CN110891578A - 用于心脏再生的组合物和方法 - Google Patents

用于心脏再生的组合物和方法 Download PDF

Info

Publication number
CN110891578A
CN110891578A CN201880032739.7A CN201880032739A CN110891578A CN 110891578 A CN110891578 A CN 110891578A CN 201880032739 A CN201880032739 A CN 201880032739A CN 110891578 A CN110891578 A CN 110891578A
Authority
CN
China
Prior art keywords
mir
cholesterol
gel
modified
guest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880032739.7A
Other languages
English (en)
Other versions
CN110891578B (zh
Inventor
E·E·莫里西
J·A·伯迪克
L·王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pennsylvania Penn
Original Assignee
University of Pennsylvania Penn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Pennsylvania Penn filed Critical University of Pennsylvania Penn
Priority to CN202311549764.1A priority Critical patent/CN117898999A/zh
Publication of CN110891578A publication Critical patent/CN110891578A/zh
Application granted granted Critical
Publication of CN110891578B publication Critical patent/CN110891578B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/554Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being a steroid plant sterol, glycyrrhetic acid, enoxolone or bile acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6903Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being semi-solid, e.g. an ointment, a gel, a hydrogel or a solidifying gel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Hospice & Palliative Care (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本公开提供了使用水凝胶递送系统的基于微小RNA的疗法,该疗法通过靶向心肌细胞为心肌梗塞提供了再生方法。该水凝胶提供了可用于促进心肌细胞增殖的微小RNA(例如miR‑302模拟物)的局部和持续的心脏递送。还提供了适合于局部和持续释放的组合物以及用于心肌内凝胶递送miRNA寡核苷酸的方法。

Description

用于心脏再生的组合物和方法
技术领域
本公开涉及用于改善心脏功能的方法和组合物,特别是在诸如心肌梗塞的心脏损伤之后。该组合物包括适于在一定的时间段内持续释放微小RNA的主客体水凝胶。该微小RNA刺激心脏细胞增殖并恢复心脏功能。
相关申请的交叉引用
本申请要求2017年3月31日提交的美国临时申请No.62/479,908的优先权,其全部内容通过引用合并于此。
电子提交的文本文件的说明
通过电子方式提交的文本文件的内容通过引用全文并入本文:序列表的计算机可读格式副本(文件名:PERA_001_01WO_SeqList_ST25.txt,记录日期:2018年3月27日,文件大小5KB)。
背景技术
在美国,心脏病是导致死亡的主要原因,每年导致600,000多人死亡。在美国,心肌梗塞(MI)或心脏病发作每年分别导致370,000例死亡。通过医疗和手术创新改善对急性心肌梗死的管理,使高达95%的患者能够在最初的住院治疗中幸存下来。但是,这些患者中有许多会发展成慢性心力衰竭,导致心梗后五年的死亡率达到50%。
尽管已使用多种治疗方法来预防心脏病发作,但它们仍然是公共卫生问题。预防措施可降低心脏病发作的发生率,但是在初次心脏病发作后,心脏组织受到损害,主要挑战是成年心脏中心肌细胞更新的能力有限。因此,在本领域中仍然需要用于治疗心脏病发作的受害者和其他具有心脏损伤的患者的疗法,以恢复心脏功能。
近年来,微小RNA(MicroRNA)在治疗方面已引起越来越多的关注。微小RNA(miRNA)是小的内源性RNA分子(约21-25nt),通过靶向一种或多种mRNA进行翻译抑制或切割来调节基因表达。它们是小的抑制性RNA,能够以高互补性抑制靶基因的翻译。通过克隆或计算预测,已经在诸如病毒、蠕虫和灵长类动物等生物中鉴定出数千种miRNA。
一组miRNA,即miR-302-367簇,具有较高的细胞内丰度,并且是特异于胚胎干细胞的细胞类型。该miRNA-302-367簇最初是从cDNA文库中鉴定出来的,该文库是使用未分化的hESC(人类胚胎干细胞)的大小分级RNA(17-26nt)通过定向克隆产生的。该簇被编码在人类4号染色体上,并包含以多顺反子方式共转录的九种不同的miRNA:miR-302a、miR-302a*、miR-302b、miR-302b*、miR-302c、miR-302c*、miR-302d、miR-367和miR-367*。miR-302家族包含7个具有高度保守5′区域的miRNA。miR-302-367簇首先被鉴定为在mESC(鼠ESC)、hESC及其恶性对应物hECC中表达。
发明内容
该申请公开了用于miR-30模拟物的受控释放的主客体水凝胶制剂。该水凝胶包含环糊精修饰的透明质酸(HA)(CD-HA)和金刚烷修饰的HA(AD-HA)以及胆固醇修饰的miR-302模拟物。该水凝胶适用于收缩组织,其中miR-302的释放性质可持续约7天有效刺激心肌细胞增殖。出人意料的是,尽管胆固醇和环糊精之间的相互作用改变了miR-302模拟物的释放特性,包括胆固醇修饰的miR-302模拟物并没有显著破坏主客体水凝胶。
附图说明
图1,凝胶组装和miR-302相互作用。图1A,HA用AD或CD修饰,可自组装成剪切稀化和自修复的凝胶。miR-302-chol上的胆固醇(chol)与CD相互作用,以提供从凝胶的持续释放。图1B,罗丹明/CD-HA相互作用导致罗丹明荧光猝灭,但通过将胆固醇修饰的miR-302滴定到系统中并置换罗丹明复合物可恢复荧光,表明胆固醇和CD之间存在复合(complexation)。图1C,通过市售RNA定量试剂盒RiboGreen定量的胆固醇修饰的miR-302b和miR-302c(各210μM)在三周内从凝胶(5重量%)的释放(平均值±SD,n=3)。
图2,体外心肌细胞增殖。图2A,miR-302上清液收集和心肌细胞摄取示意图。在具有胆固醇修饰的miR-302(210μM的miR302b和miR302c)或miR-NC的微量离心管中形成凝胶/miR-302(100μL)装配体。OPTI-MEM(500μL)被添加到凝胶上方,收集上清液,冷冻,并在D1、D4、D7、D10和D15替换。从每个时间点收集的上清液被添加到培养24小时的原代新生心肌细胞中。在48小时时,对心肌细胞进行Ki67、心肌肌钙蛋白T和DAPI染色以检测增殖。图2B,来自D0-D1、D1-D4、D4-D7、D7-D10和D10-D15的体外培养物的凝胶上清液的新生心肌细胞的Ki67阳性、肌钙蛋白T阳性增殖的定量,证明了早期凝胶/miR-302释放的增殖作用持续7天(平均值±SD,每种条件n=3,*p<0.05)。图2C,Ki67阳性、肌钙蛋白T阳性的新生心肌细胞(黄色箭头)的代表图像显示出针对凝胶/miR-302增加的Ki67长达7天。比例尺:50μm。
图3,体内心肌细胞增殖。图3A,从27Gxl/2注射器注入水中的预制凝胶(5重量%,蓝色染料),显示了注射后快速重新组装和最小的运载物分散。图3B,示意性地将心肌内凝胶注射到非梗塞的小鼠心脏中。在开胸手术后未梗塞的小鼠心脏中,在左心耳下方近端LAD的外侧进行两次注射。在第5天,将心脏切成薄片,并对肌钙蛋白T和Ki67、pH3或Aurora B染色。图3C,在低放大倍数下,注射部位周围的Ki67、pH3和Aurora B阳性心肌细胞(黄色箭头)表明凝胶/miR-302治疗组中所有三个标记物的增殖均增加。比例尺=50μm。d、e、f)凝胶/miR-302注射部位周围的Ki67、pH3和Aurora B阳性心肌细胞的高倍放大图,定量显示在凝胶/miR-302处理组中增殖增加。比例尺=5μm(平均值±SD,每组n=3只动物,*p<0.05,**p<0.01)。对于所有附图,除非另有说明,否则所有数据均报告为均值+标准差(SD)并一式三份进行。对于体内研究,除非另有说明,否则每组至少有三只小鼠。两组之间的比较通过Students t检验采用两尾标准进行,并且显著性确定为p<0.05。为了进行多组比较,通过单因素方差分析和事后检验确定显著性。使用Bonferroni校正进行多重比较,α=0.05。
图4,凝胶/miR-302在体内诱导克隆扩增。图4A,血统追踪策略和实验设计的示意图。为了追踪克隆增殖,将小鼠与Myh6MerCreMer和R26RConfetti杂交。Myh6的表达导致CreloxP重组,并随后随机激活四种荧光报告蛋白(nGFP、YFP、RFP和mCFP)之一,每种颜色代表与Myh6阳性心肌细胞不同的克隆。在我们的实验设计中,小鼠腹膜内注射他莫昔芬以诱导nGFP、RFP、YFP和mCFP的随机表达。14天后,将LAD结扎以诱导缺血性损伤,并在梗塞下游的边界区注射凝胶。在第28天,收集心脏用于克隆扩增的分析。图4B,凝胶/miR-302诱导的克隆扩增的机制:1)成年心肌细胞不增殖,在缺血性损伤后不能分裂;2)他莫昔芬用于用四种荧光报告蛋白之一随机标记一小部分心肌细胞;3)心肌梗塞,将凝胶/miR-302注射到边界区域的心肌细胞中;4)miR-302刺激荧光标记的心肌细胞的分化、增殖和扩增,从而使荧光蛋白基因传递到子细胞上。图4C,植入后第28天立即进行总心脏标本的荧光扫描。荧光显示在绿色和红色通道中,以指示在凝胶/miR-NC和凝胶/miR-302处理组中心肌细胞的标记。在凝胶/miR-302处理组的两个通道中都存在荧光增强现象,表明克隆扩增。
图5,Confetti标记的心肌细胞的克隆扩增。图5A,用标记的表达nGFP、RFP或YFP的心肌细胞共聚焦成像的代表性切片。凝胶/miR-NC切片主要由空间分离的单个心肌细胞组成。在凝胶/miR-302处理组中,在所有三个荧光通道中都观察到多个克隆,这些克隆非常接近,由一个亲代细胞的几个子细胞组成。WGA分离单个心肌细胞,并允许鉴定克隆,特别是将多个心肌细胞与多核心肌细胞区分开。比例尺=50μm。图5B,在nGFP、RFP和YFP通道中定量克隆细胞。克隆被鉴定为彼此相距50μm以内的细胞。由一个细胞组成的克隆在技术上不是克隆,而是随机标记的单细胞,但仍被视为分析的一部分,以证明它们在凝胶miR-NC组中普遍存在的。
图6,心肌梗死后的功能预后。
图6A,通过B型超声心动图在用PBS、凝胶/miR-NC或凝胶/miR-302处理的小鼠中在心肌梗塞后的4周的舒张末期容积(图6A)和收缩末期容积(图6B)。与对照组相比,凝胶miR-302治疗组的体积增加明显减少。通过超声心动图检查发现心肌梗死后4周的射血分数(图6C)和缩短分数(图6D)。凝胶/miR-302处理的小鼠的射血分数或缩短分数均与未梗塞的小鼠无显著差异。通过单因素方差分析比较所有组(平均值±SD,无MI,n=10;PBS,n=13;凝胶/miR-NC,n=10,凝胶/miR-302,n=12。*p<0.05**p<0.01***p<0.001)。图6E,代表性Mason三色切片显示了28天时的心脏容量改善。从结扎(ligation)到心尖(apex)排列各切片,以可视化组织重塑的变化。比例尺=2mm。图6F,左心室前壁和后壁的M型超声心动图显示,凝胶/miR-NC治疗的小鼠前壁运动减弱,而凝胶/miR-302治疗的小鼠有所改善。
图7,miR-302模拟物的胆固醇修饰。使用未修饰的(miR-302)和胆固醇修饰的(miR-302-chol)miR-302b/c模拟物(200μM)对新生小鼠心肌细胞的增殖,使用图7A)共同染色和图7B)定量心肌肌钙蛋白T和Ki67表示心肌细胞增殖。心肌细胞用miR-302处理24小时;48小时后进行染色。比例尺=50μm(平均值+SD,n=3,**p<0.01)。
图8,miR-302-chol与CD-HA的相互作用。图8A,因罗丹明与CD的相互作用,罗丹明荧光被CD-HA猝灭。越来越多的CD-HA饱和以50ng/μL淬灭。图8B,在饱和剂量的CD-HA(50ng/μL)下,胆固醇修饰的miR-302与CD-HA/Rho B相互作用以置换和消除罗丹明,以剂量依赖性方式恢复荧光。图8C,未经修饰的miR-302不会导致CD-HA/Rho B复合物的荧光恢复。图8D,Benesi-Hildebrand方程可用于确定胆固醇修饰的模拟物与CD-HA之间的结合常数,该常数近似于主客体的结合亲和力。在miR-302-chol的每个剂量,计算荧光变化(ΔEm580),并在Y轴上绘制为1/(ΔEm580),在X轴上绘制为1/[miR-302-chol]。图8E,最佳拟合线的Y轴截距允许计算ΔEm580最大值(ΔEm580max),该最大值用于根据斜率[1/(Ka*ΔEm580max)]计算Ka值。
图9,AD-HA和CD-HA的合成和1H NMR谱。图9A,由1-金刚烷乙酸与HA的伯醇通过二碳酸二叔丁酯(Boc2O)的酯化反应合成AD-HA。图9B,根据金刚烷的乙基多重峰(δ=1.42-1.70,12H)相对于HA主链(δ=3.10-4.10,10H)的整合,确定金刚烷官能化为约20%。CD-HA由胺化的环糊精(单-(6-己二胺-6-脱氧)-P-环糊精)和HA的羧酸通过(苯并三唑-1-基氧基)三(二甲基氨基)磷六氟磷酸酯的酰胺化反应合成。图9C,通过相对于HA(δ=2.1,3H)的甲基单峰的己烷连接基(δ=1.22-1.77,12H)的整合确定环糊精的官能化为约20%
图10,释放胆固醇修饰和未修饰的miR-302。将凝胶(100μL,5重量%)与胆固醇修饰的或未修饰的miR-302(210μM的miR-302b和210μM的miR-302c)组装。将PBS添加到微量离心管中的凝胶上方,并在三周内连续收集以定量总miR-302释放。在21天时,将凝胶溶解,以确定剩余的miR-302,并将所有值标准化为累积的miR-302。胆固醇修饰后,由于胆固醇和CD之间的复合物,miR-302的释放较慢(平均值±SD,n=3)。
图11,具有miR-302-chol的水凝胶的流变学。图11A,在1Hz时的储能(G′)和损耗(G″)模量的时间扫描,单独或与包封的miR-302(210μM miR-302b和210μM miR-302c)的凝胶(5重量%)应变为0.5%。miR-302包含物对模量的影响最小。图11B,在20Hz时交替出现低应变(0.5%)和高应变(250%,灰色阴影),表明使用miR-302剪切变稀并快速恢复水凝胶。G′响应于高应变而下降到G″以下,表明在高应变下流动和更多的液体行为。应变停止后,G′和G″都迅速恢复到初始力学。
图12,水凝胶侵蚀。在微量离心管中以5重量%形成含有或不含有miR-302(210μMmiR-302b和210μM miR-302c)的凝胶(100μL)。将PBS添加到凝胶中,历时三周收集,并通过尿酸比色测定法定量透明质酸含量,表明当包含miR-302时侵蚀的最小差异(平均值±SD,n=3)。图12A显示了时间过程。图12B提供了一个比较。
图13,比较miR-NC和miR-302的凝胶和PBS注射。在左心耳左下侧和LAD外侧的非梗塞性心脏组织中,将小鼠随机接受凝胶或PBS的miR-302或miR-NC 2x 5μL注射。在第5天,将心脏切开并染色以进行Ki67染色。定量每组至少三只小鼠的两个注射部位周围的HPF中Ki67(平均值±SD,每组n=3只动物,与所有组相比的*p<0.05)。
图14,Yap表达。在未结扎LAD的情况下,在近端LAD的外侧进行两次注射。图14A,用凝胶/miR-NC或凝胶/miR-302处理后五天,用Yap共染色切片。图14B,定量每个组至少有三只小鼠的两个注射位点周围的HPF中Ki67。切片显示凝胶/miR-302治疗组的总Yap升高;在具有Yap的细胞(黄色箭头)中,其定位于细胞核,暗示其与核转录因子的相互作用以促进增殖(平均值±SD,每组n=3只动物,**p<0.01)。
图15,注射凝胶/miR-302后在心脏和肺中miR-302的表达。在没有梗塞的小鼠心脏中,在近端LAD的外侧进行了两次注射。在D1、D5和D28,酶消化器官以收获总RNA。相对于未经处理的小鼠,qPCR用于定量总miR-302,以证明在注射凝胶后心脏中的持续的miR-302。插图是在对数刻度上绘制的同一张图,表明miR-302持续表达可达28天,而在肺中的表达最少。
图16,与凝胶/miR-302相比,注射凝胶/miR-NC的心脏的克隆接近性。图16A,在梗塞的边界区域鉴定出荧光标记的细胞,在凝胶/miR-302处理过的切片中克隆彼此相邻。相邻的nGFP、RFP和YFP细胞被放大以展示克隆。比例尺:50μm。图16B,克隆的定量表明,在凝胶/miR-302处理组中,所有三种荧光报告蛋白的克隆均增加。克隆定义为彼此之间50μm之内的至少两个相邻细胞。图16C,在彼此相隔50μM的凝胶/miR-302切片中发现了nGFP细胞,而在凝胶/miR-NC的切片中nGFP细胞相距大于100μM。通过IMARIS从3D共焦图像中进行测量。图16D,根据IMARIS测量结果量化nGFP细胞之间的距离(平均值±SD,每组n=3只动物,*p<0.05)。
具体实施方式
我们已经开发了能够抵抗心肌收缩的严峻考验的主客体(GH)水凝胶,但仍然能够提供经胆固醇修饰的微小RNA(“miRNA”)的有效剂量,从而以不存在心律失常的情况下恢复心脏功能的方式触发心肌细胞增殖。
我们先前展示了多顺反子miR-302-367簇的成员通过靶向Hippo信号转导途径的成员(包括Moblb、Lats2和Mstl.9)对胚胎发育过程中的心肌细胞增殖很重要。在心肌细胞中Hippo沉默的结果最终导致Yap的去磷酸化和核定位,从而促进转录途径,从而促进去分化、胚胎样的高度增生状态。
不幸的是,miR-302-367簇的组成型表达miRNA可能由于过度增殖和持续的去分化而引起了心肌梗塞后的心肌病。
有利的是,我们现在已经开发出一种使用主客体水凝胶的方法,该主客体水凝胶可耐受心脏组织的收缩性质,并在适合于心肌梗死后恢复心脏功能的给药方案中释放miRNA。水凝胶和给药方案减少或消除了先前获得的心肌病。
如本文所用,“约”是指指示值的正负10%。
本公开提供了工程化水凝胶,其被设计用于注射和持续递送可促进心肌细胞增殖和功能再生的miR-302。我们相信这是水凝胶被用作miRNA模拟物的载体而用于受损心脏组织的再生的首次报告。我们开发的水凝胶系统克服了全身递送的局限性,并通过从单次凝胶注射到心肌的持续释放来代替连续7天的注射。主客体组装机制允许注射和自我修复以改善驻留,胆固醇的修饰对结构或腐蚀没有预期的负面影响。此外,可以通过微创递送方法(例如,导管)来递送凝胶。
为了进一步控制释放,主客体组装机制还使用了环糊精,该环糊精可用于隔离水凝胶中胆固醇修饰的miRNA。有趣的是,胆固醇与环糊精的结合对凝胶侵蚀和机理的影响最小,同时在体外三周内维持miRNA模拟物的释放,比不包括这些相互作用时要慢。由于模拟物的释放比被侵蚀的凝胶更快,因此我们认为扩散在释放中起主要作用,这很可能是由于凝胶内的动态相互作用以及带负电荷的HA和RNA之间的阴离子排斥。由于胆固醇的修饰增加了模拟物的大小以及胆固醇因疏水性而与自身聚集的能力,模拟物释放也可以持续,导致在网络内部的截留。
在体外,凝胶/miR-302复合物导致新生小鼠心肌细胞中增殖,收集的释放物时间长达7天。在此时间之后(D10,D15)收集的释放物的增殖减少可能是由于实验时间延长导致的RNA降解。值得注意的是,在体内,我们的凝胶/miR-302复合物在第5天导致了成年心脏(终末分化器官)强劲的增殖。Aurora B激酶的表达是特别感兴趣的,因为它表明心肌细胞不仅进入细胞周期,而且实际上正在进行胞质分裂。在用凝胶/miR-302复合物治疗的心脏梗塞区域周围观察到了新产生的心肌细胞的克隆扩增。与简单观察到增殖标志物(例如Ki67和pH3)的增加相比,使用多色谱系报告基因使我们能够验证新心肌细胞的生成。我们的发现与最近的数据一致,这些数据表明,在哺乳动物的生命周期内或受伤后观察到的少量新生成的心肌细胞是由于既存的心肌细胞的增殖引起的,而不是源自祖细胞37。虽然新细胞本身可以增强心肌梗死后的收缩能力,但心肌细胞也可以通过旁分泌因子向成纤维细胞发出信号,从而在限制重塑(remodeling)中发挥作用。这解释了在递送凝胶/miR-302复合物后观察到的整体心脏容量和心脏功能的改善。
导致新生心肌细胞的凝胶/miR-302复合物的增殖潜能可以归因于心肌内注射后miR-302模拟物的驻留增加,特别是当不包含凝胶时,其增殖极小。这些结果与我们先前的数据一致,表明miR-302的全身性应用可在第一周内促进心肌细胞的增殖。将miRNA与凝胶复合也可以保护双链miRNA模拟物不被普遍存在的RNAse H介导的机制降解,从而允许连续和持久释放活性模拟物。这项工作还基于心肌内miRNA模拟注射的先前报道,其中将miRNA裸注射或在脂质复合物中与转染试剂一起注射。由于凝胶允许单次使用,并且在人体试验中具有良好的耐受性,因此我们认为使用凝胶/miRNA复合物为这些其他方法提供了明显的优势。
我们提供了一种生物工程化的miRNA递送方法,以促进MI后心肌细胞的增殖和心脏的再生。我们相信这是使用凝胶复合物将miRNA模拟物在体内递送至心脏组织的首次报道。与目前的方法相比,这种递送机制具有明显的优势,包括:(i)克服了所注射模拟物的短的有效期,(ii)作为单一应用使用,(iii)随着时间的推移优化miRNA模拟物的释放以促进心肌细胞增殖和心脏再生,(iv)适应通过导管经皮递送的潜力。当前,没有批准的再生心肌的治疗方法。在这方面,我们的系统相对于其他现有的缺血性损伤治疗可能具有独特的优势。
主客体水凝胶
本文公开的是在心脏中局部保留和释放胆固醇修饰的miR302模拟物的水凝胶,可提高效率并防止增殖信号干扰其他器官的细胞稳态。这些水凝胶可在一周内维持miR302的释放,以提供改善缺血性损伤后功能的瞬态递送,并防止过度增殖和去分化引起的心肌病。
水凝胶递送方法结合适当的给药方案和使用水凝胶的局部限制的miRNA释放,以增强心肌内注射后miR-302模拟物的驻留。由于其高度收缩的性质,注射时的驻留是对心脏递送的各种疗法的主要挑战。本文公开的水凝胶在适当的位置增加了miR-302模拟物的生物利用度,同时提供了不会诱发心肌病的剂量。除了定位miR-302之外,水凝胶还可以起到防止降解的作用,从而以连续和持久的方式增加其与细胞相互作用的能力,从而促进成年心肌细胞的有利增殖。
为了制备凝胶,用β-环糊精(CD,主体)或金刚烷(Ad,客体)修饰HA。CD和Ad通过主客体化学相互作用,其中非共价的疏水相互作用以限定的结构排列以高亲和力(Ka约1×105M-1)驱动两者的分子复合。在优选的方面,CD-HA修饰为约20%,而AD-HA修饰为约20%。
在特定方面,凝胶为约5%w/w。例如,本文公开的凝胶对于100μl凝胶可以包含3.2mg CD-HA和2.1mg AD-HA,以达到约5%w/w。在其他方面,该范围可以是约4%或约6%。CD-HA与AD-HA聚合物的比例可以在约2∶3至约3∶2的范围内。
在某些方面,将CD-HA和AD-HA聚合物在我们的细胞培养罩中在紫外线辐射下灭菌1小时。在示例性方法中,为了制备100μL凝胶,将干燥的聚合物各自以525μM分别重悬于20μL的miR-302b和20μL的miR-302c中(溶解在去离子水中)。将10μL的PBS添加至CD-HA和AD-HA,使得CD-HA和AD-HA的最终体积为50μL。(20μL miR-302b,20μL miR-302c,10μL PBS)。然后,通过在两个胰岛素注射器之间多次注射两种成分来混合凝胶,然后以最大速度离心以除去气泡。获得的凝胶的体积可以按比例放大。
可以找到有关可能的水凝胶变体阵列的其他一般信息。参见,例如,Rodell,C.B.等,Shear-Thinning Supramolecular Hydrogels with Secondary Autonomous CovalentCrosslinking to Modulate Viscoelastic Properties In Vivo,″Adv.Funct.Mater.25,636-644(2014);Rodell等,Rational Design of Network Properties in Guest-HostAssembled and Shear-Thinning Hyaluronic Acid Hydrogels,″Biomacromolecules 14,4125-4134(2013);Rodell等,″Injectable Shear-Thinning Hydrogels for MinimallyInvasive Delivery to Infarcted Myocardium to Limit Left VentricularRemodeling″Circ.Cardiovasc.Interv.9,(2016);Seif-Naraghi,S.B.等,″Safety andefficacy of an injectable extracellular matrix hydrogel for treatingmyocardial infarction″Sci.Transl.Med.5,173ra25(2013);Ouyang等,3D Printing ofShear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking,″ACS Biomater.Sci.Eng.acsbiomaterials.6b00158(2016).doi:10.1021/acsbiomaterials.6b00158;Mealy等,″Sustained small molecule delivery frominjectable hyaluronic acid hydrogels through host-guest mediated retention″J.Mater.Chem.B 3,8010-8019(2015);Gaffey等,″Injectable shear-thinninghydrogels used to deliver endothelial progenitor cells,enhance cellengraftment,and improve ischemic myocardium″J.Thorac.Cardiovasc.Surg.150,1268-77(2015)。
简而言之,当CD改性的HA聚合物与Ad改性的HA聚合物混合时,由于客体主体键的逆转,它们形成水凝胶,在注射过程中表现出剪切稀化行为。在心脏组织中部署GH水凝胶提出了挑战,因为收缩的重复性质会导致凝胶重复发生结构变形,从而影响miRNA的释放,进而增加了因过度向心肌细胞增殖信号而引起的心肌病的风险。
我们还预测到,miR-302模拟物上的胆固醇将与环糊精相互作用,从而使凝胶以不同的速率侵蚀,并且该相互作用将改变miRNA模拟物的释放,从而对治疗效果产生负面影响。但是,我们发现,只要环糊精的含量足够高,无论是否进行胆固醇修饰,凝胶侵蚀都是相似的。
微小RNA
在一个实施方案中,miR簇是包含多个微小RNA的遗传区域或基因座。示例性的微小RNA在美国公开申请号2013/0035374中公开,其整体以及涉及的序列并入本文。在一个实施方案中,miR簇是一组相邻基因,其在一个实施方案中以多顺反子方式共转录。在一个实施方案中,在单个启动子的控制下转录簇中的miR基因。在另一个实施方案中,miR簇是一组相邻和相关基因。在一个实施方案中,miR 302-367簇是具有多个miR的单个序列,所有都对应于302-367基因座。
在另一个实施方案中,核酸序列是上述序列的同源物。在一个实施方案中,所述同源物如PCT专利公开号WO/2009/091659中所述,或通过本领域已知的另一种同源物以其整体通过引用并入本文。
在一个实施方案中,微小RNA(miR)302-367簇包含以多顺反子方式共转录的九种不同的miRNA:miR-302a、miR-302a*、miR-302b、miR-302b*、miR-302c、miR-302c*、miR-302d、miR-367和miR-367*。在一个实施方案中,miR-302b的核酸序列是:UAAGUGCUCUCCAUGUUUUAGUAGAG(SEQ ID NO:1;miRBase登录号:MI0000772;ENTREZGENE:442894;miRBase登录号:MIMAT0000715)。在一个实施方案中,miR-302b*的核酸序列是:ACUUUAACAUGGAAGUGCUUUCU(SEQ ID NO:2;miRBase登录号:MIMAT0000714),任选地,末端U可以被去除。在一个实施方案中,miR-302c的核酸序列是:UAAGUGCUUCCAUGUUUCAGUGG(SEQID NO:3;miRBase登录号:MI0000773;ENTREZGENE:442895;登录号:MIMAT0000717);可选地,可以移除5’U。在一个实施方案中,miR-302c*的核酸序列是:UUUAACACGGGGGUACCUGCUG(SEQ ID NO:4;miRBase登录号:MIMAT0000716)。在一个实施方案中,miR-302a的核酸序列是:UAAGUGGUUCCAUGUUUUGGUGA(SEQ ID NO:5;miRBase登录号:MI0000738;ENTREZGENE:407028)。在一个实施方案中,miR-302a*的核酸序列是:UAAACGUGGAUGUACUUGCUUU(SEQ IDNO:6;miRBase登录号:MIMAT0000683)。在一个实施方案中,miR-302d的核酸序列是:UAAGUGCUUCCAUGUUUGAGUGU(SEQ ID NO:7;miRBase登录号:MI0000774;ENTREZGENE:442896;登录号MIMAT0000718)。在一个实施方案中,miR-367的核酸序列如下AAUUGCACUUUAGCAAUGGUGA(SEQ ID NO:8;miRBase登录号:MIMAT0004686;ENTREZGENE:442912)。在一个实施方案中,miR-367*的核酸序列如下:ACUGUUGCUAAUAUGCAACUCU(SEQ IDNO:9;miRBase登录号:MI0000772)。
因此,在特定方面,引导和过客分子(guide and passenger molecules)可衍生自以下序列:
Figure BDA0002276687120000141
除非另有说明,否则制备的水凝胶含有等摩尔量的miR-302b和miR-302c,以下统称为miR-302或miR-302模拟物。该模拟物在过客链的5′端含有胆固醇。miR-302b和miR-302c通常各自以约200μM至250μM,例如约220μM或约210μM存在于凝胶中,以实现释放的剂量。
胆固醇修饰的双链RNA在体外和体内被细胞被动摄取。然而,我们预测胆固醇将与环糊精结合,破坏CD-HA和AD-HA的相互作用,从而影响GH水凝胶的完整性,进而影响miR-302模拟物的释放曲线。为确保胆固醇修饰改善miR-302模拟摄取,将含或不含胆固醇修饰的miR-302b和miR-302c添加到培养的小鼠新生心肌细胞中,并用增殖标记Ki67染色细胞。用胆固醇修饰的miR-302b和miR-302c模拟物(miR-302-chol)处理的心肌细胞的增殖(Ki67+)明显高于用未经修饰的模拟物处理的心肌细胞(图7)。
由于亲脂性与作为主体的CD相互作用,这表明胆固醇修饰的模拟物可能与CD-HA结合(图1A)。为了检查相互作用对凝胶的影响,我们基于相似的试验开发了荧光结合试验,以测量胆固醇修饰的miR-302和CD-HA之间的相互作用。由于CD和Rho之间的主客体相互作用,罗丹明B(Rho)荧光被CD-HA淬灭。然而,胆固醇对CD具有更高的亲和力,应取代Rho并恢复荧光。我们观察到胆固醇修饰的miR-302以剂量依赖的方式与CD-HA结合,因为添加的胆固醇修饰的miR-302增加了溶液的荧光性(图1B)。相比之下,未修饰的miR-302不会改变溶液荧光(图8).假设与Rho的结合可忽略不计,通过拟合Benesi-Hildebrand方程,miR-302-chol/CD-HA复合物形成的结合常数近似为Ka=2.0x 103M-1。与胆固醇/CD复合物的文献一致(图8)。
为了评估胆固醇的作用,将胆固醇修饰的miR-302模拟物与CD-HA和AD-HA组装成凝胶(用CD或AD对HA进行约20%的修饰,图9)。胆固醇修饰的miR-302的释放持续了三周以上(图1C),其比没有胆固醇的模拟物的释放要慢(图10),证实了胆固醇/CD相互作用是复杂的,并且胆固醇改变了miR-302模拟物的释放曲线。因此,本文公开的胆固醇修饰的miRNA-302凝胶提供了延迟释放。在一些方面,与非胆固醇修饰的miRNA对照的高于60%相比,在约5天内累积释放为约50%。参见图10。
我们还研究了胆固醇修饰模拟物的凝胶的各种物理性质。为了确认胆固醇修饰的miR-302不会影响凝胶的机械和腐蚀行为,我们在有和没有包封miR-302的情况下进行了振荡流变和凝胶腐蚀试验。具有和不具有包封的胆固醇修饰的miR-302的凝胶的储能(G′)和损失(G″)模量是等量的(图11A)。还观察到高应变和低应变交替产生的剪切屈服和恢复,表明这些凝胶具有在剪切应变下变薄并在应变停止后迅速重新组装的能力,从而允许凝胶和miR-302系统的注射和快速恢复(图11B)。使用糖醛酸测定法测量HA释放,凝胶侵蚀不受系统中包含胆固醇修饰的miR-302的影响(图12)。因此,我们提供了包含胆固醇修饰的miR-302模拟物的凝胶,其提供增强的细胞摄取和对凝胶的改善的亲和力,而不会损害凝胶力学,剪切稀化或侵蚀。
本文公开的水凝胶诱导克隆增殖。为了验证在凝胶/miR-302处理的动物中观察到的增殖在缺血性损伤后可产生其他新的心肌细胞,我们使用多色R26R-Confetti Cre-reporter系统进行了克隆谱系追踪分析,该系统可通过表达荧光蛋白来追踪细胞谱系(图4;图16)。在注射miR302的心脏中清楚地鉴定出表达nGFP、RFP和YFP的克隆心肌细胞,而用对照miRNA注射则观察到很少的克隆。在标记的心肌细胞中,在注射了凝胶/miR-302的心脏中检测到多个表达nGFP的簇,并位于梗死的边界区域。在凝胶/miR-302处理的组中,nGFP+细胞之间的平均距离明显更低,表明这些细胞源自共同的单个细胞。用小麦胚芽凝集素(WGA)染色的进一步分析以鉴定细胞膜,显示在50μm以内的荧光细胞在凝胶/miR-302处理组中大部分是相邻的,而在凝胶/miR-NC组中则不是(图5a)。在凝胶/miR-NC组中,远处细胞(>50μm)经常散布在未标记的心肌细胞中。使用50μm作为标准,我们定量了在梗塞边界区域中心脏的所有区域中的nGFP、RFP和YFP的每个单个克隆的细胞数目。注射了凝胶/miR302的心脏每个克隆的细胞数量显著增加(多达8个),这表明这些细胞源自已分裂的共同亲本细胞(图5B)。因此,本文公开的水凝胶诱导克隆性心肌细胞增殖。
天然miR通过磷酸二酯键连接核苷酸,并且本文公开的miR可以通过磷酸二酯键连接核苷酸。然而,在其他方面,一个或多个磷酸二酯键可以被不同类型的化学键取代。例如,一个或多个键可以是硫代磷酸酯键。在另一个实施方案中,一个或多个核苷酸可以具有对乙氧基键。磷酸二酯键的减少和硫代磷酸酯键的增加将增强核酸酶抗性,从而促进生物学作用。但是,由于microRNA的结构要求,并不是所有的键都会改变。在某些方面,过客链比引导链包含更多的修饰。在某些其他方面,微小RNA是锁核酸(LNA)。修饰的其他说明在Baumann,V和J Winkler中进行了描述“miRNA-Based Therapies:Strategies andDelivery Platforms for Oligonucleotide and Non-Oligonucleotide Agents.”,Future medicinal chemistry 6.17(2014):1967-1984.PMC.Web.24Mar.2018.,其出于所有的目的且特别是适当的修改并入。
在特定方面,针对从水凝胶释放微小RNA的释放特性在被施加到心肌细胞后的特定时间内递送了瞬时剂量。在特定方面,水凝胶在21天内递送至少80%的剂量、在21天内递送至少85%的剂量、在21天内递送至少90%的剂量、或在21天内递送至少95%的剂量。在某些特定方面,瞬时释放可以在短于21天的时间内;例如,可以在7天、10天或14天之前释放至少85%的剂量。因此,在特定方面,水凝胶在长达21天的时间内瞬时递送有效剂量。
成人心脏组织中增殖的增强改善了MI的影响
在特定方面,本文所用的水凝胶被应用于成年心脏心肌细胞。成年心脏是终末分化的器官,因此特别需要刺激心肌细胞增殖的能力。本文公开的水凝胶在成年心脏中的五天内提供强劲而持续的增殖。
在某些实施方案中,可以通过测量心脏增殖标志物表达的增加来确定增强的心肌细胞增殖。示例性标记包括Ki67、PH3、Aurora B激酶(AURKB),其为一种胞质分裂标记。本文公开的凝胶在围绕Ki67、PH3和AURKB染色呈阳性的注射位点周围(200微米内)的区域中提供了高达约6%、约2%和约1%的细胞的改善的心肌细胞增殖。相反,没有miR-302模拟物的注射导致Ki67、PH3和AURKB的水平非常低(<1%),从而证实了以前关于成人心肌细胞自我更新能力非常罕见且有限的报道。
本文公开的水凝胶在心肌梗塞(MI)后提供增强的心脏功能。心脏功能可以通过超声心动图进行分析,并测量左心室舒张末期容积(LVEDV)、左心室收缩末期容积(LVESV)、射血分数(EF)和缩短分数(FS)。LVEDV和LVESV分别是心动周期开始和结束时心室容积的标志物,而射血分数和缩短分数则可测量心功能的效率。收缩期(LVIDS)和舒张期(LVIDD)时的左心室内径可从2D M模式成像中获得,其中,根据等式EF=[(LVIDD-LVIDS)/LVIDD]计算缩短分数(fractional shortening)。
射血分数测量标准化为心律周期开始时的量(LVEDV)的心动周期(LVEDV-LVESV)中的心脏容量变化,是心功能的体积度量。通过手动追踪左心室内膜边界,从B型成像获得左心室收缩末期容积(LVESV)和左心室舒张末期容积(LVEDV)。根据公式EF=[(LVEDV-LVESV)/LVEDV]计算射血分数。
本文公开的水凝胶将LVEDV恢复到与非梗塞对象相同的水平。与凝胶/miR-NC相比,凝胶/miR-302中的LVEDV降低了。与未梗塞的小鼠相比,假手术(PBS)和对照(凝胶/miR-NC)处理的小鼠的LVEDV均增加,而与未梗塞的小鼠相比,凝胶/miR-302组的LVEDV不变。
LVESV表现出相似的结果。在这里,凝胶/miR-302小鼠的LVESV低于假手术组和对照组的LVESV。PBS和凝胶/miR-NC处理小鼠的LVESV高于非MI小鼠。但是,凝胶/miR-302小鼠的LVESV与未梗塞的小鼠没有差异。从功能的角度来看,尽管PBS和凝胶/miR-NC处理的动物的EF和FS显著降低,但是凝胶/miR-302处理的动物的EF和FS与非梗塞小鼠没有显著差异。
因此,本文公开的水凝胶与对照相比,LVEDV和LVESV水平降低,并且与非梗塞小鼠的体积没有统计学差异。该数据表明凝胶可改善心脏容量,同时防止心室扩张和病理重塑。
心脏功能的其他测量方法提供了这些有益作用的进一步证据。相比于凝胶/miR-302处理的动物的PBS或PBS/凝胶/miR-NC对照LVEDV和LVESV并未显著不同于未梗塞的小鼠相比,在单次收缩的开始和结束时的心脏体积的测量的LVEDV和LVESV的减少可以说明凝胶/miR-302处理的小鼠的心脏重塑降低。
缩短分数是心脏功能的1D量度,它在心动周期开始时和在心动周期期间测量左前室壁和后室壁之间的直线距离变化。我们对FS的分析遵循类似趋势。与凝胶/miR-NC相比,凝胶/miR-302处理的小鼠的缩短分数更高。此外,尽管PBS和凝胶/miR-NC处理的小鼠的FS比未梗塞的小鼠低,但是凝胶/miR-302处理的小鼠的FS与未梗塞的小鼠没有差异。
我们的数据支持了一种机制,水凝胶可在注射后短短五天内诱导成人心肌组织中的心肌细胞增殖。如由Confetti梗塞模型所确立的,在约4周时,心肌细胞增殖以梗塞边界区域中心肌细胞克隆数量的增加形式表现出来。心肌细胞增加的结果是,LVEDV和LVESV明显降低,支持改善的心室扩张和重塑。类似地,通过施用本文公开的水凝胶/miR-302增加的EF和FS支持增强的心脏收缩性和功能。因此,与对照相比,凝胶/miR-302注射可在4周内使心脏舒张末期容积减少约30%至约45%(39%),使收缩期容积减少约45至约55%,并将射血分数提高约25%至约35%(例如约32%)并且缩短分数改善了约60%至约70%(例如约64%)。
综上所述,EF和FS的这种改善不仅支持改善的心脏容量,而且证明本文公开的水凝胶促进MI后心脏功能的显著改善。此外,数据表明,心肌细胞增殖和细胞数量的局部改善在限制梗塞扩展、最小化壁应力和改善心脏收缩性方面起着潜在的主要作用。
给药途径
通常通过注射入心肌来施用该水凝胶。在各方面中,在左前降支(LAD)动脉的近端注射。在特定方面,在近端左前降支(LAD)动脉的下外侧进行注射。
用于进行注射的装置是具有足够流量以允许凝胶通过的注射器。在某些方面,注射器可以是27-Gx1/2″U-100胰岛素注射器。在其他方面,递送可以是经皮的,例如经由导管。
实施例
实施例1
制备和负载主客体水凝胶
材料合成:通过与Dowex-100树脂交换并用氢氧化四丁基铵中和,将透明质酸钠(LifeCore,Chaska,MN)转化为四丁基铵盐(HA-TBA)。如前所述合成CD-HA和AD-HA。简而言之,在苯并三唑-1-基氧基)三(二甲基氨基)膦腈六氟磷酸酯(BOP)存在下,通过6-(6-氨基己基)氨基-6-脱氧-环糊精与HA-TBA之间的酰胺化反应制备CD-HA。AD-HA是通过将HA-TBA与1-金刚烷乙酸在碳酸氢二叔丁酯(BOC2O)和4-二甲基氨基吡啶(DMAP)中酯化而合成的。在使用前将产物透析、冷冻和冻干。使用360MHz的1H NMR(Bruker)测定最终产物的修饰,对于CD-HA和AD-HA,HA修饰为约25%的HA二糖。
使用的miRNA分子具有以下序列:
cel-miR-67(miR-NC)
5’-CGCUCAUUCUGCCGGUUGUUAUG-3’(引导;SEQ ID NO:14)
3’-AGAUGAGAAAGAUCCUCCAACACU-Chol-5’(过客;SEQ ID NO:15)
mmu-miR-302b(miR-302b)
5’-ACUUUAACAUGGGAAUGCUUUCU-3’(引导;SEQ ID NO:16)
3’-GAUGAUUUUGUACCUUCGUGAAU-Chol-5′(过客;SEQ ID NO:17)
mmu-miR-302c(miR-302c)
5’-GCUUUAACAUGGGGUUACCUGC-3’(引导;SEQ ID NO:18)
3’-GGUGACUUUGUACCUUCGUGAA-Chol-5’(过客;SEQ ID NO:19)
实施例2
罗丹明淬灭试验
为了进一步检查胆固醇与CD之间的相互作用,我们开发了荧光结合测定法来测量胆固醇修饰的miR302b/c与CD-HA之间的相互作用。该测定法基于胆固醇结合于并从β-环糊精取代罗丹明B的能力,从而导致猝灭和荧光增强。如实施例1所述制备凝胶。将罗丹明B(50ng/μL)与变化量的CD-HA(0-50ng/μL)在200μL的DI H2O中混合至最终浓度,以确定用于淬灭的饱和浓度。为了进行非猝灭测定,将罗丹明B(50g/μL)与miR-302模拟物(0-5μM)以200μL的终体积混合。在Tecan Infinite200读板器上在550nm的激发下测量了530至580nm的发射。通过拟合Benesi-Hildebrand方程计算对Rho/CD-HA复合物的miR-302b-chol亲和力。
我们发现胆固醇修饰的miR-302模拟物以剂量依赖的方式与CD-HA结合(图1B)。假设罗丹明的贡献可忽略不计,则通过拟合Benesi-Hildebrand方程,miR-302-chol/CD-HA复合物形成的结合常数可以近似为Ka=2.0x 103M-1。为了支持这种相互作用,将胆固醇修饰的miR-302b和miR-302c模拟物与CD-HA和AD-HA组装成凝胶(图1C)。miR-302b/c的凝胶释放持续了三周,与未修饰的模拟物相比,miR-302b/c在所有时间点的总体释放均降低,未修饰的模拟物的释放速度更快(图1D)。因此,胆固醇修饰通过对CD-HA的亲和力增加了miR-302b/c释放的复杂性。
实施例3
流变特性
为了确认胆固醇修饰的miR-302b和miR-302c模拟物(以下称为miR-302)不影响水凝胶的机械行为和侵蚀行为,我们进行了振荡流变和水凝胶腐蚀试验。
使用AR2000应力控制流变仪(TA Instruments)进行测量,该流变仪配有20mm直径的锥板几何形状,59min的42s锥角和27μm的间隙。通过时间扫描(1.0Hz;0.5%应变)检查流变学特性。对于剪切恢复实验,在250%应变下进行剪切稀化,在0.5%应变下恢复,每个都在20Hz下。
通过测量总透明质酸降解的糖醛酸测定,系统中包含miR-302也不会影响两周时的凝胶侵蚀(图1E)。
实施例4
miR-302的释放和生物活性
CD-HA和AD-HA聚合物在我们的细胞培养罩中于紫外线照射下灭菌1小时。为了制备100μL凝胶,将干燥的聚合物分别以525μM(溶于去离子水中)分别重悬于20μL miR-302b和20μL miR-302c中。将10μL PBS添加到CD-HA和AD-HA,因此CD-HA和AD-HA的最终体积为50μL(20μL miR-302b,20μL miR-302c,10μL PBS)。然后,通过在两个胰岛素注射器之间多次注射两种成分来混合凝胶,然后以最大速度离心以除去气泡。将聚合物/miRNA溶液手动混合并离心。
将凝胶与OPTI-MEM在1.5mL Eppendorf管中孵育,收集上清液并在D1,D4,D7,D10,D14和D21时替换。根据制造商的方案(Thermo Fisher Scientific),通过RiboGreen定量释放物中的总miRNA浓度。简而言之,将20μL释放物与Hi-Range RiboGreen缓冲液一起温育,并在Tecan Infinite微孔板读数器上以500nm的激发和520nm的发射测量荧光。
新生心肌细胞的分离和培养:如前所述,从新生小鼠中分离出心室心肌细胞。Eulalio,A.等,Functional screening identifies miRNAs inducing cardiacregeneration.Nature 492,376-81(2012)。简而言之,将来自新生小鼠(出生后第0-3天)的心室与心房分开,切成小块,然后在恒定搅拌下在含有10mM HEPES和0.54mM EDTA的无钙HBSS中用胰蛋白酶(0.5%)消化缓冲液。在4℃消化18小时后,将切碎的心脏与补充了10%马血清、5%FBS和10mM HEPES的无钙HBSS分离。然后用补充有10%马血清和5%FBS的无钙DMEM洗涤细胞。最后一次洗涤后,将细胞在未覆盖的塑料皿中接种2小时,并添加10%马血清和5%FBS的培养基。未附着的细胞通过细胞滤网(70uM,BD Falcon),并以15,000个细胞/孔的密度接种在明胶包被的96孔板上。孵育48小时后,大多数细胞开始搏动。使用该程序制备的小鼠心室心肌细胞始终产生>90%的纯度。对于增殖测定,将凝胶/miR-302释放物或对照添加到96孔板的细胞中24小时。
在48小时,将细胞用4%多聚甲醛固定15分钟,用0.5%Triton X-100在磷酸盐缓冲盐水(PBS)溶液中透化10分钟,然后在5%驴血清(Jackson Immuno Research)中封闭30分钟。然后将细胞在4℃下用稀释于封闭溶液中的肌钙蛋白T(Thermo Scientific)和Ki-67(Abeam)一抗染色,然后与Alex Fluor-488和555偶联的二抗染色。图像是使用Leica TCSSP8示波器采集的。从每个样品的十个代表性区域中一式三份进行细胞计数。
为了评估体外凝胶/miR-302装配体的心肌细胞增殖,收集了带有miR-302(释放液)的凝胶装配体的OPTI-MEM上清液,并在两周内连续更换(图2A)。用来自gel/miR-302装配体或对照的释放物处理新生心肌细胞。与凝胶/miR-NC或单独的凝胶相比,凝胶/miR-302装配体从D0-D1、D1-D4和D4-D7显著增强了新生小鼠心肌细胞的增殖(图2B和图2C)。在这些时间点内,凝胶/miR-302治疗组中约25%的心肌细胞(cTnT+)染色Ki67阳性,而对照组中<15%。
心肌细胞增殖的显著增强可归因于miR-302从凝胶中持续释放一周以上。在以后的时间点D7-D10、D10-D14,D14-D21,凝胶/miR-302与对照组之间的心肌细胞增殖没有差异。这很可能归因于在这些间隔期间释放的绝对miR-302浓度降低。由于延长的释放时间,miRNA模拟物在随后的这些时间点也可能会部分降解,从而导致生物活性降低。
总之,本文公开的凝胶在一周内增强了体外的新生心肌细胞增殖。值得注意的是,凝胶释放曲线表明,一次给药所获得的剂量类似于一周内重复进行的连续给药。
实施例5
体内增殖测量
在使用之前,将聚合物在UV辐射下灭菌1小时。如前所述,用siRNA形成凝胶,然后在无菌条件下在冰上手动转移到27-Gx1/2”U-100结核菌素注射器(Terumo)中。将雄性C57BL/6小鼠随机接受10份凝胶或对照注射液(2x 5μL)小鼠在诱导室(2L)中用3%异氟烷麻醉,并用1%异氟烷气管插管(Harvard Apparatus Regenerative Technology)。在第四个肋间隙进行左胸廓切开术以暴露心脏。注射是在近端LAD的外侧进行的,没有梗塞。注射后,用3-0聚丙烯缝线将胸部封闭3层,使动物恢复。5天后,切下心脏,在PBS中短暂洗涤,称重,固定在4%PFA中,包埋在石蜡中,并进一步进行免疫荧光处理。将玻片在TBS中用0.05%Triton X-100(TBST)洗涤,并在10%山羊血清中封闭,然后与抗以下抗体的一抗一起孵育:肌钙蛋白T(Thermo Scientific),Ki-67(Abeam),丝氨酸10磷酸化的组蛋白H3(细胞信号传导),Aurora B激酶(Sigma)或Yap(细胞信号传导)。24小时后,将切片与与Alex Fluor-488、555或647(Life Technologies)偶联的二抗孵育。通过用DAPI(Vector Labs)对切片进行反染来鉴定细胞核。然后将载玻片安装在Vectashield中。通过徕卡STED超分辨显微镜或LSM710Zeiss采集了一系列共焦图像(z堆栈)。图像由ImageJ软件和Imaris分析和构建。由两名独立研究者从每只小鼠两个注射部位的至少三个代表性部分中计数细胞。
心肌梗塞模型:使雄性C57BL/6小鼠随机接受10μL凝胶或对照注射液(2x 5μL)。在诱导室(2L)中用3%异氟烷麻醉小鼠,并用1%异氟烷气管插管(Harvard ApparatusRegenerative Technology)。在第四个肋间隙进行左胸廓切开术以暴露心脏。将LAD结扎在左耳下方2mm,从左心室发白可见梗塞。在梗塞的外侧进行注射。用3-0聚丙烯缝合线将胸部封闭3层,在恢复过程中监测动物的中风或栓塞迹象。
经胸超声心动图:鼻锥维持2%麻醉后,用3%异氟烷诱导麻醉小鼠。使用Nair去除毛发,然后将四肢用胶带绑在金属EKG引线上。回声是使用带有40MHz换能器的VisualSonicVevo 2100系统进行的,用于心脏成像。对于长轴视图,换能器沿左心室长轴平行放置;对于短轴视图,换能器顺时针旋转。使用Vevo 200 1.6 VisualSonic软件分析图像。所有测量均在至少五个心动周期内测量。从2D M-模式成像获得收缩期(LVIDS)和舒张期(LVIDD)期间的左心室直径,其中根据公式EF=[(LVIDD-LVIDS)/LVIDD]计算缩短分数。通过手动追踪左心室内膜边界,从B型成像获得左心室收缩末期容积(LVESV)和左心室舒张末期容积(LVEDV)。根据等式EF=[(LVEDV-LVESV)/LVEDV]计算射血分数。
实施例6
胆固醇对新生和成年心肌细胞的影响
新生心肌细胞显示出比成年心肌细胞更大的再生能力。为了确认我们可以恢复成年细胞的心脏功能,我们首先确认了水凝胶可以再生新生的心肌细胞。
凝胶/miR-302装配体的体外生物活性
为了评估体外的凝胶/miR-302装配体的心肌细胞增殖,收集了含miR-302的凝胶装配体的上清液,并在两周内连续更换(图2a)。新生小鼠心肌细胞用来自凝胶/miR-302或对照的上清液处理,并用Ki67、心肌肌钙蛋白T和DAPI染色。与具有非特异性序列的凝胶(凝胶/miR-NC)或单用凝胶相比(针对肌钙蛋白T和Ki67阳性为约10%),凝胶/miR-302装配体从D0-D1、D1-D4和D4-D7显著增强了新生小鼠心肌细胞的增殖(针对肌钙蛋白T和Ki67阳性为约20-25%)(图2b,c)。心肌细胞增殖的显著增强可归因于miR-302从凝胶中持续释放长达一周。在稍后的时间(D7-D10、D10-D14、D14-D21),由于低、无活性水平或长时间释放后可能的miRNA降解,凝胶/miR-302与对照之间的心肌细胞增殖没有差异。由于我们先前的研究表明miR-302的短暂递送可以增强体内的心脏功能,因此体外凝胶释放曲线表明,凝胶/miR-302可以从单次凝胶注射中重复使用一周的连续剂量。
心脏注射凝胶/miR-302后的体内生物活性
新生心肌细胞保留了一定的增殖能力,因此可能对miR-302刺激反应更强。因此,我们试图测试凝胶/miR-302装配体在成年心肌细胞中的生物活性,该成体心肌细胞在体外和体内均具有极强的增殖能力。从27Gx1/2”结核菌素注射器中将凝胶喷入水中,以证明其具有快速重新组装的注射能力和观察到的最小的运载物损失(图3a)。然后在成年雄性小鼠的非梗塞性心脏的近端左前降支(LAD)动脉的下部和外侧两个部位(每个部位5μL)注入凝胶,它对应于左心梗的左右边界区域(图3b)。在第5天,将心脏移植,切片并染色以检测心脏增殖(Ki67,pH3)和胞质分裂(Aurora B激酶)的标志物。从肌钙蛋白T阴性区域确定注射部位或针道,并针对所有这三种标记物在这些注射部位周围量化心肌细胞的增殖(肌钙蛋白T阳性)。
与对照组相比,凝胶/miR-302注射显著增加了注射部位周围的Ki67+、pH3+和Aurora B+心肌细胞(图3c)。值得注意的是,PBS/miR-302注射增加心肌细胞的增殖的程度最小(图13),凝胶/miR-302装配体进一步改善了心肌细胞的增殖,在注射部位周围的Ki67、pH3和AuroraB染色呈阳性的区域中,心肌细胞的数量分别多达约6%(图3d)、约2%(图3e)和约1%(图3f)。注射对照miRNA导致Ki67、pH3和Aurora B的水平非常低(<1%)。为证实这些心肌细胞通过抑制Hippo信号而增殖,还对切片进行Yap染色。在miR-302处理的切片中,存在定位于核的增加的总Yap,以支持Yap去磷酸化和继miR-302刺激后的核定位(图14)。
实施例7
Confetti小鼠模型中的克隆增殖
为了验证这种对心肌梗塞的治疗方法,我们检查了在心肌梗塞后并注射凝胶/miR-302的心肌细胞的分裂。使用R26R-Confetti小鼠模型进行血统追踪实验,该模型是带有loxP侧翼的GFP、YFP、RFP和CFP的随机多色Cre-reporter构建体(图4A)。
通过繁殖Myh6-MerCreMer和R26R-Confetti报告基因小鼠获得小鼠。
基因型My6-MerCreMer的引物:
正向:CGTTTTCTGAGCATACCTGGA(SEQ ID NO:20)
反向:ATTCTCCCACCGTCAGTACG(SEQ ID NO:21)
基因型R26RConfetti的引物:
正向:AAAGTCGCTCTGAGTTGTTAT(SEQ ID NO:22)
反向:CCAGATGACTACCTATCCTC(SEQ ID NO:23)
腹膜内单次注射他莫昔芬(6.7mg/kg)用于诱导Myh6-MerCreMer/R26R-Confetti小鼠心肌细胞的随机标记。滴定剂量以确保低水平的心肌细胞标记,以便可以鉴定出单个克隆。他莫昔芬注射后两周,通过开胸手术进入心脏,并结扎左前降支动脉,梗塞左心室,如下所述。使小鼠随机接受在边界区域中梗塞旁的凝胶/miR-302或凝胶/miR-NC(2×5μL)注射。手术和miR302注射后28天,对小鼠实施安乐死以收集组织。用2%多聚甲醛(PFA)将心脏固定过夜。24小时后,将心脏转移至50%OCT,随后与100%OCT连续孵育。然后将OCT中的心脏用干冰冷冻,并保持在-80℃直至切片。对于WGA染色,将切片再水化,然后在室温下与偶联到PBS中的Alexa Fluor-647(Life Technologies)的WGA一起温育1小时。然后将载玻片在PBS中冲洗并固定在Vectashield中。
为了验证这种治疗心肌梗塞的方法,我们检查了心肌梗塞后并注射凝胶/miR-302的心肌细胞分裂。使用R26R-Confetti小鼠模型进行血统追踪实验,该模型是带有loxP侧翼的GFP、YFP、RFP和CFP的随机多色Cre-reporter构建体(图4A)。为了追踪心肌细胞谱系,将R26R-Confetti小鼠与在心脏特异性α-肌球蛋白重链启动子下游表达他莫昔芬诱导的Cre重组酶的aMHC-MerCreMer小鼠进行繁殖。该系统允许以他莫昔芬依赖性方式随机标记仅心肌细胞。通过标记单个心肌细胞,可以通过计数标记有独特荧光团蛋白的细胞,随时间观察到凝胶/miR-302处理后心肌细胞分裂产生的克隆增加。
他莫昔芬剂量被滴定以确保低水平的Myh6+心肌细胞标记,从而可以鉴定单个克隆。他莫昔芬注射后,通过左前降支的结扎来梗塞心脏,并随机接受在边界区域中梗塞的左侧和右侧注射凝胶/miR-302或凝胶/miR-NC(2x 5μL)。在第四个星期,将心脏移出并肉眼观察(图4c),与对照相比,凝胶/miR-302注射的心脏在注射部位附近被强烈标记。共聚焦成像的进一步分析揭示了在注射了凝胶/miR-NC和凝胶/miR-302的成年心脏中nGFP、RFP和YFP的表达(图16a)。
在注射miR302的心脏中清楚地鉴定出表达nGFP、RFP和YFP的克隆心肌细胞,而注射对照miRNA则观察到很少的克隆(图16b)。在标记的心肌细胞中,在注射了凝胶/miR-302的心脏中检测到多个表达nGFP的簇,并位于梗死的边界区域(图16a)。在凝胶/miR-302处理的组中,nGFP+细胞之间的平均距离明显更低,表明这些细胞源自共同的单个细胞(图10c)。
用小麦胚芽凝集素(WGA)染色的进一步分析以鉴定细胞膜,显示在50μm内的荧光细胞在凝胶/miR-302处理组中大部分是连续的,但在凝胶/miR-NC组中不是连续的(图5a)。在凝胶/miR-NC组中,远距细胞(>50μm)经常散布在未标记的心肌细胞中。使用50μm作为标准,我们在梗塞边界区域的心脏的所有部分中量化了用于nGFP、RFP和YFP的单个克隆的细胞数量。注射了凝胶/miR302的心脏每个克隆的细胞数量显著增加(多达8个),表明这些细胞源自已分裂的共同亲本细胞(图5b)。
实施例8
MI后并注射凝胶/miR-302后的心脏功能
认识到凝胶/miR-302能够诱导非梗塞组织中的心肌细胞增殖并在梗死后增加细胞数量,我们通过超声心动图检查了MI后凝胶/miR-302改善生理结果的能力。成年小鼠随机分组接受通过LAD结扎引起的梗塞后接受凝胶/miR-302、凝胶/miR-NC或PBS注射。四周后,通过超声心动图分析心脏功能,并测量左心室舒张末期容积(LVEDV)、左心室收缩末期容积(LVESV)、射血分数(EF)和缩短分数(FS)。与PBS或凝胶/miR-NC对照相比,经凝胶/miR-302处理的小鼠的心脏重塑(remodeling)有所降低,这表现为LVEDV和LVESV(分别为单次收缩开始和结束时心脏体积的测量值)的降低(图6A,B)。凝胶/miR-302处理的动物的LVEDV和LVESV与未梗塞的小鼠无显著差异。从功能的角度来看,尽管PBS和miR-NC凝胶处理的动物的EF和FS显著降低,但凝胶/miR-302凝胶处理的动物的EF和FS与未梗塞的小鼠无显著差异(图6C,D)。Mason在四周时对组织切片进行的三色染色也证实了超声心动图的体积变化,其中通过凝胶/miR-302处理发现了来自轴向切片的最小左心室区域(图6E)。显示了左心室前壁和后壁运动的代表性一维超声心动图M型测量结果(图6F),该图说明了用凝胶/miR-302治疗的小鼠的前壁运动得以改善,收缩压和舒张压的内部舒张压减小。
序列表
<110> 赫拉测试实验室公司
E·E·莫里西
J·A·伯迪克
L·王
<120> 用于心脏再生的组合物和方法
<130> PERA-001/01WO
<150> US 62/479,908
<151> 2017-03-31
<160> 23
<170> PatentIn 版本 3.5
<210> 1
<211> 23
<212> RNA
<213> 智人
<400> 1
uaagugcuuc cauguuuuag uag 23
<210> 2
<211> 23
<212> RNA
<213> 智人
<400> 2
acuuuaacau ggaagugcuu ucu 23
<210> 3
<211> 23
<212> RNA
<213> 智人
<400> 3
uaagugcuuc cauguuucag ugg 23
<210> 4
<211> 22
<212> RNA
<213> 智人
<400> 4
uuuaacaugg ggguaccugc ug 22
<210> 5
<211> 23
<212> RNA
<213> 智人
<400> 5
uaagugguuc cauguuuugg uga 23
<210> 6
<211> 22
<212> RNA
<213> 智人
<400> 6
uaaacgugga uguacuugcu uu 22
<210> 7
<211> 23
<212> RNA
<213> 智人
<400> 7
uaagugcuuc cauguuugag ugu 23
<210> 8
<211> 22
<212> RNA
<213> 智人
<400> 8
aauugcacuu uagcaauggu ga 22
<210> 9
<211> 22
<212> RNA
<213> 智人
<400> 9
acuguugcua auaugcaacu cu 22
<210> 10
<211> 69
<212> RNA
<213> 智人
<400> 10
ccaccacuua aacguggaug uacuugcuuu gaaacuaaag aaguaagugc uuccauguuu 60
uggugaugg 69
<210> 11
<211> 73
<212> RNA
<213> 智人
<400> 11
gcucccuuca acuuuaacau ggaagugcuu ucugugacuu uaaaaguaag ugcuuccaug 60
uuuuaguagg agu 73
<210> 12
<211> 68
<212> RNA
<213> 智人
<400> 12
ccuuugcuuu aacauggggg uaccugcugu gugaaacaaa aguaagugcu uccauguuuc 60
aguggagg 68
<210> 13
<211> 68
<212> RNA
<213> 智人
<400> 13
ccucuacuuu aacauggagg cacuugcugu gacaugacaa aaauaagugc uuccauguuu 60
gagugugg 68
<210> 14
<211> 23
<212> RNA
<213> 秀丽隐杆线虫
<400> 14
cgcucauucu gccgguuguu aug 23
<210> 15
<211> 24
<212> RNA
<213> 秀丽隐杆线虫
<220>
<221> 无合适定义的特征
<222> (24)..(24)
<223> 附接的胆固醇部分
<400> 15
agaugagaaa gauccuccaa cacu 24
<210> 16
<211> 23
<212> RNA
<213> 小鼠
<400> 16
acuuuaacau gggaaugcuu ucu 23
<210> 17
<211> 23
<212> RNA
<213> 小鼠
<220>
<221> 无合适定义的特征
<222> (23)..(23)
<223> 附接的胆固醇部分
<400> 17
gaugauuuug uaccuucgug aau 23
<210> 18
<211> 22
<212> RNA
<213> 小鼠
<400> 18
gcuuuaacau gggguuaccu gc 22
<210> 19
<211> 22
<212> RNA
<213> 小鼠
<220>
<221> 无合适定义的特征
<222> (22)..(22)
<223> 附接的胆固醇部分
<400> 19
ggugacuuug uaccuucgug aa 22
<210> 20
<211> 21
<212> DNA
<213> 小鼠
<400> 20
cgttttctga gcatacctgg a 21
<210> 21
<211> 20
<212> DNA
<213> 小鼠
<400> 21
attctcccac cgtcagtacg 20
<210> 22
<211> 21
<212> DNA
<213> 小鼠
<400> 22
aaagtcgctc tgagttgtta t 21
<210> 23
<211> 20
<212> DNA
<213> 小鼠
<400> 23
ccagatgact acctatcctc 20

Claims (20)

1.一种用于在体内将miR-302模拟物受控地局部递送至收缩组织的主客体水凝胶,其包含:
(a)主客体水凝胶,其包含:
(i)环糊精修饰的HA聚合物(CD-HA)和
(ii)金刚烷修饰的HA聚合物(AD-HA);以及
(b)胆固醇修饰的miR-302模拟物;
其中所述胆固醇修饰的miR-302模拟物的剂量不破坏所述主客体水凝胶的相互作用。
2.根据权利要求1所述的主客体水凝胶,其中所述胆固醇修饰的miR-302模拟物包含胆固醇修饰的miR-302b和胆固醇修饰的miR-302c。
3.根据权利要求1或权利要求2所述的主客体水凝胶,其中通过体外测定确定,约60%的所述胆固醇修饰的miR-302模拟物在10天内释放。
4.根据权利要求1至3中任一项所述的主客体水凝胶,其中约25%的所述CD-HA被环糊精修饰和/或约25%的所述AD-HA被金刚烷修饰。
5.根据权利要求1至4中任一项所述的主客体水凝胶,其中所述胆固醇修饰的miR-302b衍生自SEQ ID NO:10,并且所述胆固醇修饰的miR-302c衍生自SEQ ID NO:11。
6.根据权利要求1至5中任一项所述的主客体水凝胶,其中至少80%的所述胆固醇修饰的miR-302模拟物在21天内从所述凝胶中释放。
7.根据权利要求1至6中任一项所述的主客体水凝胶,其中所述胆固醇修饰的miR-302b和胆固醇修饰的miR-302c以等摩尔量存在。
8.根据权利要求1至7中任一项所述的主客体水凝胶,其中,通过测量总HA降解的糖醛酸测定法的测量,在14天后,在存在miR-302模拟物的情况下的凝胶侵蚀是在不存在miR-302模拟物的情况下的凝胶侵蚀的约10%以内。
9.根据权利要求1至8中任一项所述的主客体水凝胶,其中,
所述CD-HA聚合物以约20%至约25%存在;并且
所述AD-HA聚合物以约20%至约25%存在。
10.根据权利要求1至9中任一项所述的主客体水凝胶制剂,其中所述凝胶的粘弹性在0.1-50%的应变下在1Hz时为400-800Pa。
11.一种体内增强心功能的方法,包括向受试者单次施用根据权利要求1至10中任一项所述的主客体水凝胶制剂,其中心功能得到增强。
12.根据权利要求11所述的方法,其中,如通过体外心肌细胞模型中增殖标志物的表达增加所确定的,所述施用持续7天释放可有效刺激心肌细胞增殖的miR-302模拟物的剂量。
13.根据权利要求12所述的方法,其中,当表达Ki67+的心肌细胞的数目与对照miRNA相比在1天增加约2倍时,获得增加的增殖。
14.根据权利要求12所述的方法,其中当表达Ki67+的心肌细胞的数目与对照miRNA相比在4天增加约2倍时,获得增加的增殖。
15.根据权利要求12所述的方法,其中当表达Ki67+的心肌细胞的数目与对照miRNA相比在7天增加约2倍或更多时,获得增加的增殖,并且其中在14天测量时,所述增加的增殖比所述对照miRNA高约10%。
16.根据权利要求12所述的方法,其中,所述受试者是人类。
17.根据权利要求1所述的水凝胶,其中所述收缩组织是心脏组织。
18.根据权利要求17所述的水凝胶,其中所述心脏组织是终末分化的。
19.一种用于在体内将miR-302模拟物受控地局部递送至收缩组织的主客体水凝胶,其包含:
(a)主客体水凝胶,其包含:
(i)环糊精修饰的HA聚合物(CD-HA)和
(ii)金刚烷修饰的HA聚合物(AD-HA),
其中聚合物的最终浓度为约5重量%;以及
(b)由衍生自SED ID NO:10的胆固醇修饰的miR-302b序列组成的胆固醇修饰的miR-302模拟物;以及
(ii)由衍生自SED ID NO:11的胆固醇修饰的miR-302c序列组成的胆固醇修饰的miR-302c模拟物;
其中所述胆固醇修饰的miR-302b和所述胆固醇修饰的miR-302c以等摩尔量存在,并且
其中所述胆固醇修饰的miR-302模拟物的剂量不破坏所述主客体水凝胶的相互作用。
20.根据权利要求19所述的主客体水凝胶,其中所述胆固醇修饰的miR-302b和所述胆固醇修饰的miR-302c各自以约200μM至约250μM存在。
CN201880032739.7A 2017-03-31 2018-04-02 用于心脏再生的组合物和方法 Active CN110891578B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311549764.1A CN117898999A (zh) 2017-03-31 2018-04-02 用于心脏再生的组合物和方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762479908P 2017-03-31 2017-03-31
US62/479,908 2017-03-31
PCT/US2018/025652 WO2018183997A1 (en) 2017-03-31 2018-04-02 Compositions and methods for cardiac regeneration

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202311549764.1A Division CN117898999A (zh) 2017-03-31 2018-04-02 用于心脏再生的组合物和方法

Publications (2)

Publication Number Publication Date
CN110891578A true CN110891578A (zh) 2020-03-17
CN110891578B CN110891578B (zh) 2023-12-01

Family

ID=63678039

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880032739.7A Active CN110891578B (zh) 2017-03-31 2018-04-02 用于心脏再生的组合物和方法
CN202311549764.1A Pending CN117898999A (zh) 2017-03-31 2018-04-02 用于心脏再生的组合物和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311549764.1A Pending CN117898999A (zh) 2017-03-31 2018-04-02 用于心脏再生的组合物和方法

Country Status (3)

Country Link
EP (1) EP3600344A4 (zh)
CN (2) CN110891578B (zh)
WO (1) WO2018183997A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116585342A (zh) * 2023-05-23 2023-08-15 源生生物科技(青岛)有限责任公司 包含miRNA的活性成分及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210393800A1 (en) * 2018-10-26 2021-12-23 Phi Biomed Inc. Preparation and application of supramolecular self-assembled hyaluronic acid hydrogel
EP3936616A1 (en) 2020-07-10 2022-01-12 Charité - Universitätsmedizin Berlin Microrna-targeted therapy for cardiac repair
KR102593915B1 (ko) * 2020-09-29 2023-10-26 (주)화이바이오메드 초분자 자기조립 히알루론산 하이드로겔의 기계적 강도 제어

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090246875A1 (en) * 2007-12-10 2009-10-01 Kyoto University Efficient method for nuclear reprogramming
US20150202299A1 (en) * 2012-08-14 2015-07-23 The Trustees Of The University Of Pennsylvania Stabilizing shear-thinning hydrogels
WO2015175889A1 (en) * 2014-05-16 2015-11-19 The Trustees Of The University Of Pennsylvania Microrna induction of cardiac regeneration

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011133288A1 (en) * 2010-04-19 2011-10-27 The Trustees Of The University Of Pennsylvania Microrna induction of pluripotential stem cells and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090246875A1 (en) * 2007-12-10 2009-10-01 Kyoto University Efficient method for nuclear reprogramming
US20150202299A1 (en) * 2012-08-14 2015-07-23 The Trustees Of The University Of Pennsylvania Stabilizing shear-thinning hydrogels
WO2015175889A1 (en) * 2014-05-16 2015-11-19 The Trustees Of The University Of Pennsylvania Microrna induction of cardiac regeneration

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOSHUA E. MEALY等: "Sustained small molecule delivery from injectable hyaluronic acid hydrogels through host–guest mediated retention", 《JOURNAL OF MATERIALS CHEMISTRY B》 *
YING TIAN等: "A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice", 《SCIENCE TRANSLATIONAL MEDICINE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116585342A (zh) * 2023-05-23 2023-08-15 源生生物科技(青岛)有限责任公司 包含miRNA的活性成分及其应用

Also Published As

Publication number Publication date
CN117898999A (zh) 2024-04-19
WO2018183997A1 (en) 2018-10-04
EP3600344A1 (en) 2020-02-05
EP3600344A4 (en) 2020-12-09
US20200108013A1 (en) 2020-04-09
CN110891578B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
Wang et al. Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury
CN110891578B (zh) 用于心脏再生的组合物和方法
Pan et al. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway
Suh et al. Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation
Somasuntharam et al. Knockdown of TNF-α by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction
Wang et al. Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration
Paul et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair
JP7432362B2 (ja) modRNAの細胞特異的発現
EP3749288B1 (en) Nanoparticle-hydrogel composite for nucleic acid molecule delivery
JP2011504170A (ja) 皮膚の中で平癒している瘢痕のない損傷のためのマルチ目標とされたRNAi治療学
Diao et al. PEG–PLA nanoparticles facilitate siRNA knockdown in adult zebrafish heart
Ge et al. Tetrahedral framework nucleic acids connected with MicroRNA-126 mimics for applications in vascular inflammation, remodeling, and homeostasis
Peng et al. Acid degradable cationic galactose-based hyperbranched polymers as nanotherapeutic vehicles for epidermal growth factor receptor (EGFR) knockdown in cervical carcinoma
US20200197432A1 (en) Methods And Compositions For Controlling Cardiac Fibrosis And Remodeling
WO2019028469A1 (en) FUNCTIONALIZED POLYMER MITOCHONDRIAL COMPOSITIONS AND METHODS OF USE IN CELL TRANSPLANTATION AND FOR MODIFYING METABOLIC PHENOTYPE
EP3280429B1 (en) Fstl1 for use in repairing cardiac tissue
Zhang et al. Combined intramyocardial injectable hydrogel and pericardial adhesive hydrogel patch therapy strategy to achieve gene/ion/gas delivery for improving cardiac function
Song et al. Ammonium Persulfate-Loaded Carboxylic Gelatin–Methacrylate Nanoparticles Promote Cardiac Repair by Activating Epicardial Epithelial–Mesenchymal Transition via Autophagy and the mTOR Pathway
Meng et al. An injectable miRNA-activated matrix for effective bone regeneration in vivo
Chambers et al. The osteogenic and angiogenic potential of microRNA-26a deliveredviaa non-viral delivery peptide for bone repair
JP5463531B2 (ja) Phd2発現抑制物質搭載ポリイオンコンプレックス
US12128136B2 (en) Compositions and methods for cardiac regeneration
Ni et al. Repairing gastric ulcer with hyaluronic acid/extracellular matrix composite through promoting M2-type polarization of macrophages
Roy et al. Injectable Peptide Hydrogels Loaded with Murine Embryonic Stem Cells Relieve Ischemia In Vivo after Myocardial Infarction
Pandey Investigating the intracellular trafficking of antisense oligonucleotide after Stabilin receptor mediated endocytosis and finding novel strategies to enhance its endosomal escape

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40023934

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant