CN110878204B - 铝/锌-铜铟硒量子点敏化剂及其制备方法、应用 - Google Patents

铝/锌-铜铟硒量子点敏化剂及其制备方法、应用 Download PDF

Info

Publication number
CN110878204B
CN110878204B CN201911235395.2A CN201911235395A CN110878204B CN 110878204 B CN110878204 B CN 110878204B CN 201911235395 A CN201911235395 A CN 201911235395A CN 110878204 B CN110878204 B CN 110878204B
Authority
CN
China
Prior art keywords
quantum dot
aluminum
zinc
sensitizer
cuinse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911235395.2A
Other languages
English (en)
Other versions
CN110878204A (zh
Inventor
李艳
何芳芳
王伟
张家辰
骆娅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201911235395.2A priority Critical patent/CN110878204B/zh
Publication of CN110878204A publication Critical patent/CN110878204A/zh
Application granted granted Critical
Publication of CN110878204B publication Critical patent/CN110878204B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种用于太阳能电池的铝/锌‑铜铟硒量子点敏化剂,所述的量子点敏化剂为铝、锌共掺杂的铜铟硒量子点敏化剂。本发明还提供了一种所述的用于太阳能电池的铝/锌‑铜铟硒量子点敏化剂的制备方法及其应用。本发明的用于太阳能电池的铝/锌‑铜铟硒量子点敏化剂,引入铝和锌有效地钝化CuInSe合金量子点的表面态缺陷,提高了该量子点的荧光寿命;所制备的Al/Zn‑CuInSe量子点的吸光范围也稍有拓宽。基于此所组装的量子点敏化太阳能电池短路电流密度和光电转化效率均得到明显提升。

Description

铝/锌-铜铟硒量子点敏化剂及其制备方法、应用
技术领域
本发明涉及太阳能技术领域,更具体地涉及一种铝/锌-铜铟硒量子点敏化剂及其制备方法、应用。
背景技术
量子点敏化太阳能电池(Quantum Dot Sensitized Solar Cell,QDSC)是利用无机半导体纳米材料(又称量子点)作为光捕获剂进行光电转换的光伏器件。由于量子点材料制备工艺简单且成本低廉本、吸光范围可调、摩尔消光系数高以及多激子效应等诸多优势,使得QDSC的理论效率能够突破肖克利-奎伊瑟(Shockley-Queisser)的上限31%,达到44%。因此,QDSC成为最具潜力的新型太阳能电池之一,近年来引起了广泛的关注与研究。
量子点敏化剂作为敏化电池的最核心组分,它兼具吸收太阳光子产生电子和将光生电子注入到宽带隙半导体材料(通常为TiO2)的功能。不含Pb、Cd的绿色的CuInSe合金量子点是近年来表现最优异的量子点敏化剂材料,不仅可将吸光范围拓展到1000nm左右,同时该材料组装的QDSC也获得了不错的光电转化效率。然而,由于CuInSe量子点的表面原子比高,合成温度相对较低,表面俘获缺陷较为常见。针对CuInSe量子点的结构缺陷,目前已采用了结构与成分控制、表面配体调控等策略来降低CuInSe量子点表面的缺陷态密度,如采用宽带隙材料(如:ZnS、ZnSe)包覆形成CuInSe/ZnSe核壳结构量子点、金属原子掺杂形成合金量子点(如:Zn-Cu-In-Se合金量子点)或者采用具有还原性的抗坏血酸(AA)作为表面配体来抑制氧化态的形成。但目前CuInSe量子点的表面缺陷态密度仍然较高,而基于该量子点敏化剂制备的QDSC也因此存在较高的电荷复合等问题,最终导致所制备的电池器件的短路电流密度及光电转化效率仍然较低。
有鉴于此,有必要提供一种表面缺陷少的CuInSe量子点的制备方法,进而提升其所制备的太阳电池器件的转化效率。
发明内容
本发明的主要目的就是针对以上存在的问题与不足,提供一种表面缺陷少、吸收范围宽的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂。
为了实现上述目的,本发明采用的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂技术方案如下:所述的量子点敏化剂为铝、锌共掺杂的铜铟硒量子点敏化剂。
本发明提供了一种所述的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂的制备方法,所述的制备方法包括以下步骤:
(1)将铝前驱物、锌前驱物、铜前驱物以及铟前驱物加入油胺与1-十八烯的混合溶剂中;
(2)在氮气保护下,热注入硒前驱物,反应后冷却,得到油溶性Al/Zn-CuInSe量子点敏化剂。
较佳地,所述的制备方法包括步骤(3):对所述的油溶性的Al/Zn-CuInSe量子点敏化剂进行修饰,得到水溶性的Al/Zn-CuInSe量子分散液,用于制备Al/Zn-CuInSe量子点敏化太阳能电池。
较佳地,在所述的步骤(2)中,在热注入硒前驱物时,反应体系的温度为160~200℃,反应时间为0.1~2.0h。
较佳地,所述的铝前驱物与锌前驱物总的摩尔量为0.1mmol。
较佳地,所述的铝前驱物包括硬脂酸铝、硝酸铝或氯化铝。
本发明还提供了一种所述的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂在量子点敏化太阳能电池的应用。
本发明的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂,引入铝和锌有效地钝化CuInSe合金量子点的表面态缺陷,提高了该量子点的荧光寿命;所制备的Al/Zn-CuInSe量子点的吸光范围也稍有拓宽。基于此所组装的量子点敏化太阳能电池短路电流密度和光电转化效率均得到明显提升。
附图说明
图1为采用硬脂酸铝制得的Al/Zn-CuInSe量子点在甲苯中分散的吸收光谱。
图2为采用硝酸铝制得的油溶性Al/Zn-CuInSe量子点在甲苯中分散的吸收光谱。
图3为采用氯化铝制得的油溶性Al/Zn-CuInSe量子点在甲苯中分散的吸收光谱。
图4为采用硬脂酸铝制得的Al/Zn-CuInSe量子点的透射电镜图。
图5为采用硬脂酸铝制得的Al/Zn-CuInSe量子点分散液的瞬态荧光光谱图。
图6为Al/Zn-CuInSe量子点敏化太阳电池的J-V图。
图7为Al/Zn-CuInSe量子点敏化太阳电池的IPCE图。
图8为Al/Zn-CuInSe量子点敏化太阳电池在不同偏压下的化学电容图。
图9为Al/Zn-CuInSe量子点敏化太阳电池在不同偏压下的复合阻抗图。
图10为Al/Zn-CuInSe量子点敏化太阳电池在-0.6v偏压下的奈奎斯特图。
图11为Al/Zn-CuInSe量子点敏化太阳电池的电压衰减曲线。
图12为Al/Zn-CuInSe量子点敏化太阳电池的电子寿命曲线。
具体实施方式
为了能够更清楚地理解本发明的技术内容,特举以下实施例详细说明。
本发明提供的高质量铜铟硒合金量子点敏化剂,为一种铝、锌共掺杂的铜铟硒量子点敏化剂。
本发明提供了该高质量铜铟硒合金量子点敏化剂的制备方法,主要是将铝源和锌源与铜源、铟源共同溶解在油胺和1-十八烯的混合溶液中,在氮气气氛下,热注入硒源来获得铝/锌-铜铟硒合金(Al/Zn-CuInSe)量子点。
进一步,可以将该高质量铜铟硒合金量子点敏化剂作为光捕获材料应用于量子点敏化太阳能电池中。
以下为该高质量铜铟硒合金量子点敏化剂的具体制备方法及其应用
一、水溶性Al/Zn-CuInSe量子点
(1)油溶性Al/Zn-CuInSe量子点的制备
将硒粉(约0.4mmol)溶解至二苯基膦(0.5mL)和油胺(0.5mL)的混合液中得到Se源;
将1.0mmol二水合醋酸锌在120℃氮气氛围溶解于油胺(1.0mL)和1-十八烯(9.0mL)的混合液得到Zn源;
将1.0mmol三硬脂酸铝(或硝酸铝、氯化铝)在120℃氮气氛围溶解于油胺(1.0mL)和1-十八烯(9.0mL)的混合液得到Al源;
在三口烧瓶中加入碘化亚铜(0.15mmol)、醋酸铟(0.20mmol)、油胺(4.0mL)和1-十八烯(1.0mL),将锌和铝的前驱体溶液加入上述体系中(锌和铝的总摩尔量为0.1mmol,调整铝的摩尔百分比变化区间为0~100%),在真空条件下搅拌加热至90℃,之后在氮气保护下升温至180℃,将硒前驱物溶液迅速注入至反应体系中,反应后冷却至室温,加入乙醇离心纯化后分散于二氯甲烷中,得到油溶性的Al/Zn-CuInSe量子点分散液。
(2)水溶性Al/Zn-CuInSe量子点的制备
利用双功能配体对该油溶性的Al/Zn-CuInSe量子点敏化剂进行修饰,通过离心、纯化得到水溶性的Al/Zn-CuInSe量子分散液,具体如下:
将320μL 3-巯基丙酸与1.0mL甲醇混合,用30%NaOH溶液将混合溶液的pH调制10左右获得3-巯基丙酸的甲醇溶液;然后,在搅拌条件下,将其加入到上述的油溶性量子点分散液中,继续搅拌两分钟并静置一分钟;之后加入20.0mL去离子水,高速搅拌10秒,静置一分钟使得该混合溶液分为两相;取上层褐色溶液于离心管中,加入适量丙酮离心纯化,并将纯化后的黑色固体分散在2.0mL去离子水中;向该量子点水溶液中加入10.0μL 3-巯基丙酸并用10%NaOH溶液调节该分散液的pH至11,得到水溶性Al/Zn-CuInSe量子点,备用。
二、Al/Zn-CuInSe量子点敏化太阳能电池的组装
将水溶性的量子点吸附到二氧化钛多孔膜内制备成Al/Zn-CuInSe敏化光阳极,并进一步结合对电极组Al/Zn-CuInSe量子点敏化太阳能电池,具体如下:
通过丝网印刷制备双层的介孔TiO2电极膜,该电极膜厚度为30μm(包括20μm透明层和10.0μm散射层)。
首先,将水溶性Al/Zn-CuInSe量子点溶液滴加到TiO2电极膜上,在50℃条件下沉积2.0h,然后相继用去离子水和乙醇冲洗敏化的电极膜,并用电吹风将敏化膜表面吹干。
随后将Al/Zn-CuInSe量子点敏化的膜依次的浸泡于0.10M醋酸锌甲醇溶液和0.10M硫化钠水溶液并循环5次,进行ZnS钝化包覆处理。
最后将包覆了ZnS钝化层的Al/Zn-CuInSe量子点敏化的光阳极与铜片/Cu2S对电极组装成三明治结构的QDSC器件,并注入聚硫电解液,量子点太阳能电池器件的组装完成。
三、量子点测试及电池光电性能测试
如图1~3所示,为基于该方法,采用不同铝源制得的Al/Zn-CuInSe量子点在甲苯中分散的吸收光谱;利用透射电子显微镜对采用硬脂酸铝制得的Al/Zn-CuInSe量子点进行了形貌的表征(如图4所示);进一步通过荧光寿命测试发现Al/Zn-CuInSe量子点的具有更长的电子寿命(如图5所示);通过对其组装的QDSC进行J-V、IPCE(如图6~7所示)测试发现Al/Zn-CuInSe量子点的器件性能明显得到了提升,并通过电化学阻抗表征(如图8~10所示)及开路电压衰减测试(如图11~12所示)可以发现基于Al/Zn-CuInSe量子点的QDSC其复合程度更低。基于铝、锌共掺杂的铜铟硒量子点敏化的光阳极,实现了短路电流密度超过了27mA/cm2以及光电转化效率超过10%。
其中,紫外-可见光吸收光谱(UV-vis)记录在岛津UV-2600光谱仪上;瞬态荧光光谱由Edinburgh FLS 980测试得到;透射电镜图(TEM)则采用JEM-2100透射电子显微镜测试获到,电池的电流-电压(J-V)曲线则是在AM1.5标准太阳光(300W氙灯,Oriel,ModelNo.94022A)照射用Keithley 2400型号万用表记录,并使用NREL标准硅电池将光强校准至1000W/m2,电池的有效受光面积为0.235cm2;外量子效率(IPCE)由Keithley2000multimeter测试得到;电化学阻抗测试(EIS)采用Zahner电化学工作站测试,该测试是黑暗条件下完成,测试电压范围为-0.30V~-0.60V,测试频率为100kHz到0.1Hz并设置扰动为20mV;开路电压衰减测试(OCVD)是在太阳光模拟器(AM 1.5G,100mW/cm2)下测试得到。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (7)

1.一种用于太阳能电池的铝/锌-铜铟硒量子点敏化剂,其特征在于,所述的量子点敏化剂为铝、锌共掺杂的铜铟硒量子点敏化剂。
2.一种权利要求1所述的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂的制备方法,其特征在于,所述的制备方法包括以下步骤:
(1)将铝前驱物、锌前驱物、铜前驱物以及铟前驱物加入油胺与1-十八烯的混合溶剂中;
(2)在氮气保护下,热注入硒前驱物,反应后冷却,得到油溶性Al/Zn-CuInSe量子点敏化剂。
3.根据权利要求2所述的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂的制备方法,其特征在于,所述的制备方法包括步骤(3):
对所述的油溶性的Al/Zn-CuInSe量子点敏化剂进行修饰,得到水溶性的Al/Zn-CuInSe量子分散液,用于制备Al/Zn-CuInSe量子点敏化太阳能电池。
4.根据权利要求2所述的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂的制备方法,其特征在于,在所述的步骤(2)中,在热注入硒前驱物时,反应体系的温度为160~200℃,反应时间为0.1~2.0h。
5.根据权利要求2所述的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂的制备方法,其特征在于,所述的铝前驱物与锌前驱物总的摩尔量为0.1mmol。
6.根据权利要求2所述的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂的制备方法,其特征在于,所述的铝前驱物包括硬脂酸铝、硝酸铝或氯化铝。
7.一种权利要求1所述的用于太阳能电池的铝/锌-铜铟硒量子点敏化剂在量子点敏化太阳能电池的应用。
CN201911235395.2A 2019-12-05 2019-12-05 铝/锌-铜铟硒量子点敏化剂及其制备方法、应用 Active CN110878204B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911235395.2A CN110878204B (zh) 2019-12-05 2019-12-05 铝/锌-铜铟硒量子点敏化剂及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911235395.2A CN110878204B (zh) 2019-12-05 2019-12-05 铝/锌-铜铟硒量子点敏化剂及其制备方法、应用

Publications (2)

Publication Number Publication Date
CN110878204A CN110878204A (zh) 2020-03-13
CN110878204B true CN110878204B (zh) 2022-09-16

Family

ID=69730656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911235395.2A Active CN110878204B (zh) 2019-12-05 2019-12-05 铝/锌-铜铟硒量子点敏化剂及其制备方法、应用

Country Status (1)

Country Link
CN (1) CN110878204B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489383A (zh) * 2015-12-28 2016-04-13 华侨大学 一种量子点敏化太阳能电池光阳极的制备方法
CN107474821A (zh) * 2016-06-07 2017-12-15 上海交通大学 一种二氧化硅包裹量子点及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419341B (zh) * 2009-05-18 2013-12-11 Ind Tech Res Inst 量子點薄膜太陽能電池
CA3070237A1 (en) * 2017-07-16 2019-01-24 Massachusetts Institute Of Technology Microneedle tattoo patches and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489383A (zh) * 2015-12-28 2016-04-13 华侨大学 一种量子点敏化太阳能电池光阳极的制备方法
CN107474821A (zh) * 2016-06-07 2017-12-15 上海交通大学 一种二氧化硅包裹量子点及其制备方法

Also Published As

Publication number Publication date
CN110878204A (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
Sahu et al. A review on quantum dot sensitized solar cells: Past, present and future towards carrier multiplication with a possibility for higher efficiency
Huang et al. High efficiency CdS/CdSe quantum dot sensitized solar cells with two ZnSe layers
Yang et al. CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media
Yu et al. High performance and reduced charge recombination of CdSe/CdS quantum dot-sensitized solar cells
US8835756B2 (en) Zinc oxide photoelectrodes and methods of fabrication
Amiri et al. Synthesis and characterization of CuInS2 microsphere under controlled reaction conditions and its application in low-cost solar cells
Chang et al. Synthesis of eco-friendly CuInS2 quantum dot-sensitized solar cells by a combined ex situ/in situ growth approach
Yang et al. Influence of linker molecules on interfacial electron transfer and photovoltaic performance of quantum dot sensitized solar cells
Tang et al. CdSe nanocrystal sensitized ZnO core-shell nanorod array films: preparation and photovoltaic properties
Peng et al. ZnSe passivation layer for the efficiency enhancement of CuInS2 quantum dots sensitized solar cells
Kim et al. Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells
Esparza et al. Studying the role of CdS on the TiO2 surface passivation to improve CdSeTe quantum dots sensitized solar cell
Zhang et al. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells
KR101890008B1 (ko) 광전 변환 소자 및 광전기 화학 전지, 그리고 이것에 사용되는 금속 착물 색소
Park et al. Efficient eco-friendly inverted quantum dot sensitized solar cells
Mirahmadi et al. Microwave activated synthesis of Ag2S and Ag2S@ ZnS nanocrystals and their application in well-performing quantum dot sensitized solar cells
Chen et al. CdS/CdSe quantum dots and ZnPc dye co-sensitized solar cells with Au nanoparticles/graphene oxide as efficient modified layer
Guijarro et al. Quantum dot-sensitized solar cells based on directly adsorbed zinc copper indium sulfide colloids
Esparza et al. Current improvement in hybrid quantum dot sensitized solar cells by increased light-scattering with a polymer layer
Bo et al. From red selenium to cuprous selenide: a novel and facile route to a high performance metal selenide cathode for sensitized solar cells
Khodam et al. Mg nanoparticles core-CdS QDs shell heterostructures with ZnS passivation layer for efficient quantum dot sensitized solar cell
Yue et al. CdTe quantum dots-sensitized solar cells featuring PCBM/P3HT as hole transport material and assistant sensitizer provide 3.40% efficiency
Higashimoto et al. Highly qualified copper-indium sulfide colloids prepared in water under microwave irradiation and their applications to the TiO2 based quantum dot-sensitized solar cells
Mehmood et al. Mn doped CdS passivated CuInSe 2 quantum dot sensitized solar cells with remarkably enhanced photovoltaic efficiency
Swami et al. Effect of zinc precursor on Cu2ZnSnS4 nanoparticles synthesized by the solvothermal method and its application in dye-sensitized solar cells as the counter electrode

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant