CN110895218A - 一种用于汽油中铅、锰和铁含量检测的标准品 - Google Patents

一种用于汽油中铅、锰和铁含量检测的标准品 Download PDF

Info

Publication number
CN110895218A
CN110895218A CN201911350047.XA CN201911350047A CN110895218A CN 110895218 A CN110895218 A CN 110895218A CN 201911350047 A CN201911350047 A CN 201911350047A CN 110895218 A CN110895218 A CN 110895218A
Authority
CN
China
Prior art keywords
manganese
lead
gasoline
concentration
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911350047.XA
Other languages
English (en)
Inventor
王静静
王兆锟
张庆建
杨莹
邹雯雯
亓秉哲
郭兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Customs Technology Center
Original Assignee
Qingdao Customs Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Customs Technology Center filed Critical Qingdao Customs Technology Center
Priority to CN201911350047.XA priority Critical patent/CN110895218A/zh
Publication of CN110895218A publication Critical patent/CN110895218A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2864Lead content

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明所提供的一种用于汽油中铅、锰和铁含量检测的标准品,是含有铅、锰和铁离子的汽油样品,同时含有氯化甲基三辛基铵,甲基异丁基甲酮和碘‑甲苯。本发明所提供的用于汽油中铅、锰和铁含量检测的标准对照品结构稳定,不易形成沉淀或析出结晶体;从而提供更好的检测标准。

