CN110900575A - 一种具有自动导引功能的并联智能机器人及其导引方法 - Google Patents
一种具有自动导引功能的并联智能机器人及其导引方法 Download PDFInfo
- Publication number
- CN110900575A CN110900575A CN201911252436.9A CN201911252436A CN110900575A CN 110900575 A CN110900575 A CN 110900575A CN 201911252436 A CN201911252436 A CN 201911252436A CN 110900575 A CN110900575 A CN 110900575A
- Authority
- CN
- China
- Prior art keywords
- robot
- fpga
- parallel
- walking
- intelligent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000004891 communication Methods 0.000 claims abstract description 35
- 230000007246 mechanism Effects 0.000 claims abstract description 17
- 238000001514 detection method Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 12
- 230000006698 induction Effects 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 9
- 238000007781 pre-processing Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 230000007261 regionalization Effects 0.000 claims description 2
- 230000011218 segmentation Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 24
- 230000000295 complement effect Effects 0.000 abstract description 2
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 2
- 150000004706 metal oxides Chemical class 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 238000007726 management method Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 9
- 208000033126 Colobomatous microphthalmia Diseases 0.000 description 8
- 208000034367 isolated with coloboma microphthalmia Diseases 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/003—Programme-controlled manipulators having parallel kinematics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
- B25J9/1666—Avoiding collision or forbidden zones
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种具有自动导引功能的并联智能机器人及其导引方法,包括:并联机器人、智能行走系统;智能行走系统与机器人管理服务器连接通信;智能行走系统包括行走车架,行走车架上安装有并联机器人、FPGA导引控制器、以及与FPGA导引控制器电连接的驱动机构、超声波传感器发送器、CMOS摄像头、RFID通讯模块;机器人管理服务器包括机器人调度系统,机器人调度系统与FPGA导引控制器通过RFID通讯模块无线连接,用于根据预设的工作区域地图和定位信息计算运行轨迹,并向FPGA导引控制器发送运行轨迹和作业数据。本发明提高了并联智能机器人的工作范围和柔性,使应用自动导引功能的并联智能机器人装配生产线大大提升了柔性灵活性,适应小批量、多品种装配生产需要。
Description
技术领域
本发明涉及智能机器人行走导引技术领域,特别涉及一种具有自动导引功能的并联智能机器人及其导引方法。
背景技术
随着互连网技术和人工智能技术的日益成熟,智能机器人开始出现在焊接、冶金、化工、军事、生产装配等具有危害、危险或重复性高的工作场所,取代人进行部分工作。应用相应的智能机器人进入生产、工作场地,替代人进行危险、危害、重复性高、空间小,人员难以作业等等的环境下,利用智能机器人和智能生产设备,通过人与机器的协调或机器与机器的协调,完成生产任务。
其中,并联机器人已成为制造业目前的研究热点之一,与串联机器人相比,并联构型具有刚度好、精度高、多自由度等特点,众多制造企业都看好其在制造领域的应用前景。目前,应用于生产现场的并联智能机器人基本处于固定或半固定状态,在机器人的控制过程中,环境因素、机器人传感器误差均会影响并联机器人末端执行器的工作范围和柔性,大大限制了智能机器人的工作能力。且部分运用在生产线上的具有可移动功能的机器人往往需要配置单独的一套工控系统,体积大,功率消耗大,且导引控制操作复杂,十分不利于生产现场集中管控。
因此,如何提供一种智能导引、可灵活调度、多工位施工的可行走并联智能机器人及其导引方法是本领域技术人员亟待解决的技术问题。
发明内容
本发明针对上述研究现状和存在的问题,提供了一种具有自动导引功能的并联智能机器人及其导引方法,将固定和半固定的传统生产线智能机器人工作模式,提升为智能导引、可灵活调度、多工位施工的可行走智能机器人,使应用本自动导引功能的并联智能机器人装配生产线大大提升了柔性灵活性。
本发明提供的一种具有自动导引功能的并联智能机器人,包括并联机器人、智能行走系统;所述智能行走系统与机器人管理服务器连接通信;
所述智能行走系统包括行走车架,所述行走车架上安装有所述并联机器人、FPGA导引控制器、以及与所述FPGA导引控制器电连接的驱动机构、超声波传感器发送器、CMOS摄像头、RFID通讯模块;所述超声波传感器发送器与设置在工作区域边界位置的超声波传感器接收器感应通信,所述超声波传感器接收器接收到检测信息通过现场CAN总线发送至所述机器人管理服务器,所述机器人管理服务器计算出定位信息;所述CMOS摄像头检测机器人工位的标志图像和/或景物图像,并发送至所述FPGA导引控制器,与作业数据比对进行工位判断;
所述机器人管理服务器包括机器人调度系统,所述机器人调度系统与所述FPGA导引控制器通过RFID通讯模块无线连接,用于根据预设的工作区域地图和所述定位信息计算运行轨迹,并向所述FPGA导引控制器发送运行轨迹和作业数据。
本发明利用工作区域设置的超声波传感器接收器感应并联机器人的位置信息,能够实时准确掌握位于工作区域内的各个并联机器人的定位信息,所有工位都有特定的位置地址编码,所有自动导引功能的并联智能机器人都设定了唯一的身份信息代码和通讯代码,由特定的通讯协议规定并识别,定位信息中包含所述位置地址编码、唯一的身份信息代码和通讯代码,降低了生产线的整体控制复杂度,能够对多台并联机器人的行走路径进行准确导引。
优选的,还包括设置在所述行走车架上的蓄电池,用于向所述智能行走系统和所述并联机器人供电;所述工作区域设有与所述蓄电池相匹配的充电电源插座;所述并联机器人在待机状态下,所述机器人管理服务器根据所述定位信息计算所述并联机器人到所述充电电源插座的路径,并发送至所述FPGA导引控制器,控制驱动机构行进至所述充电电源插座位置自动充电。
优选的,还包括位于所述行走车架上,且与所述FPGA导引控制器电连接的激光传感器,用于检测安装于行走路径终端的反射板,并将检测信号通过所述RFID通讯模块无线发送至所述机器人管理服务器,测定所述并联机器人的行进距离。
优选的,还包括位于所述行走车架上,且与所述FPGA导引控制器电连接的红外传感器,用于检测障碍物,红外传感器将检测到的信号发送至FPGA导引控制器,FPGA导引控制器按红外传感器检测到障碍物距离,调整行车轨迹,所述FPGA导引控制器根据障碍物检测信号控制所述驱动机构减速、避让或停止。
优选的,还包括位于所述行走车架上,且与所述FPGA导引控制器电连接的磁感应传感器,用于检测预埋在行走路径上的磁钉,所述FPGA导引控制器根据障碍物检测信号进行行走距离误差校准。
优选的,同一个所述行走车架上的所述并联机器人与所述RFID通讯模块相对应,所述机器人管理服务器同时向若干所述RFID通讯模块发送与其相对应的并联机器人的运行轨迹和作业数据。
优选的,所述驱动机构包括设置在所述行走车架上的行走轮、轮驱动电机,所述FPGA导引控制器通过串口与所述轮驱动电机连接,并控制所述行走轮的转动,包括对左、右轮驱动电机进行差速控制,实现行走车架的转弯。
优选的,所述轮驱动电机上设置有编码器,所述编码器与所述FPGA导引控制器电连接,用于计算并反馈行走轮的行走状态数据。
优选的,还包括位于所述行走车架上,且与所述FPGA导引控制器电连接的加速度传感器和陀螺仪,加速度传感器用于检测行走过程中的加/减速度情况,通过陀螺仪检测车架转弯角度,并且均通过RFID通讯模块无线发送至机器人管理服务器。
本发明还提供了一种并联智能机器人自动导引方法,包括如下步骤:
设置在工作区域边界位置的超声波传感器接收器感应行走车架上的超声波传感器发送器发送的超声波信号,并发送定位信息至机器人管理服务器;
机器人管理服务器根据预设的工作区域地图和所述定位信息计算运行轨迹,并向FPGA导引控制器无线发送运行轨迹和作业数据;
FPGA导引控制器根据运行轨迹控制驱动机构的运动;
FPGA导引控制器获取CMOS摄像头检测的机器人工位的标志图像和/或景物图像,将图象信号发送至FPGA导引控制器,与作业数据比对进行工位判断,并将判断结果无线反馈至机器人管理服务器。
优选的,在并联机器人向目标工位自动导引过程中,FPGA导引控制器接收到标志图像和/或景物图像,即原始图像,后,进行图像处理,包括:
采用中值滤波算法对原始图像进行预处理,包括去噪、灰度变化处理、锐化;
利用拉普拉斯高斯算法对经过预处理的图像进行分割,根据图象的用途分别采用边缘化算法、阀值算法、区域算法对图象进行区域化分割处理;
经过区域化分割处理后的图形信息,进行图形特征提取,包括颜色、纹理、外部几何特征;
将提取的图形特征应用识别算法,通过模板匹配、特征匹配、结构匹配,完成图象目标识别。
本发明相较现有技术具有以下有益效果:
本发明是采用多种传感器数据融合技术,实现智能并联机器人在工作区域范围内的定位、运行路径规划、导引、行走、行走过程中的行走路径偏离检测、距离检测、防撞监测等,控制导引智能机器按指令要求及规划路径,快捷、安全、准确抵达目的位置。所有上述功能,均由智能行走系统、机器人管理服务器和各类传感器:电位器、编码器、陀螺仪、激光传感器、红外传感器、超声波传感器、CMOS相机等,进行信息融合后实现的,本发明不仅可以大大提高了并联智能机器人的工作范围和柔性,将固定和半固定的传统生产线智能机器人工作模式,提升为智能导引、可灵活调度、多工位施工的可行走智能机器人,而且减小了行走系统的体积,降低了并联智能机器人的功率消耗,使应用本自动导引功能的并联智能机器人装配生产线大大提升了柔性灵活性,适应小批量、多品种装配生产需要。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本发明提供的具有自动导引功能的并联智能机器人的总体结构示意图;
图2是本发明提供的智能行走系统结构示意图;
图3是本发明提供的充电电源插座和机械导引插头的对接示意图;
图4是本发明提供的FPGA导引控制器及外围电路结构图;
图5是本发明提供的FPGA导引控制器的控制原理图;
图6是本发明提供的具有自动导引功能的并联智能机器人工作区域示意图;
图7是本发明提供的FPGA导引控制器与CMOS摄像头电路连接示意图;
图8是本发明提供的CMOS摄像头组成框图;
图9是本发明提供的FPGA导引控制器进行图像处理的流程图;
图10是本发明提供的FPGA导引控制器的通讯接口图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见说明书附图1,本发明实施例公开了一种具有自动导引功能的并联智能机器人,包括并联机器人1、智能行走系统;智能行走系统与机器人管理服务器10连接通信。在常规的并联机器人下方,安装了可以按命令,在工作场所范围内,按行走轨迹导引,智能定位、循迹检测校正的智能行走系统,组成一种具有自动导引功能的并联智能机器人。
智能行走系统包括行走车架2,行走车架2上安装有并联机器人1、FPGA导引控制器3、以及与FPGA导引控制器3电连接的驱动机构、超声波传感器发送器5、CMOS摄像头6、RFID通讯模块7;超声波传感器发送器5与设置在工作区域边界位置的超声波传感器接收器50感应通信,超声波传感器接收器50接收到检测信息通过现场CAN总线发送至机器人管理服务器10,机器人管理服务器10计算出定位信息;CMOS摄像头6检测机器人工位的标志图像和/或景物图像,并发送至FPGA导引控制器3,与作业数据比对进行工位判断;
机器人管理服务器3包括机器人调度系统,机器人调度系统与FPGA导引控制器3通过RFID通讯模块7无线连接,用于根据预设的工作区域地图和定位信息计算运行轨迹,并向FPGA导引控制器3发送运行轨迹和作业数据。本发明是通过加装智能行走系统,将常规并联机器人由固定或半固定工作模式,提升为灵活移动的机器人,可大大提高生产线的柔性。同一个行走车架上的并联机器人与RFID通讯模块7相对应,机器人管理服务器同时向若干RFID通讯模块7发送与其相对应的并联机器人的运行轨迹和作业数据。
参见说明书附图2,智能行走系统安装在行走车架2上,行走车架2上设置有智能并联机器人安装座14,并联智能机器人通过底座与安装座14连接。行走车架2上还安装有行走轮41、轮驱动电机42、减速器43、蓄电池8、编码器44、陀螺仪9、激光传感器11、红外传感器12、磁感应传感器13等传感器。其中,
蓄电池8作为行走系统和并联机器人1用电电源,可以在工位和充电区域进行充电,工位和充电区域均设有与蓄电池相匹配的充电电源插座160,行走车架2前端设有机械导引插头16;当行走车架2进入工位或充电区域时,行车路径都为直进。
行走车架2进入工位的同时进行机械导引插头16和充电电源插座160对接,每个工位都有地面导引导轨和限位挡块,可确保行走车架2进入的位置精度和方向无误;并联机器人1在待机状态下,机器人管理服务器10根据定位信息计算并联机器人到充电区域的充电电源插座160的路径,并发送至FPGA导引控制器3,控制驱动机构行进至充电电源插座160位置自动充电。
本发明所涉及自动导引功能的并联机器人,其工作区域、路径和位置均已确定,所有工位和待机位所设充电电源插座160位置和方向均按照本自动导引功能的并联机器人机械导引插头16位置设计,机械导引插头16端部具有插头导引锥面162,充电电源插座160端部具有与插头导引锥面162相匹配的插座导引喇叭口161,能够满足二者的顺利插接通电。自动导引功能的并联机器人抵达要求位置后,同时,机械导引插头16插入所处位置充电电源插座160,无须像常规可移动机器人进行复杂的路径寻址或视频识别。
激光传感器与FPGA导引控制器3电连接,用于检测安装于行走路径终端的反射板110,并将检测信号通过RFID通讯模块7无线发送至机器人管理服务器10,测定并联机器人1的行进距离。
红外传感器12与FPGA导引控制器3电连接,用于检测障碍物,红外传感器12将检测到的信号发送至FPGA导引控制器3,FPGA导引控制器3按红外传感器12检测到障碍物距离,调整行车轨迹,FPGA导引控制器3根据障碍物检测信号控制驱动机构减速、避让或停止。
磁感应传感器13与FPGA导引控制器3电连接,用于检测预埋在行走路径上的磁钉,FPGA导引控制器3根据障碍物检测信号进行行走距离误差校准。
FPGA导引控制器3通过串口与轮驱动电机42连接,并控制行走轮41的转动,包括对左、右轮驱动电机进行差速控制,实现行走车架2的转弯。轮驱动电机42上设置有编码器44,编码器44与FPGA导引控制器3电连接,用于计算并反馈行走轮41的行走状态数据。
参见说明书附图3,FPGA导引控制器3采用ARM+FPGA组合方式作为采集系统的核心,ARM处理器适合控制领域,本系统中ARM处理器作为系统控制核心,负责控制整个系统工作时序,并将控制机器人调度信息和结果数据通过网络上传到智能机器人管理服务器中进行存储,通过串口与人机交互控制界面用触摸屏联接,进行人工命令输入和信息的显示;FPGA处理器由于其自身特点,适合高速并行采集与处理领域,具有其他嵌入式处理器无法比拟的忧势,处理能力强,应用范围广。主要用于各类传感器信息的融合,融合后经预置系统中的专家系统完成信息更新,同时输出控制信息,控制行走电机运转,导引带动智能并联机器人按命令轨迹行走。
ARM处理器和FPGA处理器之间的数据交换采用双口RAM芯片来实现FIFO功能。该组合方式结合ARM在控制方面和FPGA在采集方面具有通用性强.配置灵活的特点。本系统硬件主要由信号处理电模块、AD模数转换器、FPGA处理器、ARM处理器、双口RAM和外围电路组成。参见说明书附图4,输入信号经过信号处理电路后,进入A/D转换器进行数据转换,将模拟信号转换成23位尾数和一符号位的数据,FPGA配置A/D转换器并将转换的数据按照顺序存储到双口RAM中,当转换数据存储满后中断ARM处理器,ARM处理器将数据从双口RAM读出进行运算,并通过RFID通讯模块接将采集数据传输到机器人管理服务器。
参见说明书附图6为CMOS摄像头6与FPGA导引控制器3连接图。COMS摄像头6为感光传感器摄像机,其获取图象信息与传输信号是同步进行的,相对于其他采用逐行传输图象信息的过程,运行速度更快,符合导航快速图象识别要求。
参见说明书附图9为FPGA导引控制器3的通讯接口,分为发送模块、接收模块、MAC状态模块、MAC控制模块、MII管理模块和主机接口模块六部分。发送模块和接收模块主要提供MAC帧的发送和接收功能,其主要操作有MAC帧的封装与解包以及错误检测,它直接提供了到外部物理层芯片的并行数据接口。在实现中物理层处理直接利用商用的千兆PHY芯片,主要开发量集中在MAC控制器的开发上。MAC控制模块则用于执行全双工模式中的流量控制功能。MAC状态模块可用来监视MAC操作过程的各种状态信息,并作修改。MII管理模块提供了标准的IEEE 802.3介质独立接口,可用于连接以太网的链路层与物理层。主机接口则提供以太网控制器与上层协议(如TCP/IP协议)之间的接口,以用于数据的发送、接收以及对控制器内各种寄存器(控制、状态和命令寄存器)的设置。
本发明实施例还公开了一种并联智能机器人自动导引方法,参见说明书附图5,自动导引功能的机器人管理服务器10,通过工业以太网连接到管理云平台20,管理云平台20向机器人管理服务器10发送生产调度命令和技术文件,机器人管理服务器10根据预置的调度系统,分析生产调度命令和技术文件,给出自动导引功能的并联智能机器人调度方案,通过RFID通讯模块7向需要调度的自动导引功能的并联智能机器人发送位置移动命令;通常自动导引功能的并联智能机器人待机时,位于工作区域充电位,充电等待命令;接收到命令的自动导引功能的并联智能机器人按命令顺序,发送超声波进行定位,超声波传感器接收器50位于工作区域的两个邻边,超声波传感器接收器50接收到自动导引功能的并联智能机器人超声波传感器发送器5发出的超声波信号,并将信号通过CAN总线发送回自动导引功能的机器人管理服务器10,服务器通过超声波信号计算自动导引功能的并联智能机器人所处的位置,通过RFID通讯模块7向需要调度的自动导引功能的并联智能机器人的FPGA导引控制器3发送自动运行轨迹,FPGA导引控制器3根据预置工作区域地图,自动规避现场的机加设备等障碍;FPGA导引控制器3按照收到的位置和运行轨迹命令,通过伺服电机驱动器,控制轮驱动电机42,轮驱动电机42通过减速器驱动轮带动智能并联机器人行走,通过对左右轮电机进行差速控制,实现车架转弯,通过编码器44计算行走距离,通过陀螺仪9检测车架转弯角度,通过磁感应传感器13检测行走路径上预埋的磁钉完成行走距离误差校准、通过激光传感器11检测安装于路径终端的反射板110,测定前行距离,通过红外传感器12检测近距离障碍,避免撞车,通过CMOS摄像头6,检测图像信息,每个机器人工作工位由特定的图像标志,便于判断机器人所处的工位位置。加速度传感器15用于检测行走过程中的加/减速度情况。
参见说明书附图7,在自动导引功能的并联智能机器人向目标地自动导引过程中,COMS摄像头6通过光学镜头将景物信息捕捉并发送到图象传感器模块,图象传感器模块将收到的图象转换成模拟信号,将模拟量信号发送到A/D模块进行模数转换后,将数字信号发送到数字信号处理器,按通讯协议将数字信号转换成FPGA控制器3能接收的图象信息,通过COMS摄象头6通讯接口模块发送到FPGA控制器3,经FPGA控制器通讯接口,将图形信息发送到图象处理模块,经过FPGA软硬件处理,把其中有用的特征信息如图形标识、物体形状特征等有用图象信息进行提取,在RAM存储模块中存储。
参见说明书附图8,为FPGA导引控制器3接收到COMS摄像头6发送的原始图象后,对图象的后处理过程。采用中值滤波算法对原始图像进行预处理,包括去噪、灰度变化处理、锐化;利用拉普拉斯高斯算法对经过豫处理的图像进行分割,根据图象的用途分别采用边缘化算法、阀值算法、区域算法对图象进行区域化分割处理,并仿真验证,该算法能有效的分割图像适于自动导引功能的并联智能机器人的视觉识别,经过区域化处理后的图形信息,还需要进行图形特征提取,包括颜色、纹理、外部几何特征等,并将提取的图形特征应用识别算法,通过模板匹配、特征匹配、结构匹配,完成图象目标识别,完成自动导引功能的并联智能机器人在导引运行图中的图标、目标物识别。
本发明,可根据调度命令和路径,智能完成定位、行走的智能生产线机器人,该调度过程由计算机管理服务器计算生成,在并联机器人端,无需单独配备工控机,仅需通过FPGA导引控制器现场响应调度命令,可灵活改变用途、任务、工作位置等,其灵活性、适应性的提升,使应用本发明智能机器人的生产线可以适应产品生产适时调整的生产需要。
以上对本发明所提供的一种具有自动导引功能的并联智能机器人及其导引方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
Claims (10)
1.一种具有自动导引功能的并联智能机器人,其特征在于:包括并联机器人、智能行走系统;所述智能行走系统与机器人管理服务器连接通信;
所述智能行走系统包括行走车架,所述行走车架上安装有所述并联机器人、FPGA导引控制器、以及与所述FPGA导引控制器电连接的驱动机构、超声波传感器发送器、CMOS摄像头、RFID通讯模块;所述超声波传感器发送器与设置在工作区域边界位置的超声波传感器接收器感应通信,所述超声波传感器接收器接收到检测信息通过现场CAN总线发送至所述机器人管理服务器,所述机器人管理服务器计算出定位信息;所述CMOS摄像头检测机器人工位的标志图像和/或景物图像,并发送至所述FPGA导引控制器,与作业数据比对进行工位判断;
所述机器人管理服务器包括机器人调度系统,所述机器人调度系统与所述FPGA导引控制器通过RFID通讯模块无线连接,用于根据预设的工作区域地图和所述定位信息计算运行轨迹,并向所述FPGA导引控制器发送运行轨迹和作业数据。
2.根据权利要求1所述的一种具有自动导引功能的并联智能机器人,其特征在于,还包括设置在所述行走车架上的蓄电池,用于向所述智能行走系统和所述并联机器人供电;所述工作区域设有与所述蓄电池相匹配的充电电源插座;所述并联机器人在待机状态下,所述机器人管理服务器根据所述定位信息计算所述并联机器人到所述充电电源插座的路径,并发送至所述FPGA导引控制器,控制驱动机构行进至所述充电电源插座位置自动充电。
3.根据权利要求1所述的一种具有自动导引功能的并联智能机器人,其特征在于,还包括位于所述行走车架上,且与所述FPGA导引控制器电连接的激光传感器,用于检测安装于行走路径终端的反射板,并将检测信号通过所述RFID通讯模块无线发送至所述机器人管理服务器,测定所述并联机器人的行进距离。
4.根据权利要求1所述的一种具有自动导引功能的并联智能机器人,其特征在于,还包括位于所述行走车架上,且与所述FPGA导引控制器电连接的红外传感器,用于检测障碍物,红外传感器将检测到的信号发送至FPGA导引控制器,FPGA导引控制器按红外传感器检测到障碍物距离,调整行车轨迹,所述FPGA导引控制器根据障碍物检测信号控制所述驱动机构减速、避让或停止。
5.根据权利要求1所述的一种具有自动导引功能的并联智能机器人,其特征在于,还包括位于所述行走车架上,且与所述FPGA导引控制器电连接的磁感应传感器,用于检测预埋在行走路径上的磁钉,所述FPGA导引控制器根据障碍物检测信号进行行走距离误差校准。
6.根据权利要求1所述的一种具有自动导引功能的并联智能机器人,其特征在于,同一个所述行走车架上的所述并联机器人与所述RFID通讯模块相对应,所述机器人管理服务器同时向若干所述RFID通讯模块发送与其相对应的并联机器人的运行轨迹和作业数据。
7.根据权利要求1所述的一种具有自动导引功能的并联智能机器人,其特征在于,所述驱动机构包括设置在所述行走车架上的行走轮、轮驱动电机,所述FPGA导引控制器通过串口与所述轮驱动电机连接,并控制所述行走轮的转动,包括对左、右轮驱动电机进行差速控制,实现行走车架的转弯。
8.根据权利要求7所述的一种具有自动导引功能的并联智能机器人,其特征在于,所述轮驱动电机上设置有编码器,所述编码器与所述FPGA导引控制器电连接,用于计算并反馈行走轮的行走状态数据。
9.一种根据权利要求1~8所述的并联智能机器人自动导引方法,其特征在于,包括如下步骤:
设置在工作区域边界位置的超声波传感器接收器感应行走车架上的超声波传感器发送器发送的超声波信号,并通过现场CAN总线发送至所述机器人管理服务器,机器人管理服务器计算出定位信息;
机器人管理服务器根据预设的工作区域地图和所述定位信息计算运行轨迹,并向FPGA导引控制器无线发送运行轨迹和作业数据;
FPGA导引控制器根据运行轨迹控制驱动机构的运动;
FPGA导引控制器获取CMOS摄像头检测的机器人工位的标志图像和/或景物图像,将图象信号发送至FPGA导引控制器,与作业数据比对进行工位判断,并将判断结果无线反馈至机器人管理服务器。
10.根据权利要求9所述的并联智能机器人自动导引方法,其特征在于,在并联机器人向目标工位自动导引过程中,FPGA导引控制器接收到标志图像和/或景物图像,即原始图像,后,进行图像处理,包括:
采用中值滤波算法对原始图像进行预处理,包括去噪、灰度变化处理、锐化;
利用拉普拉斯高斯算法对经过预处理的图像进行分割,根据图象的用途分别采用边缘化算法、阀值算法、区域算法对图象进行区域化分割处理;
经过区域化分割处理后的图形信息,进行图形特征提取,包括颜色、纹理、外部几何特征;
将提取的图形特征应用识别算法,通过模板匹配、特征匹配、结构匹配,完成图象目标识别。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911252436.9A CN110900575B (zh) | 2019-12-09 | 2019-12-09 | 一种具有自动导引功能的并联智能机器人及其导引方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911252436.9A CN110900575B (zh) | 2019-12-09 | 2019-12-09 | 一种具有自动导引功能的并联智能机器人及其导引方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110900575A true CN110900575A (zh) | 2020-03-24 |
CN110900575B CN110900575B (zh) | 2024-07-23 |
Family
ID=69823564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911252436.9A Active CN110900575B (zh) | 2019-12-09 | 2019-12-09 | 一种具有自动导引功能的并联智能机器人及其导引方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110900575B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111290404A (zh) * | 2020-03-25 | 2020-06-16 | 成都智创利源科技有限公司 | 一种基于开关磁阻电机的智能搬运机器人及控制方法 |
CN111673767A (zh) * | 2020-06-23 | 2020-09-18 | 浪潮集团有限公司 | 一种机器人数据安全保护协处理方法及系统 |
CN112232536A (zh) * | 2020-10-19 | 2021-01-15 | 合肥市嘉辉电子科技有限公司 | 一种银行用人脸识别引导系统 |
CN112950805A (zh) * | 2021-03-31 | 2021-06-11 | 国网上海市电力公司 | 一种智能运维辅助机器人 |
CN113934209A (zh) * | 2021-09-29 | 2022-01-14 | 深圳甲壳虫智能有限公司 | 一种机器人及机器人周围障碍物探测方法 |
CN114274119A (zh) * | 2021-12-17 | 2022-04-05 | 苏州融萃特种机器人有限公司 | 一种多轴并联机器人多传感器信息融合控制系统及其方法 |
CN117518935A (zh) * | 2023-11-30 | 2024-02-06 | 弥费科技(上海)股份有限公司 | 一种空中运输车及其行进控制系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101561680A (zh) * | 2009-05-11 | 2009-10-21 | 南京航空航天大学 | 一种自主车辆的嵌入式导引装置及其智能复合导引方法 |
CN102717778A (zh) * | 2012-06-29 | 2012-10-10 | 山东电力集团公司电力科学研究院 | 一种电动乘用车底盘电池更换系统及方法 |
CN102950595A (zh) * | 2012-10-31 | 2013-03-06 | 常州数控技术研究所 | 工业机器人的编程系统和方法 |
FI10568U1 (fi) * | 2013-06-25 | 2014-08-13 | Tekno Ants Oy | Ohjausjärjestelmä robottikäyttöön |
CN107272710A (zh) * | 2017-08-08 | 2017-10-20 | 河海大学常州校区 | 一种基于视觉定位的医用物流机器人系统及其控制方法 |
CN211590103U (zh) * | 2019-12-09 | 2020-09-29 | 北京航空航天大学 | 一种具有自动导引功能的并联智能机器人 |
-
2019
- 2019-12-09 CN CN201911252436.9A patent/CN110900575B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101561680A (zh) * | 2009-05-11 | 2009-10-21 | 南京航空航天大学 | 一种自主车辆的嵌入式导引装置及其智能复合导引方法 |
CN102717778A (zh) * | 2012-06-29 | 2012-10-10 | 山东电力集团公司电力科学研究院 | 一种电动乘用车底盘电池更换系统及方法 |
CN102950595A (zh) * | 2012-10-31 | 2013-03-06 | 常州数控技术研究所 | 工业机器人的编程系统和方法 |
FI10568U1 (fi) * | 2013-06-25 | 2014-08-13 | Tekno Ants Oy | Ohjausjärjestelmä robottikäyttöön |
CN107272710A (zh) * | 2017-08-08 | 2017-10-20 | 河海大学常州校区 | 一种基于视觉定位的医用物流机器人系统及其控制方法 |
CN211590103U (zh) * | 2019-12-09 | 2020-09-29 | 北京航空航天大学 | 一种具有自动导引功能的并联智能机器人 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111290404A (zh) * | 2020-03-25 | 2020-06-16 | 成都智创利源科技有限公司 | 一种基于开关磁阻电机的智能搬运机器人及控制方法 |
CN111673767A (zh) * | 2020-06-23 | 2020-09-18 | 浪潮集团有限公司 | 一种机器人数据安全保护协处理方法及系统 |
CN112232536A (zh) * | 2020-10-19 | 2021-01-15 | 合肥市嘉辉电子科技有限公司 | 一种银行用人脸识别引导系统 |
CN112950805A (zh) * | 2021-03-31 | 2021-06-11 | 国网上海市电力公司 | 一种智能运维辅助机器人 |
CN113934209A (zh) * | 2021-09-29 | 2022-01-14 | 深圳甲壳虫智能有限公司 | 一种机器人及机器人周围障碍物探测方法 |
CN113934209B (zh) * | 2021-09-29 | 2024-01-16 | 深圳甲壳虫智能有限公司 | 一种机器人及机器人周围障碍物探测方法 |
CN114274119A (zh) * | 2021-12-17 | 2022-04-05 | 苏州融萃特种机器人有限公司 | 一种多轴并联机器人多传感器信息融合控制系统及其方法 |
CN114274119B (zh) * | 2021-12-17 | 2023-08-22 | 苏州融萃特种机器人有限公司 | 一种多轴并联机器人多传感器信息融合控制系统及其方法 |
CN117518935A (zh) * | 2023-11-30 | 2024-02-06 | 弥费科技(上海)股份有限公司 | 一种空中运输车及其行进控制系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110900575B (zh) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110900575B (zh) | 一种具有自动导引功能的并联智能机器人及其导引方法 | |
CN211590103U (zh) | 一种具有自动导引功能的并联智能机器人 | |
CN108762255A (zh) | 一种室内智能移动机器人及控制方法 | |
CN109002046B (zh) | 一种移动机器人导航系统及导航方法 | |
CN103324197A (zh) | 一种语音控制多用途智能服务机器人 | |
CN108459600A (zh) | 一种agv小车的视觉导航系统 | |
JP2008520046A (ja) | 光レーザ誘導システム装置及び方法 | |
CN111624994A (zh) | 一种基于5g通信的机器人巡检方法 | |
CN104953709A (zh) | 一种变电站智能巡视机器人 | |
CN106940561A (zh) | 一种集装箱装卸用移动机器人控制系统及方法 | |
CN209776188U (zh) | 一种基于3d视觉技术的汽车无人充电系统 | |
CN112837554A (zh) | 基于双目相机的agv定位导航方法及系统 | |
CN103777630A (zh) | 定位导航系统及其控制方法 | |
CN114132745A (zh) | 一种基于agv及机器视觉进行工件自动上下料系统及方法 | |
CN113894765A (zh) | 火车自动摘钩机器人及系统 | |
CN105487558A (zh) | 基于移动机器人的目标跟随系统及方法 | |
CN211529000U (zh) | 一种基于激光雷达和摄像头的无人驾驶小车 | |
CN206892664U (zh) | 一种基于视觉识别的移动机器人路径规划与调度系统 | |
CN114299039B (zh) | 一种机器人及其碰撞检测装置和方法 | |
CN113218384B (zh) | 一种基于激光slam的室内agv自适应定位方法 | |
CN108597315A (zh) | 一种沙盘智能模型车辆控制装置和方法 | |
CN217533056U (zh) | 一种自主移动工业机器人用控制系统及其机器人 | |
CN116360447A (zh) | 一种巡检机器人系统及其控制方法 | |
CN116149335A (zh) | 一种基于5g通信的可交互多机器人编队泊车巡检装置及方法 | |
CN109508009A (zh) | 一种带有车车通讯功能的智能微缩车 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |