CN110890444A - 一种GaN紫外探测器及其制备方法 - Google Patents

一种GaN紫外探测器及其制备方法 Download PDF

Info

Publication number
CN110890444A
CN110890444A CN201911111605.7A CN201911111605A CN110890444A CN 110890444 A CN110890444 A CN 110890444A CN 201911111605 A CN201911111605 A CN 201911111605A CN 110890444 A CN110890444 A CN 110890444A
Authority
CN
China
Prior art keywords
detector
layer
gan
type
nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911111605.7A
Other languages
English (en)
Inventor
金鑫
汤乃云
叶怀宇
张国旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Third Generation Semiconductor Research Institute
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN201911111605.7A priority Critical patent/CN110890444A/zh
Publication of CN110890444A publication Critical patent/CN110890444A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN

Abstract

本发明提供一种GaN紫外探测器及其制备方法,该探测器是具有高抗反射结构的新型紫外探测器,能够实现快速、高灵敏度的紫外光探测;其倒梯形的凹槽有助于入射光在内部多次被吸收,抑制探测器的高表面反射,增强探测器的光吸收,提高探测器的量子效率、光响应率等性能;此外,Ga2O3纳米线作为抗反射层和紫外敏感材料,能够进一步提高探测器的光电性能。

Description

一种GaN紫外探测器及其制备方法
技术领域
本发明涉及紫外探测领域,具体为一种GaN紫外探测器及其制备方法。
背景技术
作为第三代半导体之一,GaN因为其独特的光电子特性(3.4eV禁带宽度),被公认为紫外探测器的核心材料,非常适用于高度集成紫外光电子器件。但是对于传统的GaN紫外探测器来说,其通常是在平面衬底之上制备而成,而平面结构的探测器具有很高的表面反射效率,会导致探测器的光子吸收效率、光探测率以及响应率等性能会受到影响。近些年来,表面修正技术被越来越多的使用于有效地减少表面反射和增强光子的吸收效率方面,尤其是对GaN、AlGaN等外延材料的器件。在诸多表面修正技术中,自上而下的基底微加工技术、自下而上的合成纳米材料(纳米结构和薄膜材料)技术以及二者的结合被认为是最有效的方法和技术路径。利用半导体PN结光伏效应制成的器件称为光伏探测器,也称结型光电器件。这类器件品种很多,其中包括:光电池、光电二极管、光电晶体管、光电场效应管、PIN管、雪崩光电二极管、光可控硅、阵列式光电器件、象限式光电器件、位置敏感探测器(PSD)、光电耦合器件等。
目前大多数紫外探测器的光电响应在准确性和灵敏度方面有待进一步提高,同时由于不可避免的表面反射,导致入射光子在探测器中的吸收效率也未能达到理论值,因此紫外探测器在量子效率、光响应率等光电性能是目前研究人员急需要解决的问题之一。
发明内容
基于上述所提到的问题,依赖先进的微纳加工技术在传统的GaN紫外探测器上进行表面改进,以提高GaN探测器的光子吸收效率、探测率和光电响应率等性能。本发明创新性的提出了一种具有高抗反射结构的GaN紫外探测器的制备方法,不仅能够降低探测器表面对光子的反射效率,而且能够将入射光子局域在器件内部实现极高的光子吸收率和探测效率。一种GaN紫外探测器的制备具体方法包括以下步骤:
1)衬底上依次生长GaN缓冲层和n型GaN层;
2)选择性刻蚀n型GaN层,形成倒梯形凹槽;
3)在凹槽内依次外延生长本征GaN层和p型AlGaN层;
4)p型AlGaN层上生长一层Ga2O3纳米线使得入射探测器的紫外光子只进不出,抑制表面反射;
5)在纳米线上淀积一层ITO透明电极;
6)在凹槽外n型GaN层之上沉积一个金属电极;
外延的GaN/AlGaN之上合成Ga2O3纳米线,纳米线材料本身具有很强的降低表面光反射效率的作用,
采用自上而下的基底微加工技术能够在外延材料上制备一些局域光束的凹槽结构。纳米线材料本身具有很强的降低表面光反射效率的作用,所以集成纳米材料的凹槽结构就像一个“黑洞”一样,使得入射探测器的紫外光子只进不出,极大地抑制表面反射,并能够将GaN探测器的光子吸收效率、探测率、响应率等光电性能提高到新的水平和高度。
优选地,其特征在于:所述1)中的GaN缓冲层厚度为0.2μm~5μm;所述n型GaN层厚度为0.5μm~4μm,掺杂浓度为1×1018cm-3~5×1018cm-3,掺杂元素为硅。
优选地,其特征在于:所述2)中的倒梯形凹槽,凹槽的深度为0.2μm~3.5μm,并且不大于n型GaN层的厚度。
使用的微型倒梯形凹槽结构,当紫外光束照射在凹槽结构内部后,光束会在内部的界面发生多次反射,最终入射光子会被内部的材料所吸收殆尽,极少有光子反射出凹槽结构。
优选地,其特征在于:所述3)中的本征GaN层厚度为0.1μm~2.0μm;p型掺杂AlGaN层厚度为0.1μm~1.0μm,掺杂浓度为1×1018cm-3~5×1018cm-3,掺杂元素为镁。
优选地,其特征在于:所述4)中的Ga2O3纳米线为高密度的纳米线,其生长方向垂直于p型掺杂AlGaN层,其长度为20nm~100nm。
优选地,其特征在于:所述5)中的ITO透明电极厚度为100nm~500nm。
由上述方法制得的GaN紫外探测器,该紫外探测器在结构上是一种PIN光伏探测器。
采用上述技术方案本发明的优点至少在于:
A.受益于凹槽结构和纳米材料的作用,本发明的探测器具有极低的表面发射率和极高的光子吸收率。
B.本发明的紫外探测器在结构上是一种PIN光伏探测器,因此具有快速、准确、高灵敏的光电响应特性。
C.本发明的紫外探测器具有极高的量子效率、光响应率等光电性能。
D.本发明的紫外探测器是一种具有高抗反射结构的GaN紫外探测器。
附图说明
图1为本发明的光入射凹槽结构示意图;
图2为本发明的二维剖面结构示意图;
图3为本发明实施例1的制备工艺流程图;
图4为本发明实施例2的制备工艺流程图;
图5为本发明实施例3的制备工艺流程图。
图2中,蓝宝石衬底1,GaN缓冲层2,n型掺杂GaN层3,本征掺杂的GaN层4,p型掺杂AlGaN层5,Ga2O3纳米线6,ITO透明电极7,金属电极8。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示为本发明所使用的微型倒梯形凹槽结构,当紫外光束照射在凹槽结构内部后,光束会在内部的界面发生多次反射,最终入射光子会被内部的材料所吸收殆尽,极少有光子反射出凹槽结构。此外,在本发明中也采用了自下而上合成纳米材料技术,在外延的GaN/AlGaN之上合成Ga2O3纳米线,纳米线材料本身具有很强的降低表面光反射效率的作用,所以集成纳米材料的凹槽结构就像一个“黑洞”一样,使得入射探测器的紫外光子只进不出,极大地抑制表面反射,并能够将GaN探测器的光子吸收效率、探测率、响应率等光电性能提高到新的水平和高度。
本实施例提供一种具有高抗反射能力的GaN紫外探测器的制备方法,器件的剖面如图2所示,它由蓝宝石衬底1,GaN缓冲层2,n型掺杂GaN层3,本征掺杂的GaN层4,p型掺杂AlGaN层5,Ga2O3纳米线6,ITO透明电极7和金属电极8组成。
实施例1
作为一个优选方案具体制备工艺流程如图3所示,包括:
1)取样蓝宝石衬底,并用浓磷酸溶液对其表面进行预处理。
2)在蓝宝石衬底之上依次外延生长2μm GaN缓冲层2、2μm掺杂浓度为1×1018cm-3的n型GaN层3。
3)使用感应耦合等离子体(ICP)刻蚀设备,结合刻蚀掩膜,选择性刻蚀n型GaN层3,形成倒梯形凹槽,凹槽的深度1.5μm。
4)利用外延材料生长设备,在洁净的倒梯形凹槽内依次生长0.5μm本征GaN层4和0.2μm掺杂浓度为1×1018cm-3的p型AlGaN层5。刻蚀台阶和台面上。
5)在凹槽内的p型AlGaN层5之上,生长20nm高的Ga2O3纳米线6。
6)在Ga2O3纳米线6上制备100nm厚ITO透明电极。
7)利用光刻、金属蒸镀技术,在凹槽外n型GaN上淀积金属电极8,并形成良好的欧姆接触。
实施例2
作为一个优选方案具体制备工艺流程如图4所示,包括:
1)取样蓝宝石衬底,并用浓磷酸溶液对其表面进行预处理。
2)在蓝宝石衬底之上依次外延生长3μm GaN缓冲层2、3μm掺杂浓度为1×1018cm-3的n型GaN层3。
3)使用感应耦合等离子体(ICP)刻蚀设备,结合刻蚀掩膜,选择性刻蚀n型GaN层3,形成倒梯形凹槽,凹槽的深度2.5μm。
4)利用外延材料生长设备,在洁净的倒梯形凹槽内依次生长1.0μm本征GaN层4和0.25μm掺杂浓度为1×1018cm-3的p型AlGaN层5。刻蚀台阶和台面上。
5)在凹槽内的p型AlGaN层5之上,生长100nm高的Ga2O3纳米线6。
6)在Ga2O3纳米线6上制备250nm厚ITO透明电极。
7)利用光刻、金属蒸镀技术,在凹槽外n型GaN上淀积金属电极8,并形成良好的欧姆接触。
实施例3
作为一个优选方案具体制备工艺流程如图5所示,包括:
1)取样蓝宝石衬底,并用浓磷酸溶液对其表面进行预处理。
2)在蓝宝石衬底之上依次外延生长4μm GaN缓冲层2、4μm掺杂浓度为1×1018cm-3的n型GaN层3。
3)使用感应耦合等离子体(ICP)刻蚀设备,结合刻蚀掩膜,选择性刻蚀n型GaN层3,形成倒梯形凹槽,凹槽的深度3.5μm。
4)利用外延材料生长设备,在洁净的倒梯形凹槽内依次生长1.5μm本征GaN层4和0.5μm掺杂浓度为1×1018cm-3的p型AlGaN层5。刻蚀台阶和台面上。
5)在凹槽内的p型AlGaN层5之上,生长150nm高的Ga2O3纳米线6。
6)在Ga2O3纳米线6上制备500nm厚ITO透明电极。
7)利用光刻、金属蒸镀技术,在凹槽外n型GaN上淀积金属电极8,并形成良好的欧姆接触。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (8)

1.一种GaN紫外探测器的制备方法,其特征在于:包括:
1)衬底上依次生长GaN缓冲层和n型GaN层;
2)选择性刻蚀n型GaN层,形成倒梯形凹槽;
3)在凹槽内依次外延生长本征GaN层和p型AlGaN层;
4)p型AlGaN层上生长一层Ga2O3纳米线,使得入射探测器的紫外光子只进不出,抑制表面反射;
5)在纳米线上淀积一层ITO透明电极;
6)在凹槽外n型GaN层之上沉积一个金属电极。
2.根据权利要求1所述的GaN紫外探测器的制备方法,其特征在于:所述1)中的GaN缓冲层厚度为0.2μm~5μm;所述n型GaN层厚度为0.5μm~4μm,掺杂浓度为1×1018cm-3~5×1018cm-3,掺杂元素为硅。
3.根据权利要求1所述的GaN紫外探测器的制备方法,其特征在于:所述2)中的倒梯形凹槽,凹槽的深度为0.2μm~3.5μm,并且不大于n型GaN层的厚度。
4.根据权利要求1所述的GaN紫外探测器的制备方法,其特征在于:所述3)中的本征GaN层厚度为0.1μm~2.0μm;p型掺杂AlGaN层厚度为0.1μm~1.0μm,掺杂浓度为1×1018cm-3~5×1018cm-3,掺杂元素为镁。
5.根据权利要求1所述的GaN紫外探测器的制备方法,其特征在于:所述4)中的Ga2O3纳米线为高密度纳米线,其生长方向垂直于p型掺杂AlGaN层,其长度为20nm~100nm。
6.根据权利要求1所述的GaN紫外探测器的制备方法,其特征在于:所述5)中的ITO透明电极厚度为100nm~500nm。
7.根据权利要求1-6所述任一方法制得的GaN紫外探测器。
8.如权利要求7所述的GaN紫外探测器,其特征在于,该紫外探测器在结构上是一种PIN光伏探测器。
CN201911111605.7A 2019-11-14 2019-11-14 一种GaN紫外探测器及其制备方法 Pending CN110890444A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911111605.7A CN110890444A (zh) 2019-11-14 2019-11-14 一种GaN紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911111605.7A CN110890444A (zh) 2019-11-14 2019-11-14 一种GaN紫外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN110890444A true CN110890444A (zh) 2020-03-17

Family

ID=69747481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911111605.7A Pending CN110890444A (zh) 2019-11-14 2019-11-14 一种GaN紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110890444A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958347A (zh) * 2009-07-15 2011-01-26 通用电气公司 纳米结构功能涂层和器件
CN102280343A (zh) * 2011-07-13 2011-12-14 重庆大学 基于双面图形化衬底的透射式GaN紫外光电阴极
CN102479849A (zh) * 2010-11-24 2012-05-30 吉富新能源科技(上海)有限公司 具有高光电转换效率的太阳能电池结构及其制作方法
US8586863B2 (en) * 2008-09-19 2013-11-19 Samsung Electronics Co., Ltd. Solar cells and methods of forming the same
CN103956404A (zh) * 2014-04-03 2014-07-30 苏州北鹏光电科技有限公司 一种光电探测器制备方法及制备的广角光电探测器
CN203800059U (zh) * 2014-04-03 2014-08-27 苏州北鹏光电科技有限公司 广角光电探测器
CN105990466A (zh) * 2015-02-03 2016-10-05 香港城市大学深圳研究院 肖特基型垂直纳米线阵列太阳能电池的制作方法
CN107180889A (zh) * 2017-06-27 2017-09-19 上海集成电路研发中心有限公司 一种提高光吸收率的量子阱红外探测器及其制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586863B2 (en) * 2008-09-19 2013-11-19 Samsung Electronics Co., Ltd. Solar cells and methods of forming the same
CN101958347A (zh) * 2009-07-15 2011-01-26 通用电气公司 纳米结构功能涂层和器件
CN102479849A (zh) * 2010-11-24 2012-05-30 吉富新能源科技(上海)有限公司 具有高光电转换效率的太阳能电池结构及其制作方法
CN102280343A (zh) * 2011-07-13 2011-12-14 重庆大学 基于双面图形化衬底的透射式GaN紫外光电阴极
CN103956404A (zh) * 2014-04-03 2014-07-30 苏州北鹏光电科技有限公司 一种光电探测器制备方法及制备的广角光电探测器
CN203800059U (zh) * 2014-04-03 2014-08-27 苏州北鹏光电科技有限公司 广角光电探测器
CN105990466A (zh) * 2015-02-03 2016-10-05 香港城市大学深圳研究院 肖特基型垂直纳米线阵列太阳能电池的制作方法
CN107180889A (zh) * 2017-06-27 2017-09-19 上海集成电路研发中心有限公司 一种提高光吸收率的量子阱红外探测器及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
白云等: "AlGaN/GaN P-I-N紫外探测器的电子辐照效应", 《激光与红外》 *
赵正平 等: "《中国战略性新兴产业 新材料 第三代半导体材料》", 31 December 2017, 中国铁道出版社 *

Similar Documents

Publication Publication Date Title
CN106169516B (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN105720130B (zh) 基于量子阱带间跃迁的光电探测器
CN111725338B (zh) 一种微米线阵列异质结紫外光探测器及其制备方法
CN106711253B (zh) 一种iii族氮化物半导体雪崩光电二极管探测器
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN109686809B (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN107452823A (zh) 一种微米线阵列光探测器及其制备方法
CN110047955B (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN100495742C (zh) 铟镓砷/铟铝砷耦合量子点红外探测器及其制备方法
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
CN108630779B (zh) 碳化硅探测器及其制备方法
CN108022985A (zh) 延伸波长台面型雪崩光电二极管及其制备方法
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN102157600A (zh) 叉指状紫外增强型选择性硅光电二极管及其制作方法
Guo et al. Polarization assisted interdigital AlGaN/GaN heterostructure ultraviolet photodetectors
CN110890436B (zh) 波导型GeSn光电晶体管及其制造方法
CN110890444A (zh) 一种GaN紫外探测器及其制备方法
CN209675319U (zh) 一种氧化镓mis结构紫外探测器
CN111211196B (zh) 一种高灵敏度高线性度探测器
CN110350045B (zh) PbS量子点Si-APD红外探测器及其制备方法
CN207165584U (zh) 一种背照式级联倍增雪崩光电二极管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200317