Description

一种用于汽油中铅、锰和铁含量检测的标准品
技术领域
本发明属于油气样品检测技术领域,具体涉及一种用于汽油中铅、锰和铁含量检测的标准品。
背景技术
汽车尾气对人的危害程度受到汽油成分的直接影响,为提高汽油的抗爆性,人们通常在汽油中加入四乙基铅,羰基锰及铁的络合物,铅、锰和铁通过尾气排入大气,其中铅是有毒金属,对儿童健康发育造成影响,铁和锰是重金属,对土壤造成危害。因此定量检测汽油中含有的铅、锰、铁元素及其重要,而目前检测中无市售含有铅、锰和铁三种元素的标准品。
由于汽油中含有的铅、锰、铁元素浓度低,因此制样过程需要后续加入铅、锰、铁化合物以提高有害元素的检测浓度。直接加入铅、锰、铁化合物后样品均匀性及稳定性无法满足能力验证要求。
发明内容
本发明提供一种用于汽油中铅、锰和铁含量检测的标准品,从而弥补现有技术的不足。
本发明所提供的一种用于汽油中铅、锰和铁含量检测的标准品,是含有铅、锰和铁离子的汽油样品,同时含有氯化甲基三辛基铵,甲基异丁基甲酮和碘-甲苯。
作为优选,其中氯化甲基三辛基铵在标准品中的浓度为10%;甲基异丁基甲酮在标准品中的浓度为70%;碘-甲苯的浓度为0.04g/L;
更进一步的,所述的铅、锰和铁离子,分别是由二茂铁,氯化锰和氯化铅提供的,其中铅的浓度为1.6mg/L;锰的浓度为0.9mg/L;铁的浓度为1.5mg/L。
本发明所提供的标准对照品,其一种制备方法如下:
将二茂铁,氯化锰和氯化铅加入到氯化甲基三辛基铵-甲基异丁基甲酮溶液中,再加入碘-甲苯溶液,震荡摇匀,再加入汽油完成制备。
本发明所提供的用于汽油中铅、锰和铁含量检测的标准对照品结构稳定,不易形成沉淀或析出结晶体;从而提供更好的检测标准。
附图说明
图1:本发明的标准品透视图;
图2:均匀性及稳定性检验标准品图。
具体实施方式
由中国合格评定国家认可委员会(CNAS)组织,申请人青岛海关技术中心负责具体实施的汽油中有害元素铅、锰、铁含量检测能力验证计划,旨在了解我国相关实验室对汽油中铅、锰、铁检测项目的整体水平和技术能力,评价实验室检测水平、锻炼实验室人员技术能力,并为实验室提供了一个评定自身检测能力的机会,以此促进实验室间的技术交流,提高实验室检测数据的可信度和权威性,从而提高我国汽油中重金属元素检测的整体水平。
本发明所构建的标准品使三种离子元素在汽油中更加均匀稳定,满足了能力验证样品均匀性及稳定性要求
下面结合实施例对本发明进行详细的描述。
实施例1:标准品的浓度的选择和制备
为了提高汽油中铅、锰和铁含量检测的标准对照品的结构稳定性,对本发明,不易形成沉淀或析出结晶体;从而提供更好的检测标准。
方案一:选择50%(V/V)氯化甲基三辛基铵-甲基异丁基甲酮溶液中氯化甲基三辛基铵与甲基异丁基甲酮的体积比为1:1(在对照品中氯化甲基三辛的浓度为0.01L/L;甲基异丁基甲酮的浓度为0.01L/L);碘-甲苯浓度为0.03g/mL(配制方法为用甲苯溶解3.0g结晶碘,并稀释到100mL,在对照品中的碘浓度为0.04g/L)。
方案二:选择10%(V/V)氯化甲基三辛基铵-甲基异丁基甲酮溶液中氯化甲基三辛基铵与甲基异丁基甲酮的体积比为1:1(在对照品中氯化甲基三辛的浓度为0.01L/L;甲基异丁基甲酮的浓度为0.01L/L);碘-甲苯浓度为0.06g/mL(配制方法为用甲苯溶解6.0g结晶碘,并稀释到100mL,在对照品中的碘浓度为0.08g/L)。
方案三:选择10%(V/V)氯化甲基三辛基铵-甲基异丁基甲酮溶液中氯化甲基三辛基铵与甲基异丁基甲酮的体积比为1:9(在对照品中氯化甲基三辛基铵的浓度为0.002L/L;甲基异丁基甲酮的浓度为0.018L/L);碘-甲苯浓度为0.03g/mL(配制方法为用甲苯溶解3.0g结晶碘,并稀释到100mL,在对照品中的碘浓度为0.04g/L)。
以上三种方案的不同浓度的溶液中进行筛选,分别进行均匀性及稳定性的检验,发现第三种方案均匀性及稳定性优于第一种和第二种方案。因此最终选择了第三种方案获得了本发明。
将三种物质加到100mL烧杯中,用10%(V/V)氯化甲基三辛基铵-甲基异丁基甲酮溶液(配制方法为取10mL的氯化甲基三辛基铵加入到90mL的甲基异丁基甲酮溶液中,摇匀备用)溶解,将溶液转移到100mL容量瓶中,用10%(V/V)氯化甲基三辛基铵-甲基异丁基甲酮溶液稀释到100mL。将此溶液转移至5L带有塑料盖的棕色玻璃制样器中,加入8.0mL的碘-甲苯溶液。震荡摇匀,使混合物反应约1min。加入4892mL汽油至棕色玻璃制样器中,摇匀。标准品溶液配置完毕。
其中氯化甲基三辛基铵在标准品中的浓度为10%;甲基异丁基甲酮在标准品中的浓度为70%;碘-甲苯的浓度为0.04g/L;
实施例2:标准品的均匀性和稳定性检测
从实施例1制备的80瓶样品中随机抽取出10瓶样品进行均匀性和稳定性检验,标准品在无色试管中的透视图见图1,可见,样品清澈透明,无杂质无沉淀,封装完好的标准品在棕色瓶中密封保存,见图2。检验结果表明样品的均匀性和稳定性良好,样品中重金属的含量相对稳定,在传递和运输过程中不会发生变化,从而确保实施过程中出现的离群值不是由于样品的差异所致。
在制备样品数量中,用EXCEL表产生10个随机数,作为均匀性检验用样品编号。将取出的10份样品编号加上“-1”“-2”后缀录入EXCEL表中,再次产生随机数20个,并由大到小排列,以此产生均匀性检测顺序。“-1”数据为均匀性1组,“-2”数据为均匀性2组。将随机选取的样品按7.1所述随机产生的顺序进行检测。
均匀性采用单因素方差分析进行检验,因为取10个样品,所以自由度(f1=9,f2=10),样品间的平方和为MS1,样品内的平方和为MS2,统计量F=MS1/MS2.若F<自由度为(9,10)及给定显著性水平a(通常取а=0.05)的临界值Fа(9,10),即F临界值F0.05(9,10)。则表明样品内和样品间无显著性差异,样品是均匀的。检测结果见表1。
表1:均匀性检验结果-单因素方差分析铅,锰和铁含量
Figure BDA0002334427260000041
Figure BDA0002334427260000051
均匀性评价结果表明F值均小于F临界值F0.05(9,10),样品均匀性符合CNAS—GL003《能力验证样品均匀性和稳定性评价指南》的要求。
一个月后将制备的对照品进行稳定性检测,成分稳定的的结果如表2。将均匀性检验样品再次进行检验。其结果与均匀性检测的结果对比,用EXCEL表中数据分析法中的t检验法进行检验,计算出的t值小于标准的t双尾临界值。因此均匀性结果和稳定性结果无显著性差异,表明样品是稳定的。检测结果见表2。
表2:稳定性检验结果表
Figure BDA0002334427260000052
Figure BDA0002334427260000061
从表2可以看出,本发明的标准品的稳定性评价结论表明t值小于t双尾临界值,样品稳定性满足本轮能力验证的要求。稳定性检验所采用统计方法符合CNAS—GL003《能力验证样品均匀性和稳定性评价指南》要求。

Claims (5)

1.一种用于汽油中铅、锰和铁含量检测的标准品,其特征在于,所述的标准品是含有特定浓度铅、锰和铁离子的汽油样品,同时含有氯化甲基三辛基铵,甲基异丁基甲酮和碘-甲苯。
2.如权利要求1所述的标准品,其特征在于,所述的氯化甲基三辛基铵在标准品中的浓度为10%;甲基异丁基甲酮在标准品中的浓度为70%;碘-甲苯的浓度为0.04g/L。
3.如权利要求1所述的标准品,其特征在于,所述的铅、锰和铁离子,分别是由二茂铁,氯化锰和氯化铅提供。
4.如权利要求1或3所述的标准品,其特征在于,所述的铅离子的浓度为1.6mg/L;锰离子的浓度为0.9mg/L;铁离子的浓度为1.5mg/L。
5.权利要求1所述的标准品的制备方法,其特征在于,所述的方法是将二茂铁,氯化锰和氯化铅加入到氯化甲基三辛基铵-甲基异丁基甲酮溶液中,再加入碘-甲苯溶液,震荡摇匀,再加入汽油完成制备。
CN201911350047.XA 2019-12-24 2019-12-24 一种用于汽油中铅、锰和铁含量检测的标准品 Pending CN110895218A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911350047.XA CN110895218A (zh) 2019-12-24 2019-12-24 一种用于汽油中铅、锰和铁含量检测的标准品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911350047.XA CN110895218A (zh) 2019-12-24 2019-12-24 一种用于汽油中铅、锰和铁含量检测的标准品

Publications (1)

Publication Number Publication Date
CN110895218A true CN110895218A (zh) 2020-03-20

Family

ID=69787867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911350047.XA Pending CN110895218A (zh) 2019-12-24 2019-12-24 一种用于汽油中铅、锰和铁含量检测的标准品

Country Status (1)

Country Link
CN (1) CN110895218A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1828268A (zh) * 2006-03-25 2006-09-06 山东东昌精细化工科技有限公司 原子吸收法测定锰含量过程中配制标准溶液的方法
CN101639438A (zh) * 2009-08-31 2010-02-03 中国石油天然气股份有限公司长庆石化分公司 汽油中铅含量的检测方法
CN101936884A (zh) * 2010-06-23 2011-01-05 四川农业大学 土壤中铅、铜两种重金属全量的测定方法
CN106769950A (zh) * 2017-02-27 2017-05-31 苏州恒润商品检验有限公司 汽油中铅含量的检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1828268A (zh) * 2006-03-25 2006-09-06 山东东昌精细化工科技有限公司 原子吸收法测定锰含量过程中配制标准溶液的方法
CN101639438A (zh) * 2009-08-31 2010-02-03 中国石油天然气股份有限公司长庆石化分公司 汽油中铅含量的检测方法
CN101936884A (zh) * 2010-06-23 2011-01-05 四川农业大学 土壤中铅、铜两种重金属全量的测定方法
CN106769950A (zh) * 2017-02-27 2017-05-31 苏州恒润商品检验有限公司 汽油中铅含量的检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
宋朝民: "火焰原子吸收测定汽油中铁、锰含量", 《黑龙江科技信息》 *
栾剑乔 等: "汽油中锰含量检测结果不确定度评估及方法改进", 《检验检测》 *

Similar Documents

Publication Publication Date Title
Rapp et al. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry
Pueyo et al. Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure
EP2630472B1 (en) Method of identifying a fuel
Bloom et al. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils
Henn et al. Chemical mixtures and children's health
Quevauviller et al. Certified reference materials for the quality control of EDTA-and acetic acid-extractable contents of trace elements in sewage sludge amended soils (CRMs 483 and 484)
US8268623B2 (en) Method of marking a product, marked product resulting thereof, and method of identifying same
Altmann et al. The use of differential equilibrium functions for interpretation of metal binding in complex ligand systems: its relation to site occupation and site affinity distributions
Chakrabarti et al. Studies on metal speciation in the natural environment
Farghaly Direct and simultaneous voltammetric analysis of heavy metals in tap water samples at Assiut city: an approach to improve the analysis time for nickel and cobalt determination at mercury film electrode
Wang et al. Linking molecular composition to proton and copper binding ability of fulvic acid: a theoretical modeling approach based on FT-ICR-MS analysis
CN109521007A (zh) 一种废水中氨氮的定量监测方法
Pelfrene et al. Evaluation of single-extraction methods to estimate the oral bioaccessibility of metal (loid) s in soils
CN103487391B (zh) 一种水体含铅量的测试方法
Mashio et al. Determination of the sub-picomolar concentration of dissolved palladium in open ocean seawater
CN108020542A (zh) 一种片盒内污染物含量的检测方法
Gonzalez et al. An international intercomparison exercise on passive samplers (DGT) for monitoring metals in marine waters under a regulatory context
Bragulla et al. Application of ion chromatography for the reliable quantification of ammonium in electrochemical ammonia synthesis experiments: a practical guide
CN110895218A (zh) 一种用于汽油中铅、锰和铁含量检测的标准品
Huntsman et al. Method development for determining the removal of metals from the water column under transformation/dissolution conditions for chronic hazard classification
Kawashima et al. Ion‐exchange resin and denitrification pretreatment for determining δ15N‐NH4+, δ15N‐NO3−, and δ18O‐NO3− values
CN106769950A (zh) 汽油中铅含量的检测方法
CN108051428B (zh) 一种水质测试方法、装置、在线毒性监测仪
Strivens et al. Data trend shifts induced by method of concentration for trace metals in seawater: Automated online preconcentration vs. borohydride reductive coprecipitation of nearshore seawater samples for analysis of Ni, Cu, Zn, Cd, and Pb via ICP‐MS
Speidel et al. Rivers and tidal flats as sources of dissolved organic matter and trace metals in the German Bight (North Sea)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200320

RJ01 Rejection of invention patent application after publication