CN110896120A - 一种多层InGaAs探测器材料结构和制备方法 - Google Patents

一种多层InGaAs探测器材料结构和制备方法 Download PDF

Info

Publication number
CN110896120A
CN110896120A CN201911093644.9A CN201911093644A CN110896120A CN 110896120 A CN110896120 A CN 110896120A CN 201911093644 A CN201911093644 A CN 201911093644A CN 110896120 A CN110896120 A CN 110896120A
Authority
CN
China
Prior art keywords
ingaas
type
inp
layer
material structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911093644.9A
Other languages
English (en)
Inventor
顾溢
王红真
杨波
马英杰
李淘
邵秀梅
李雪
龚海梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201911093644.9A priority Critical patent/CN110896120A/zh
Publication of CN110896120A publication Critical patent/CN110896120A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种多层InGaAs探测器材料结构和制备方法:所述探测材料结构由下往上依次为InP(001)衬底、n型InP缓冲层、i型晶格匹配的InGaAs吸收层、n型晶格匹配的InGaAs阻挡层和n型InP帽层。其中,所述的n型阻挡层的厚度为40nm~200nm,其掺杂浓度5x1015cm‑3~5x1017cm‑3,其材料为与InP晶格匹配的InGaAs。制备方法为依次分子束外延生长即可。本发明的InGaAs探测材料增加的n型阻挡层能够有效实现对扩散成结工艺的控制。

Description

一种多层InGaAs探测器材料结构和制备方法
技术领域
本发明属于半导体光电子器件领域,特别涉及一种多层InGaAs探测器材料结构和制备方法。
背景技术
近红外波段有许多重要的应用。例如,石英光纤在1.31微米和1.55微米分别处于低损耗和低色散窗口,这两个波长的激光器和探测器广泛地应用于长波光纤通信中。InGaAs探测器由于其良好的性能从而在光纤通信系统中广泛应用,在当前的信息时代中发挥着其重要作用。InP基InGaAs材料具有较高的吸收系数、高迁移率、较好的物理化学稳定性和抗辐照特性,其制备的探测器表现出较高工作温度、高量子效率、高灵敏度、良好的抗辐照性能等优点,是短波红外探测器的重要选择。InGaAs短波红外探测器在航天遥感如资源调查、大气成分分析、和深空探测等领域也具有巨大潜力和应用前景。InGaAs探测器的发展方向主要在于2个方面:一个是提高器件性能、增大焦平面的规模;二是向更宽的探测光谱发展,短波方向拓展到可见光范围,长波方向向3μm波长发展。近年来,各国为提高近红外InGaAs探测器焦平面阵列规模和性能水平做出了很多的努力,大多数公司单位已具备制备大面阵的能力。大面阵的中心距在12.5μm到20μm之间,并且大面阵在探测率、噪声、量子效率、有效像元率等方面表现优异。信噪比是近红外InGaAs焦平面的核心性能指标,降低噪声、提高信噪比对提高红外焦平面组件成像质量至关重要。国内外的研究机构为降低InGaAs焦平面的噪声做出了许多努力。主要是通过电路结构优化和降低暗电流密度来降低噪声。
焦平面噪声主要来源于焦平面耦合噪声和探测器噪声,在电路参数确定的情况下,焦平面耦合噪声在短积分时间下决定了焦平面的本底噪声水平,焦平面耦合噪声由探测器电容影响,探测器电容直接受到外延材料吸收层的掺杂浓度的影响;探测器噪声由探测器暗电流影响,该噪声在长积分时间下决定了焦平面的总噪声水平。由焦平面噪声的影响因素可以看出,低掺杂浓度的吸收层外延材料对降低焦平面噪声具有很大的帮助。
然而,吸收层低掺杂浓度的多层InGaAs/InP探测外延材料的扩散成结工艺存在无法控制结位置的问题。因InGaAs吸收层的掺杂浓度很低,在对InP帽层进行p型扩散时,p型杂质很容易就进入InGaAs吸收层,并且扩散深度难以精确控制。所以,亟需对相应的多层InGaAs/InP探测材料结构和制备方法进行创新,为精确控制InP帽层p型扩散深度提供帮助。
发明内容
本发明所要解决的技术问题是提供一种多层InGaAs探测器材料结构和制备方法,该材料结构能够有效实现对扩散成结工艺的控制。
本发明的一种多层InGaAs探测器材料结构,所述探测材料结构由下往上依次为InP(001)衬底、n型InP缓冲层、i型晶格匹配的InGaAs吸收层、n型晶格匹配的InGaAs阻挡层和n型InP帽层。
所述的InP(001)衬底为半绝缘的InP(001)单晶衬底或者N型InP(001)单晶衬底。
所述的n型InP缓冲层,其掺杂浓度为1x1016cm-3~2x1018cm-3
所述的i型晶格匹配的InGaAs吸收层,其掺杂浓度为1x1014cm-3~1x1015cm-3
所述的n型晶格匹配的InGaAs阻挡层,其厚度为40nm~200nm,其掺杂浓度为5x1015cm-3~5x1017cm-3
所述的n型InP帽层,其掺杂浓度为5x1015cm-3~1x1017cm-3
本发明的一种多层InGaAs探测器材料的制备方法,具体包括如下步骤:
(1)InP(001)衬底升温到解析温度,进行脱氧,然后降温到InP生长温度,进行n型InP缓冲层的生长;
(2)衬底升温到生长温度,生长i型晶格匹配的InGaAs吸收层;
(3)继续生长n型晶格匹配的InGaAs层,作为扩散阻挡层;
(4)衬底降温到生长温度,生长n型InP帽层。
(5)完成多层InGaAs探测器材料的制备。
有益效果
本发明提供多层InGaAs探测器材料结构和制备方法,通过n型晶格匹配的InGaAs阻挡层的结构设计,实现对InGaAs探测器扩散成结工艺的方便控制;制备方法还可以推广到其他对扩散成结工艺有特殊需求的材料结构设计,具有很好的通用性。
附图说明
图1是本发明的多层InGaAs探测器材料结构示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
本实施例1举例说明本发明的多层InGaAs探测器材料结构的制备方法,具体步骤如下:
(1)在半绝缘InP(001)衬底上生长1μm厚的n型InP缓冲层,电子浓度为1x1016cm-3
(2)在n型InP缓冲层上生长2.46μm厚的i型晶格匹配的InGaAs吸收层,电子浓度为1x1014cm-3
(3)生长40nm厚的n型晶格匹配的InGaAs层,电子浓度为5x1015cm-3,作为扩散阻挡层;
(4)生长厚度1μm厚的n型InP帽层,电子浓度为5x1015cm-3
(5)完成多层InGaAs探测器材料的制备。
实施例2
本实施例2举例说明本发明的多层InGaAs探测器材料结构的制备方法,具体步骤如下:
(1)在N型InP(001)衬底上生长1μm厚的n型InP缓冲层,电子浓度为1x1017cm-3
(2)在n型InP缓冲层上生长2.4μm厚的i型晶格匹配的InGaAs吸收层,电子浓度为5x1014cm-3
(3)生长100nm厚的n型晶格匹配的InGaAs层,电子浓度为5x1016cm-3,作为扩散阻挡层;
(4)生长厚度1μm厚的n型InP帽层,电子浓度为5x1016cm-3
(5)完成多层InGaAs探测器材料的制备。
实施例3
本实施例3举例说明本发明的多层InGaAs探测器材料结构的制备方法,具体步骤如下:
(1)在半绝缘InP(001)衬底上生长1μm厚的n型InP缓冲层,电子浓度为1x1018cm-3
(2)在n型InP缓冲层上生长2.3μm厚的i型晶格匹配的InGaAs吸收层,电子浓度为1x1015cm-3
(3)生长200nm厚的n型晶格匹配的InGaAs层,电子浓度为1x1017cm-3,作为扩散阻挡层;
(4)生长厚度1μm厚的n型InP帽层,电子浓度为1x1017cm-3
(5)完成多层InGaAs探测器材料的制备。

Claims (7)

1.一种多层InGaAs探测器材料结构,其特征在于:所述探测材料结构自下往上依次为InP(001)衬底、n型InP缓冲层、i型晶格匹配的InGaAs吸收层、n型晶格匹配的InGaAs阻挡层和n型InP帽层。
2.根据权利要求1所述的一种多层InGaAs探测器材料结构,其特征在于,所述的InP(001)衬底为半绝缘的InP(001)单晶衬底或者N型InP(001)单晶衬底。
3.根据权利要求1所述的一种多层InGaAs探测器材料结构,其特征在于,所述的n型InP缓冲层,其掺杂浓度为1x1016cm-3~1x1018cm-3
4.根据权利要求1所述的一种多层InGaAs探测器材料结构,其特征在于,所述的i型晶格匹配的InGaAs吸收层,其掺杂浓度为1x1014cm-3~1x1015cm-3
5.根据权利要求1所述的一种多层InGaAs探测器材料结构,其特征在于,所述的n型晶格匹配的InGaAs阻挡层,其厚度为40nm~200nm,其掺杂浓度为5x1015cm-3~5x1017cm-3
6.根据权利要求1所述的一种多层InGaAs探测器材料结构,其特征在于,所述的n型InP帽层,其掺杂浓度为5x1015cm-3~1x1017cm-3
7.一种制备如权利要求1所述的多层InGaAs探测器材料结构的方法,其特征在于方法步骤如下:
(1)InP(001)衬底升温到解析温度,进行脱氧,然后降温到InP生长温度,进行n型InP缓冲层的生长;
(2)衬底升温到生长温度,生长i型晶格匹配的InGaAs吸收层;
(3)继续生长n型晶格匹配的InGaAs层,作为扩散阻挡层;
(4)衬底降温到生长温度,生长n型InP帽层;
(5)完成多层InGaAs探测器材料的制备。
CN201911093644.9A 2019-11-11 2019-11-11 一种多层InGaAs探测器材料结构和制备方法 Pending CN110896120A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911093644.9A CN110896120A (zh) 2019-11-11 2019-11-11 一种多层InGaAs探测器材料结构和制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911093644.9A CN110896120A (zh) 2019-11-11 2019-11-11 一种多层InGaAs探测器材料结构和制备方法

Publications (1)

Publication Number Publication Date
CN110896120A true CN110896120A (zh) 2020-03-20

Family

ID=69787844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911093644.9A Pending CN110896120A (zh) 2019-11-11 2019-11-11 一种多层InGaAs探测器材料结构和制备方法

Country Status (1)

Country Link
CN (1) CN110896120A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951940A (zh) * 2021-04-23 2021-06-11 湖南汇思光电科技有限公司 一种基于InPOI衬底的InGaAs探测器结构及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120145996A1 (en) * 2010-10-22 2012-06-14 California Institute Of Technology Barrier infrared detector
CN103367520A (zh) * 2013-06-27 2013-10-23 中国科学院上海微系统与信息技术研究所 InP基截止波长大范围可调的晶格匹配InGaAsBi探测器结构及其制备
CN103367123A (zh) * 2013-06-27 2013-10-23 中国科学院上海微系统与信息技术研究所 一种提高稀铋半导体材料热稳定性的方法
CN104319307A (zh) * 2014-09-26 2015-01-28 中国科学院长春光学精密机械与物理研究所 PNIN型InGaAs红外探测器
CN105185846A (zh) * 2015-08-26 2015-12-23 中国科学院长春光学精密机械与物理研究所 PBN型InGaAs红外探测器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120145996A1 (en) * 2010-10-22 2012-06-14 California Institute Of Technology Barrier infrared detector
CN103367520A (zh) * 2013-06-27 2013-10-23 中国科学院上海微系统与信息技术研究所 InP基截止波长大范围可调的晶格匹配InGaAsBi探测器结构及其制备
CN103367123A (zh) * 2013-06-27 2013-10-23 中国科学院上海微系统与信息技术研究所 一种提高稀铋半导体材料热稳定性的方法
CN104319307A (zh) * 2014-09-26 2015-01-28 中国科学院长春光学精密机械与物理研究所 PNIN型InGaAs红外探测器
CN105185846A (zh) * 2015-08-26 2015-12-23 中国科学院长春光学精密机械与物理研究所 PBN型InGaAs红外探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO XIN-JIANG 等: "Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element", 《PROC. OF SPIE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951940A (zh) * 2021-04-23 2021-06-11 湖南汇思光电科技有限公司 一种基于InPOI衬底的InGaAs探测器结构及制备方法

Similar Documents

Publication Publication Date Title
US5371399A (en) Compound semiconductor having metallic inclusions and devices fabricated therefrom
CN106531822B (zh) 一种光电探测器
US7915639B2 (en) InGaAsSbN photodiode arrays
CN103811586B (zh) 雪崩光电二极管及其制造方法
CN104900731B (zh) 红外光电探测器及其制造方法
CN106356419B (zh) 一种含埋氧层结构的光电探测器
Dong et al. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength
US20150179863A1 (en) Avalanche photodiode utilizing interfacial misfit array
CN105957908A (zh) 倍增区控制的雪崩光电二极管及其制造方法
CN104617166A (zh) 基于Si衬底的InGaAs红外探测器及其制备方法
CN110896120A (zh) 一种多层InGaAs探测器材料结构和制备方法
Park et al. Toward Ga‐Free Wavelength Extended 2.6 µm InAsP Photodetectors with High Performance
Gomółka et al. Electrical and optical performance of midwave infrared InAsSb heterostructure detectors
Yu et al. Polarization and p-type doping effects on photoresponse of separate absorption and multiplication AlGaN solar-blind avalanche photodiodes
Zhang et al. GeSn on Si avalanche photodiodes for short wave infrared detection
CN211700284U (zh) 一种集成光伏电池结构的红外探测器
CN205582956U (zh) 一种pin结构紫外光电探测器
CN111223880A (zh) 一种集成光伏电池结构的红外探测器及其制备方法
Bansal et al. Photodetectors for security application
Gu et al. Dilute bismide photodetectors
CN207165584U (zh) 一种背照式级联倍增雪崩光电二极管
Zhu et al. Low Dark Current HgCdTe Long Wavelength Infrared Photodiodes with Bandgap Gradient Multi-Layer Heterojunction
Suo et al. Dark Current Analysis of InAsSb-Based Hetero-$ p {\text {-}} i {\text {-}} n $ Mid-Infrared Photodiode
Li et al. Exploiting the Correlation Between 1/f Noise-Dark Current in PIN InGaAs Photodetectors
CN104617181B (zh) 基于ITO电流扩展层的InGaAs雪崩红外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200320