04-30 雀巢产品技术援助有限公司 用于治疗、减轻或预防动物神经系统损害的方法和组合物
CA2887569A1 (en) * 2012-10-11 2014-04-17 Brandeis University Treatment of amyotrophic lateral sclerosis
US9724432B2 (en) * 2015-04-30 2017-08-08 University Of Rochester Non-human mammal model of human degenerative disorder, uses thereof, and method of treating human degenerative disorder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
卡尔森: "《生理心理学》", 31 January 2017 *
汪清: "《大学生心理成长导航》", 30 September 1992 *

Also Published As

Publication number Publication date
US20200197445A1 (en) 2020-06-25
JP2020519599A (ja) 2020-07-02
US20230293594A1 (en) 2023-09-21
US11690876B2 (en) 2023-07-04
EP3621434A4 (en) 2021-03-31
JP2024075650A (ja) 2024-06-04
EP3621434A2 (en) 2020-03-18
WO2018209022A2 (en) 2018-11-15
JP7457505B2 (ja) 2024-03-28
WO2018209022A3 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
CN110913689A (zh) 治疗神经精神病症的方法
Peruzzotti-Jametti et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation
US20220273728A1 (en) Treating myelin diseases with optimized cell preparations
Windrem et al. Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia
Samata et al. Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1
Tyson et al. GABAergic interneuron transplants to study development and treat disease
Sim et al. CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells
Kikuchi et al. Idiopathic Parkinson's disease patient‐derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains
Kulbatski et al. Oligodendrocytes and radial glia derived from adult rat spinal cord progenitors: morphological and immunocytochemical characterization
Quadrato et al. Modulation of GABAA receptor signaling increases neurogenesis and suppresses anxiety through NFATc4
Kimura et al. HMGB2 expression is associated with transition from a quiescent to an activated state of adult neural stem cells
Noble et al. Precursor cell biology and the development of astrocyte transplantation therapies: lessons from spinal cord injury
Welliver et al. Muscarinic receptor M3R signaling prevents efficient remyelination by human and mouse oligodendrocyte progenitor cells
Luo et al. Promoting survival, migration, and integration of transplanted Schwann cells by over‐expressing polysialic acid
Li et al. Regulation and effects of neurotrophic factors after neural stem cell transplantation in a transgenic mouse model of Alzheimer disease
Ryu et al. Therapeutic efficacy of neuregulin 1-expressing human adipose-derived mesenchymal stem cells for ischemic stroke
Ardhanareeswaran et al. The use of stem cells to study autism spectrum disorder
Ko et al. A high-efficiency induction of dopaminergic cells from human umbilical mesenchymal stem cells for the treatment of hemiparkinsonian rats
Liu et al. BMSCs differentiated into neurons, astrocytes and oligodendrocytes alleviated the inflammation and demyelination of EAE mice models
Gordon et al. New therapy options for amyotrophic lateral sclerosis
Xu et al. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats
Gupta et al. Restrained dendritic growth of adult-born granule cells innervated by transplanted fetal GABAergic interneurons in mice with temporal lobe epilepsy
Jansch et al. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly
Mirabella et al. Transient Maternal IL-6 boosts glutamatergic synapses and disrupts hippocampal connectivity in the offspring
US20240150709A1 (en) Compositions and methods for making parasympathetic neurons

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination