CN110912630A - Airspace spectrum sensing method based on multiple antennas - Google Patents
Airspace spectrum sensing method based on multiple antennas Download PDFInfo
- Publication number
- CN110912630A CN110912630A CN201911173825.2A CN201911173825A CN110912630A CN 110912630 A CN110912630 A CN 110912630A CN 201911173825 A CN201911173825 A CN 201911173825A CN 110912630 A CN110912630 A CN 110912630A
- Authority
- CN
- China
- Prior art keywords
- spectrum
- signal
- user
- matrix
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000001149 cognitive effect Effects 0.000 claims abstract description 17
- 238000004891 communication Methods 0.000 claims abstract description 12
- 238000005516 engineering process Methods 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000003491 array Methods 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 238000005311 autocorrelation function Methods 0.000 claims description 2
- 230000004927 fusion Effects 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 2
- 238000011161 development Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明属于认知无线电技术领域,具体涉及一种基于多天线的空域频谱感知方法。本发明是将空间角度维信息作为一种新的频谱机会的空域频谱感知方法,估计出信号空间角度维的到达角,通过波束形成技术,就可以避开主用户通信方向或对主用户通信方向进行零陷天线波束设计,这样,认知用户就可以在同一频率、同一时间甚至同一地点,避开主用户的通信方向,通过不同的空间角度进行频谱接入,从而增加系统容量,提高频谱利用率。本发明将空间角度维信息作为一种新的频谱机会,检测空间角度维的频谱空穴,同传统维度的频谱感知算法相比,虽增加了实现复杂度,但增加了系统容量,提高了频谱利用率。The invention belongs to the technical field of cognitive radio, and in particular relates to a multi-antenna-based spatial spectrum sensing method. The present invention uses the spatial angle dimension information as a new spectrum opportunity space domain spectrum sensing method, estimates the arrival angle of the signal space angle dimension, and can avoid the communication direction of the main user or the communication direction of the main user through the beam forming technology Carry out null-notch antenna beam design, so that cognitive users can access the spectrum through different spatial angles at the same frequency, at the same time or even at the same place, avoiding the communication direction of the main user, thereby increasing system capacity and improving spectrum utilization Rate. Compared with the spectrum sensing algorithm of the traditional dimension, the present invention takes the spatial angle dimension information as a new spectrum opportunity, and detects the spectrum holes in the spatial angle dimension. utilization.
Description
技术领域technical field
本发明属于认知无线电技术领域,具体涉及一种基于多天线的空域频谱感知方法。The invention belongs to the technical field of cognitive radio, and in particular relates to a multi-antenna-based spatial spectrum sensing method.
背景技术Background technique
随着无线通信的不断发展,频谱资源变得越来越稀缺,这严重制约了通信技术的发展。要推动无线通信的发展,就需要提升频谱资源的利用率,其中认知无线电(CR)技术就是一种解决频谱短缺,提高频谱资源利用率的有效方法。CR的基本思想是频谱共享或频谱复用,它的一个特点是在不对授权主用户(PU)通信产生干扰的前提下,允许未授权认知用户(CU)机会的接入授权频段。为实现这一目的,认知用户(CU)系统必须不断地检测授权主用户(PU)是否正在占用某授权频段,也即频谱感知过程。With the continuous development of wireless communication, spectrum resources are becoming more and more scarce, which seriously restricts the development of communication technology. To promote the development of wireless communication, it is necessary to improve the utilization rate of spectrum resources. Among them, cognitive radio (CR) technology is an effective method to solve the shortage of spectrum and improve the utilization rate of spectrum resources. The basic idea of CR is spectrum sharing or spectrum reuse, and one of its features is to allow unlicensed cognitive users (CUs) opportunities to access licensed frequency bands without interfering with licensed primary user (PU) communications. To achieve this, a Cognitive User (CU) system must constantly detect whether a Licensed Primary User (PU) is occupying a licensed frequency band, a process known as spectrum sensing.
传统维度的频谱感知算法虽然在一定程度提高了检测性能,但主要在频率维度、时间维度和地理纬度进行检测,频谱开发能力有限。另一方面,多天线技术的飞速发展和5G大规模天线阵的应用使移动终端和基站具备了角度识别能力,促进了角度维频谱资源的开发。如果估计出信号空间角度维的到达角,通过波束形成技术,就可以避开主用户(PU)通信方向或对主用户通信方向进行零陷天线波束设计,这样,认知用户就可以在同一频率、同一时间甚至同一地点,避开主用户的通信方向,通过不同的空间角度进行频谱接入,从而增加系统容量,提高频谱利用率。Although the spectrum sensing algorithm of the traditional dimension improves the detection performance to a certain extent, it mainly detects in the frequency dimension, time dimension and geographic latitude, and the spectrum development capability is limited. On the other hand, the rapid development of multi-antenna technology and the application of 5G large-scale antenna arrays enable mobile terminals and base stations to have the ability to identify angles, which promotes the development of angle-dimensional spectrum resources. If the angle of arrival of the signal space angle dimension is estimated, through beamforming technology, it is possible to avoid the primary user (PU) communication direction or design a null antenna beam for the primary user communication direction, so that the cognitive user can operate at the same frequency. , At the same time or even the same place, avoiding the communication direction of the main user, and performing spectrum access through different spatial angles, thereby increasing system capacity and improving spectrum utilization.
发明内容SUMMARY OF THE INVENTION
本发明提出一种基于多天线的空域频谱感知方法,目的在于增加系统容量,提高频谱利用率。The present invention proposes a multi-antenna-based spatial spectrum sensing method, aiming at increasing system capacity and improving spectrum utilization.
本发明的技术方案为:The technical scheme of the present invention is:
对于载有多天线的认知用户(CU),天线为各向同性的M元均匀圆形阵列(UniformCircular Array,UCA)。假设空间中有D(D≤M)个远场主用户信号从不同方向入射到M元均匀圆形阵列,将均匀圆形阵列的圆心作为参考点,则到达阵元j的第i个主用户信号为:For a cognitive user (CU) carrying multiple antennas, the antennas are isotropic M-element uniform circular arrays (Uniform Circular Array, UCA). Assuming that there are D (D≤M) far-field main user signals incident on the M-element uniform circular array from different directions in the space, and the center of the uniform circular array is taken as the reference point, then the i-th main user of array element j is reached. The signal is:
其中,hij表示第i个主用户信号si(t)和第j个接收天线之间的信道增益,zi(t)为第i个主用户信号的复包络,包含信号信息,为空间信号的载波。由于信号满足窄带假设条件,则zi(t-τ)≈zi(t),经过传播延迟τ后的信号可以表示为:where h ij represents the channel gain between the i-th primary user signal si (t) and the j-th receiving antenna, zi (t) is the complex envelope of the i-th primary user signal, including signal information, is the carrier of the space signal. Since the signal satisfies the narrowband assumption, then zi (t-τ) ≈zi (t), the signal after the propagation delay τ can be expressed as:
则理想情况下第j个阵元接收到的信号可以表示为:Ideally, the signal received by the jth array element can be expressed as:
其中,τij为第i个主用户信号到达阵元j时相对于参考点的时延,wj(t)为阵元j上方差为σ2的加性高斯白噪声。Among them, τ ij is the time delay relative to the reference point when the i-th primary user signal arrives at the array element j, and w j (t) is the additive white Gaussian noise with a variance of σ 2 on the array element j.
本发明的空域频谱感知方法包括以下步骤:The spatial spectrum sensing method of the present invention comprises the following steps:
S1、阵列天线对接收信号进行N次采样,则认知用户每个阵列天线接收到的信号表示为:S1. The array antenna samples the received signal N times, then the signal received by each array antenna of the cognitive user is expressed as:
其中,为信号传播时延造成的相位差,i=1,2,...,D表示第i个主用户信号,j=1,2,…,M表示第j个接收天线,θi和分别表示第i个主用户信号的方位角和仰角,n=0,1,…,N-1表示第n个采样序号,λ表示波长、表示载波角频率;令M个阵列天线的接收数据构成一个M×N维矩阵:in, is the phase difference caused by the signal propagation delay, i=1,2,...,D represents the i-th primary user signal, j=1,2,...,M represents the j-th receiving antenna, θ i and respectively represent the azimuth and elevation of the i-th primary user signal, n=0,1,...,N-1 represents the n-th sampling number, λ represents the wavelength, represents the carrier angular frequency; let the received data of M array antennas form an M×N-dimensional matrix:
其中,表示主用户和认知用户接收天线的信道增益矩阵,‘.*’表示矩阵点乘,为信号矩阵,为阵列流行, 为加性噪声矩阵;in, Represents the channel gain matrix of the receiving antennas of the primary user and the cognitive user, '.*' represents the matrix dot product, is the signal matrix, Pop for arrays, is the additive noise matrix;
S2、计算样本协方差矩阵 S2. Calculate the sample covariance matrix
通过采样序列得到估计的自相关函数然后对进行特征值分解得到M个特征值及其对应的特征向量,从而获得的最大特征值迹以及特征值几何平均 Obtain the estimated autocorrelation function from the sampling sequence then right Perform eigenvalue decomposition to obtain M eigenvalues and their corresponding eigenvectors, thereby obtaining The largest eigenvalue of trace and the geometric mean of the eigenvalues
S3、取α∈[0,1],计算融合检测算法的检验统计量T:S3. Take α∈[0,1], and calculate the test statistic T of the fusion detection algorithm:
根据随机矩阵理论得到虚警概率Pfa:According to the random matrix theory, the false alarm probability P fa is obtained:
其中,σ2为高斯白噪声w(n)的方差、 FTW(·)为一阶Tracy-Widom分布;根据虚警概率Pfa,确定判决门限γ:in, σ 2 is the variance of white Gaussian noise w(n), F TW (·) is the first-order Tracy-Widom distribution; according to the false alarm probability P fa , the decision threshold γ is determined:
其中为一阶Tracy-Widom分布的逆;in is the inverse of the first-order Tracy-Widom distribution;
S4、将统计量T与判决门限γ进行比较:S4. Compare the statistic T with the decision threshold γ:
若检验统计量T大于判决门限γ,则该子带被占用,主用户存在,进入步骤S5;If the test statistic T is greater than the decision threshold γ, then the subband is occupied, the primary user exists, and the process goes to step S5;
若检验统计量T小于判决门限γ,则该子带未被占用,主用户不存在,认知用户直接进行频谱接入;If the test statistic T is less than the decision threshold γ, the subband is not occupied, the primary user does not exist, and the cognitive user directly performs spectrum access;
S5、估计主信号数将步骤b中得到的样本协方差矩阵的特征值从小到大排列,即λ1≥…≥λD>λD+1≥…≥λM,V=[q1,q2,...,qM]是对应的特征值,计算γk=λk/λk+1,k=1,2,…,M-1,取主信号数的估计值为使得γk=max(γ1,γ2,…,γM-1),k=1,2,…,M-1时的k值;S5. Estimate the number of main signals Arrange the eigenvalues of the sample covariance matrix obtained in step b from small to large, that is, λ 1 ≥...≥λ D >λ D+1 ≥...≥λ M , V=[q 1 ,q 2 ,..., q M ] is the corresponding eigenvalue, calculate γ k =λ k /λ k+1 , k=1,2,...,M-1, take the estimated value of the number of main signals In order to make γ k =max(γ 1 ,γ 2 ,...,γ M-1 ), the k value when k=1,2,...,M-1;
S6、对主信号进行DOA估计:根据主信号数估计值构造维的噪声子空间按照计算Music空间谱,并搜索Music空间,找出个峰值,从而得到主信号DOA估计值,认知用户通过波束成形技术对避开主用户通信方向进行频谱接入。S6. Perform DOA estimation on the main signal: estimate the value according to the number of main signals structure dimensional noise subspace according to Calculate the Music space spectrum, and search the Music space to find out A peak value is obtained to obtain an estimated DOA value of the main signal, and the cognitive user uses the beamforming technology to perform spectrum access to the communication direction that avoids the main user.
本发明的有益效果是:将空间角度维信息作为一种新的频谱机会,检测空间角度维的频谱空穴,同传统维度的频谱感知算法相比,虽增加了实现复杂度,但增加了系统容量,提高了频谱利用率。The beneficial effect of the present invention is that the spatial angle dimension information is used as a new spectrum opportunity to detect the spectrum holes in the spatial angle dimension. Compared with the spectrum sensing algorithm of the traditional dimension, although the implementation complexity is increased, the system capacity and improve spectrum utilization.
附图说明Description of drawings
图1为本发明的空域频谱感知方案系统图;Fig. 1 is the system diagram of the spatial spectrum sensing scheme of the present invention;
图2为均匀圆阵(UCA)模型图;Fig. 2 is a uniform circular array (UCA) model diagram;
图3和图5分别为高斯信道和瑞丽衰落信道下,α∈[0.1,1]时检测概率VS信噪比示意图;Figure 3 and Figure 5 are schematic diagrams of detection probability VS signal-to-noise ratio when α∈[0.1,1] under Gaussian channel and Rayleigh fading channel respectively;
图4和图6分别为高斯信道和瑞丽衰落信道下,DOA估计均方根误差(RMSE)VS信噪比示意图。FIG. 4 and FIG. 6 are schematic diagrams of DOA estimation root mean square error (RMSE) VS signal-to-noise ratio under Gaussian channel and Rayleigh fading channel, respectively.
具体实施方式Detailed ways
发明内容部分已经对本发明的技术方案做了详细描述,下面结合仿真示例,说明本发明的实用性。The technical solution of the present invention has been described in detail in the section of the content of the invention, and the practicability of the present invention is described below in conjunction with a simulation example.
假设只有一个频点为f的主用户(D=1),发射信号为QPSK信号,均匀圆阵阵列天线数为M=16,采样点数N=10000。Assuming that there is only one primary user (D=1) with frequency f, the transmit signal is a QPSK signal, the number of uniform circular array antennas is M=16, and the number of sampling points is N=10000.
首先,对比了不同α值时检测方案的信噪比和检测概率的关系。仿真结果如图所示。在该仿真中,设置虚警概率Pfa=0.01,SNR=-24:2:4,不同信噪比(SNR)下蒙特卡洛仿真次数为2000次。由图3和图5可以看出,当α∈[0.1,1]时,α的值越小,本方案所用检测方案的检测性能越好;当α=0.5和α=1时,本方案所用检测方案分别等价于ME-GM(maximum-eigenvalue-geometric-mean)算法和MET(maximum-eigenvalue-trace)算法,且从图3和图5可以看出,当α≤0.4时,本方案所用检测方案检测性能优于ME-GM算法和MET算法。First, the relationship between the signal-to-noise ratio and detection probability of the detection scheme with different α values is compared. The simulation results are shown in Fig. In this simulation, set the false alarm probability P fa =0.01, SNR = -24:2:4, and the number of Monte Carlo simulations under different signal-to-noise ratios (SNR) is 2000 times. It can be seen from Figure 3 and Figure 5 that when α∈[0.1,1], the smaller the value of α, the better the detection performance of the detection scheme used in this scheme; when α=0.5 and α=1, the detection performance of this scheme used in this scheme is better. The detection scheme is equivalent to the ME-GM (maximum-eigenvalue-geometric-mean) algorithm and the MET (maximum-eigenvalue-trace) algorithm respectively, and it can be seen from Figure 3 and Figure 5 that when α≤0.4, this scheme uses The detection performance of the detection scheme is better than that of the ME-GM algorithm and the MET algorithm.
对比不同信噪比下的DOA估计的均方根误差(RMSE),设置主信号方向为(θ,φ)=(125°,80.1°),SNR=-22:2:4,不同信噪比(SNR)下蒙特卡洛仿真次数为200次。由图4和图6可以看出,当SNR≥-15dB时,DOA估计的均方根误差RMSE<1°,所用DOA估计方案能较准确的估计出主用户信号的到达方向,且均匀圆阵能实现360°全方位估计。估计出主用户信号的DOA后,使用波束成形技术,认知用户可避开主用户接入方向进行频谱接入,提高频谱利用率,这也佐证了本方案可以提高频谱利用率,增大系统容量。Compare the root mean square error (RMSE) of DOA estimation under different signal-to-noise ratios, set the main signal direction as (θ, φ)=(125°, 80.1°), SNR=-22:2:4, different signal-to-noise ratios The number of Monte Carlo simulations under (SNR) is 200. It can be seen from Figure 4 and Figure 6 that when SNR≥-15dB, the root mean square error RMSE of DOA estimation is less than 1°, the DOA estimation scheme used can more accurately estimate the direction of arrival of the main user signal, and the uniform circular array 360° omnidirectional estimation can be achieved. After estimating the DOA of the primary user signal, using beamforming technology, cognitive users can avoid the access direction of the primary user for spectrum access and improve spectrum utilization, which also proves that this solution can improve spectrum utilization and increase system size. capacity.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911173825.2A CN110912630B (en) | 2019-11-26 | 2019-11-26 | A Multi-Antenna-Based Spatial Spectrum Sensing Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911173825.2A CN110912630B (en) | 2019-11-26 | 2019-11-26 | A Multi-Antenna-Based Spatial Spectrum Sensing Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110912630A true CN110912630A (en) | 2020-03-24 |
CN110912630B CN110912630B (en) | 2021-05-14 |
Family
ID=69819469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911173825.2A Active CN110912630B (en) | 2019-11-26 | 2019-11-26 | A Multi-Antenna-Based Spatial Spectrum Sensing Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110912630B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111835392A (en) * | 2020-07-13 | 2020-10-27 | 电子科技大学 | A Multi-antenna Spatial Domain Spectrum Sensing Method Based on Noncircular Signals |
CN112073131A (en) * | 2020-07-29 | 2020-12-11 | 北京邮电大学 | Spectrum sensing method based on phase difference distribution curve analytic expression and related equipment |
CN112073130A (en) * | 2020-07-29 | 2020-12-11 | 北京邮电大学 | Frequency spectrum sensing method based on three-point shaping of phase difference distribution curve and related equipment |
CN113037408A (en) * | 2021-03-09 | 2021-06-25 | 中国人民解放军军事科学院国防科技创新研究院 | Signal sensing method and device combining space arrival angle and frequency spectrum two-dimensional |
CN115567128A (en) * | 2022-09-29 | 2023-01-03 | 中山大学 | Frequency spectrum sensing method based on array space spectrum |
WO2023213081A1 (en) * | 2022-05-05 | 2023-11-09 | 中兴通讯股份有限公司 | Spectrum sensing method, electronic device and computer readable storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101808334A (en) * | 2010-03-15 | 2010-08-18 | 北京科技大学 | Spectrum perception method for detecting angle of arrival of authorized user in cognitive radio |
CN102291186A (en) * | 2011-07-06 | 2011-12-21 | 电子科技大学 | Frequency spectrum perceiving method based on estimation of signal arrival direction |
JP2015087132A (en) * | 2013-10-28 | 2015-05-07 | 株式会社東芝 | Signal detection device and signal detection method |
CN109600181A (en) * | 2018-12-17 | 2019-04-09 | 电子科技大学 | A kind of frequency spectrum sensing method for multiple antennas |
-
2019
- 2019-11-26 CN CN201911173825.2A patent/CN110912630B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101808334A (en) * | 2010-03-15 | 2010-08-18 | 北京科技大学 | Spectrum perception method for detecting angle of arrival of authorized user in cognitive radio |
CN102291186A (en) * | 2011-07-06 | 2011-12-21 | 电子科技大学 | Frequency spectrum perceiving method based on estimation of signal arrival direction |
JP2015087132A (en) * | 2013-10-28 | 2015-05-07 | 株式会社東芝 | Signal detection device and signal detection method |
CN109600181A (en) * | 2018-12-17 | 2019-04-09 | 电子科技大学 | A kind of frequency spectrum sensing method for multiple antennas |
Non-Patent Citations (2)
Title |
---|
M. G. POROZANTZIDOU等: "Azimuth and elevation angles estimation using 2-D MUSIC algorithm with an L-shape antenna", 《2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM》 * |
赵文静等: "基于特征值的频谱感知融合算法", 《通信学报》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111835392A (en) * | 2020-07-13 | 2020-10-27 | 电子科技大学 | A Multi-antenna Spatial Domain Spectrum Sensing Method Based on Noncircular Signals |
CN111835392B (en) * | 2020-07-13 | 2023-04-28 | 电子科技大学 | A multi-antenna spatial domain spectrum sensing method based on non-circular signals |
CN112073131A (en) * | 2020-07-29 | 2020-12-11 | 北京邮电大学 | Spectrum sensing method based on phase difference distribution curve analytic expression and related equipment |
CN112073130A (en) * | 2020-07-29 | 2020-12-11 | 北京邮电大学 | Frequency spectrum sensing method based on three-point shaping of phase difference distribution curve and related equipment |
CN113037408A (en) * | 2021-03-09 | 2021-06-25 | 中国人民解放军军事科学院国防科技创新研究院 | Signal sensing method and device combining space arrival angle and frequency spectrum two-dimensional |
CN113037408B (en) * | 2021-03-09 | 2022-04-08 | 中国人民解放军军事科学院国防科技创新研究院 | Signal sensing method and device combining space arrival angle and frequency spectrum two-dimensional |
WO2023213081A1 (en) * | 2022-05-05 | 2023-11-09 | 中兴通讯股份有限公司 | Spectrum sensing method, electronic device and computer readable storage medium |
CN115567128A (en) * | 2022-09-29 | 2023-01-03 | 中山大学 | Frequency spectrum sensing method based on array space spectrum |
Also Published As
Publication number | Publication date |
---|---|
CN110912630B (en) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110912630B (en) | A Multi-Antenna-Based Spatial Spectrum Sensing Method | |
Guo et al. | Indoor localization by fusing a group of fingerprints based on random forests | |
Costa et al. | Multiple-input multiple-output channel models: theory and practice | |
CN101420758B (en) | A Method Against Imitation Primary User Attack in Cognitive Radio | |
CN108646213B (en) | A direct wave AOA determination method in indoor multipath environment | |
CN108463978B (en) | Method that the symbol sent by millimeter wave channel is decoded, receiver | |
CN107864105A (en) | Improved MUSIC algorithms scatter clustering model channel parameter estimation method | |
CN110149134A (en) | A kind of more feed satellite interference suppressing methods based on frequency spectrum perception | |
WO2016155502A1 (en) | Method and device for performing interference coordination in wireless communication system | |
CN111835392B (en) | A multi-antenna spatial domain spectrum sensing method based on non-circular signals | |
Gu et al. | Compressive sampling optimization for user signal parameter estimation in massive MIMO systems | |
Thazeen et al. | An efficient reconfigurable optimal source detection and beam allocation algorithm for signal subspace factorization | |
Lin et al. | Parameter estimation of frequency-hopping signal in UCA based on deep learning and spatial time–frequency distribution | |
Jin et al. | Spectrum sensing using multiple large eigenvalues and its performance analysis | |
Widianto et al. | Performance evaluation of an IoT device using a cognitive radio in GLRT approach | |
Mollah et al. | Position aware 60 GHz mmwave beamforming for V2V communications utilizing deep learning | |
Vesa et al. | Direction-of-Arrival estimation for uniform sensor arrays | |
CN109039490A (en) | A kind of MIMO-OFDM system frequency-empty two-dimensional spectrum air cavity detection method | |
Wang et al. | DOA estimation of smart antenna signal based on MUSIC algorithm | |
Nxumalo et al. | Direction of arrival (DOA) estimation for smart antennas in weather impacted environments | |
Latha et al. | Beamformed sensing using dominant doa in cognitive mmwave network | |
CN113037408B (en) | Signal sensing method and device combining space arrival angle and frequency spectrum two-dimensional | |
Ding et al. | A Method of Spectrum Sensing Based on Multiple Antennas | |
Latha et al. | Beamformed Energy Detection in the Presence of an Interferer for Cognitive mmWave Network | |
US11108457B2 (en) | Spatial energy rank detector and high-speed alarm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |