CN110876960B - 0d/2d导电金属化合物/石墨烯复合功能材料的制备方法 - Google Patents

0d/2d导电金属化合物/石墨烯复合功能材料的制备方法 Download PDF

Info

Publication number
CN110876960B
CN110876960B CN201911087854.7A CN201911087854A CN110876960B CN 110876960 B CN110876960 B CN 110876960B CN 201911087854 A CN201911087854 A CN 201911087854A CN 110876960 B CN110876960 B CN 110876960B
Authority
CN
China
Prior art keywords
graphene
metal compound
conductive metal
silver nitrate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911087854.7A
Other languages
English (en)
Other versions
CN110876960A (zh
Inventor
陈�胜
蒋丽丽
朱俊武
孙运通
汪信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201911087854.7A priority Critical patent/CN110876960B/zh
Publication of CN110876960A publication Critical patent/CN110876960A/zh
Application granted granted Critical
Publication of CN110876960B publication Critical patent/CN110876960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/17Silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种0D/2D导电金属化合物/石墨烯复合功能材料的制备方法。所述方法将硝酸银溶于水中,先加入1‑甲基‑2吡咯烷酮,搅拌混合均匀后加入石墨烯水凝胶,静置反应得到石墨烯水凝胶/银复合材料,然后将石墨烯水凝胶/银复合材料加入到饱和的7,7,8,8‑四氰基对苯二醌二甲烷的乙腈溶液中,静置反应即得0D/2D导电金属化合物/石墨烯复合功能材料。本发明制得的0D/2D导电金属化合物/石墨烯复合功能材料具有良好的电化学氧还原性能,适用于能源、催化等领域。

Description

0D/2D导电金属化合物/石墨烯复合功能材料的制备方法
技术领域
本发明涉及一种0D/2D导电金属化合物/石墨烯复合功能材料的制备方法,属于复合催化材料技术领域。
背景技术
低维纳米材料因其小尺寸效应、表面与界面效应、量子尺寸效应等重要特性而具有广泛的应用前景。零维材料由于表面原子占了显著比例,其表面态密度将大大增加,在一些催化反应中具有更丰富的活性位点;同时,对于这样小尺寸的颗粒,由于维度的降低各种量子效应(量子是寸效应、量子局限效应、量子隧道效应、量子干涉效应等)十分显著。但0D材料其表面能较大,容易团聚形成块体材料而失活。
导电金属化合物(Ag-TCNQ)可以在多种条件下合成,例如自发电解技术、化学气相沉积、光结晶法、液相化学转换等。这些方法合成的导电金属化合物的微观形貌一般为二维的纳米线,并且因为材料独特的光学和电子性质,使其在存储设备和光学激光盘制造方面有很大的应用前景。
二维纳米材料由于其维度的降低有很多特殊的性能。尤其以石墨烯为例,其十分良好的强度、柔韧、导电、导热、光学特性,在物理学、材料学、电子信息、计算机、航空航天等领域都得到了长足的发展,是目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料。通过对0D/2D材料的设计及结合,可以结合两者的优势,得到具有高活性和稳定性的材料。目前已经有一些基于石墨烯的0D/2D材料,例如:石墨烯负载氧化锌量子点,石墨烯负载铜等金属纳米粒子,石墨烯负载钴纳米粒子等等,并在光学、电容器等领域展现了非常诱人的应用前景。然而,基于石墨烯和金属有机化合物的 0D/2D的复合材料至今还未有报道。
发明内容
本发明的目的在于提供一种导电性良好、制备方法简单且具有优异电催化性能的0D/2D导电金属化合物/石墨烯复合功能材料的制备方法。
实现本发明目的的技术解决方案为:
0D/2D导电金属化合物/石墨烯复合功能材料的制备方法,以硝酸银、对苯二醌二甲烷、氧化石墨等为前驱体通过简单的化学过程合成复合功能材料,具体包括以下步骤:
步骤1,将硝酸银溶于水中,按硝酸银的质量与1-甲基-2吡咯烷酮的体积比为0.9~1.1:1,先加入1-甲基-2吡咯烷酮,搅拌混合均匀后加入石墨烯水凝胶,静置反应 3~5h,反应结束后,乙腈洗涤,得到石墨烯水凝胶/银复合材料;
步骤2,将石墨烯水凝胶/银复合材料加入到饱和的7,7,8,8-四氰基对苯二醌二甲烷的乙腈溶液中,静置反应,反应结束后用乙醇和水充分洗涤,得到0D/2D导电金属化合物/石墨烯复合功能材料(Ag-TCNQ/石墨烯复合材料)。
优选地,步骤1中,所述的反应时间为4h。
优选地,步骤1中,所述的硝酸银的浓度为1mg/ml。
优选地,步骤2中,所述的反应时间为2小时。
与现有技术相比,本发明具有以下优点:
(1)金属有机化合物采用Ag与7,7,8,8-四氰基对苯二醌二甲烷进行配位化合反应,其中有机物配体7,7,8,8-对苯二醌二甲烷(TCNQ)是一种电子受体分子,可以与金属Ag进行配位化合反应,形成的Ag-TCNQ,具有较好的导电性;
(2)制备方法简单,反应条件温和,在室温下静置,通过溶液的扩散和溶质的结晶逐步析出就能生成目标产物,并且这一过程缓慢温和进行,使其产物也能较为均一和稳定;
(3)本发明制得的0D/2D导电金属化合物/石墨烯复合功能材料具有优异的氧还原性能,对材料进行氧还原(ORR)测试,表现出较为优异的氧还原生成双氧水的性能,反应起始电位为0.82V vs.RHE,双氧水产率为0.35mg/h,在电催化领域存在潜在的应用价值。
附图说明
图1是本发明的0D/2D导电金属化合物/石墨烯复合功能材料的制备流程示意图。
图2(a)为实施例1制备的0D/2D导电金属化合物/石墨烯复合功能材料的TEM 图,2(b)为实施例1制备出的材料的STEM图。
图3(a)为实施例2制备的0D/2D导电金属化合物/石墨烯复合功能材料的XRD图,图3(b)为实施例2制备的0D/2D导电金属化合物/石墨烯复合功能材料的Raman图。
图4(a)为实施例4制备的0D/2D导电金属化合物/石墨烯复合功能材料的ORR LSV曲线,图4(b)为实施例5制备的复合材料不同电位下双氧水产率图,图4(c)为对比例2步骤二中材料在硝酸银溶液中的不同的反应时间所得的LSV曲线。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
下述实施例中采用的石墨烯水凝胶的制备参考文献[Three-Dimensional N-Doped Graphene Hydrogel/NiCo Double Hydroxide Electrocatalysts for HighlyEfficient Oxygen Evolution]。
实施例1
步骤一,取2ml质量浓度为2mg/ml的氧化石墨放入容器,150℃下在密闭反应釜中反应6小时,待其自然冷却后取出产物,制备得到石墨烯水凝胶;
步骤二,将20mg硝酸银固体溶解于1ml去离子水中,再加入19ml甲基吡咯烷酮,混合均匀得到硝酸银溶液。将步骤一得到的石墨烯水凝胶静置在硝酸银溶液中反应4小时,然后用乙腈溶剂充分洗涤;
步骤三:将7,7,8,8-四氰基对苯二醌二甲烷加入10ml乙腈中,充分混合,再将步骤二得到的材料放入7,7,8,8-四氰基对苯二醌二甲烷溶液,中静置反应2小时,然后用水充分清洗;
步骤四:将第三步得到的产物放在1ml水中,超声30min,用去离子水进行离心洗涤并分离产物,然后低温干燥即得到Ag-TCNQ/石墨烯复合材料。
图2中的TEM测试及STEM测试可以看出0D的颗粒的大小为5nm左右。
实施例2
步骤一,取2ml质量浓度为2mg/ml的氧化石墨放入容器,150℃下在密闭反应釜中反应6小时,待其自然冷却后取出产物,制备得到石墨烯水凝胶;
步骤二:将200mg硝酸银固体溶解于1ml去离子水中,再加入19ml甲基吡咯烷酮,混合均匀得到硝酸银溶液。将步骤一得到的石墨烯水凝胶静置在硝酸银溶液中反应 4小时,然后用乙腈溶剂充分清洗;
步骤三:将100mg 7,7,8,8-四氰基对苯二醌二甲烷加入10ml乙腈中,充分混合,再将步骤二得到的材料放入7,7,8,8-四氰基对苯二醌二甲烷溶液中,静置反应 2小时,然后用水充分清洗;
步骤四:将第三步得到的产物放在1ml水中,超声30min,用去离子水进行离心洗涤并分离产物,然后低温干燥即得到Ag-TCNQ/石墨烯复合材料。
由于硝酸银溶液的浓度变大,图3(b)拉曼谱图中图中Ag/石墨烯中Ag金属的峰更尖锐明显,说明在此过程中确实有Ag粒子形成并生长在还原氧化石墨烯的表面。
实施例3
步骤一,取2ml质量浓度为2mg/ml的氧化石墨放入容器,150℃下在密闭反应釜中反6小时,待其自然冷却后取出产物,制备得到石墨烯水凝胶;
步骤二:将20mg硝酸银固体溶解于1ml去离子水中,再加入19ml甲基吡咯烷酮,混合均匀得到硝酸银溶液。将步骤一得到的石墨烯水凝胶静置在硝酸银溶液中反应4小时,然后用乙腈溶剂充分洗涤;
步骤三:将100mg 7,7,8,8-四氰基对苯二醌二甲烷加入10ml乙腈中,充分混合,再将步骤二得到的材料放入7,7,8,8-四氰基对苯二醌二甲烷溶液中,静置反应 10小时,然后用水充分清洗;
步骤四:将第三步得到的产物放在1ml水中,超声30min,用去离子水进行离心洗涤并分离产物,然后低温干燥即得到Ag-TCNQ/石墨烯复合材料。
实施例4
步骤一,取2ml质量浓度为2mg/ml的氧化石墨放入容器,150℃下在密闭反应釜中反应6小时,制备得到石墨烯水凝胶;
步骤二:将20mg硝酸银固体溶解于1ml去离子水中,再加入19ml甲基吡咯烷酮,混合均匀得到硝酸银溶液。将步骤一得到的石墨烯水凝胶静置在硝酸银溶液中反应4小时,然后用乙腈溶剂充分洗涤;
步骤三:将100mg 7,7,8,8-四氰基对苯二醌二甲烷加入10ml乙腈中,充分混合,再将步骤二得到的材料放入7,7,8,8-四氰基对苯二醌二甲烷溶液中,静置反应 2小时,然后用乙醇和水充分清洗;
步骤四:将第三步得到的产物放在1ml水中,超声30min,用去离子水进行离心洗涤并分离产物,然后低温干燥即得到Ag-TCNQ/石墨烯复合材料。
步骤五:称取5mg步骤四的产物,与10μL 5wt%Nafion溶液、75mL异丙醇、 25mL去离子水混合均匀形成悬浮液。
步骤六:用移液器取10μL滴在玻碳电极上,室温下静置干燥后进行ORR制备双氧水的电化学性能测试。
图4(a)中为在不同转速下旋转圆盘圆环电极的电化学测试,测试显示反应的起始电位为0.82V vs.RHE。
实施例5
步骤一,取2ml质量浓度为2mg/ml的氧化石墨放入容器,在其中再放入一片面积为1cm*1cm大小的碳布,150℃下在密闭反应釜中反应6小时,待其自然冷却后取出产物,轻轻刮去多余的水凝胶制备得到石墨烯水凝胶/碳布;
步骤二:将20mg硝酸银固体溶解于1ml去离子水中,再加入19ml甲基吡咯烷酮,混合均匀得到硝酸银溶液。将步骤一得到的石墨烯水凝胶静置在硝酸银溶液中反应4小时,然后用乙腈溶剂充分洗涤;
步骤三:将100mg 7,7,8,8-四氰基对苯二醌二甲烷加入10ml乙腈中,充分混合,再将步骤二得到的材料放入7,7,8,8-四氰基对苯二醌二甲烷溶液,中静置反应 2小时,然后用水充分清洗;
步骤四:产物在电解池中进行ORR产双氧水的产率的测试。
图4(b)中为ORR产双氧水产率的测试,实验测得双氧水产率为0.35mg/h。
对比例1
步骤一,取2ml质量浓度为2mg/ml的氧化石墨放入容器,150℃下在密闭反应釜中反应6小时,待其自然冷却后取出产物,制备得到石墨烯水凝胶;
步骤二:将20mg硝酸银固体溶解于1ml去离子水中,再加入19ml甲基吡咯烷酮,混合均匀得到硝酸银溶液。将步骤一得到的石墨烯水凝胶静置在硝酸银溶液中反应2小时,然后用乙腈溶剂充分洗涤;
步骤三:将7,7,8,8-四氰基对苯二醌二甲烷加入10ml乙腈中,充分混合,再将步骤二得到的材料放入7,7,8,8-四氰基对苯二醌二甲烷溶液中,静置反应2小时,然后用水充分清洗;
步骤四:将第三步得到的产物放在1ml水中,超声30min,用去离子水进行离心洗涤并分离产物,然后低温干燥即得到Ag-TCNQ/石墨烯复合材料。
对比例2
步骤一,取2ml质量浓度为2mg/ml的氧化石墨放入容器,150℃下在密闭反应釜中反应6小时,待其自然冷却后取出产物,制备得到石墨烯水凝胶;
步骤二:将20mg硝酸银固体溶解于1ml去离子水中,再加入19ml甲基吡咯烷酮,混合均匀得到硝酸银溶液。将步骤一得到的石墨烯水凝胶静置在硝酸银溶液中反应12 小时,然后用乙腈溶剂充分洗涤;
步骤三:将7,7,8,8-四氰基对苯二醌二甲烷加入10ml乙腈中,充分混合,再将步骤二得到的材料放入7,7,8,8-四氰基对苯二醌二甲烷溶液中中静置反应2小时,然后用水充分清洗;
步骤四:将第三步得到的产物放在1ml水中,超声30min,用去离子水进行离心洗涤并分离产物,然后低温干燥即得到Ag-TCNQ/石墨烯复合材料。
如图4(c)所示为步骤二中材料在硝酸银溶液中的不同的反应时间所得的LSV曲线,分析可得当反应时间为4小时为最佳反应时间。

Claims (4)

1.0D/2D导电金属化合物/石墨烯复合功能材料的制备方法,其特征在于,具体包括以下步骤:
步骤1,将硝酸银溶于水中,按硝酸银的质量与1-甲基-2吡咯烷酮的体积比为0.9~1.1mg:1mL,先加入1-甲基-2吡咯烷酮,搅拌混合均匀后加入石墨烯水凝胶,静置反应3~5h,反应结束后,乙腈洗涤,得到石墨烯水凝胶/银复合材料;
步骤2,将石墨烯水凝胶/银复合材料加入到饱和的7,7,8,8-四氰基对苯二醌二甲烷的乙腈溶液中,静置反应,反应结束后用乙醇和水充分洗涤,得到0D/2D导电金属化合物/石墨烯复合功能材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,反应时间为4h。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中,硝酸银的浓度为 1mg/mL 。
4.根据权利要求1所述的制备方法,其特征在于,步骤2中,反应时间为 2小时。
CN201911087854.7A 2019-11-08 2019-11-08 0d/2d导电金属化合物/石墨烯复合功能材料的制备方法 Active CN110876960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911087854.7A CN110876960B (zh) 2019-11-08 2019-11-08 0d/2d导电金属化合物/石墨烯复合功能材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911087854.7A CN110876960B (zh) 2019-11-08 2019-11-08 0d/2d导电金属化合物/石墨烯复合功能材料的制备方法

Publications (2)

Publication Number Publication Date
CN110876960A CN110876960A (zh) 2020-03-13
CN110876960B true CN110876960B (zh) 2022-09-13

Family

ID=69729350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911087854.7A Active CN110876960B (zh) 2019-11-08 2019-11-08 0d/2d导电金属化合物/石墨烯复合功能材料的制备方法

Country Status (1)

Country Link
CN (1) CN110876960B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114073988B (zh) * 2020-08-21 2023-11-10 南京理工大学 缺陷调控的石墨烯/Ag-TCNQ量子点复合材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460680A (zh) * 2003-06-13 2003-12-10 中国科学院上海光学精密机械研究所 金属-四氰基对苯醌二甲烷脂类衍生物的合成方法
CN102160998A (zh) * 2011-04-25 2011-08-24 北京航空航天大学 一种石墨烯-银纳米粒子复合材料的制备方法
CN102614871A (zh) * 2012-03-05 2012-08-01 天津大学 一种液相法制备石墨烯/银纳米粒子复合材料的方法
CN103014683A (zh) * 2012-12-11 2013-04-03 西安交通大学 一种石墨烯基纳米银复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460680A (zh) * 2003-06-13 2003-12-10 中国科学院上海光学精密机械研究所 金属-四氰基对苯醌二甲烷脂类衍生物的合成方法
CN102160998A (zh) * 2011-04-25 2011-08-24 北京航空航天大学 一种石墨烯-银纳米粒子复合材料的制备方法
CN102614871A (zh) * 2012-03-05 2012-08-01 天津大学 一种液相法制备石墨烯/银纳米粒子复合材料的方法
CN103014683A (zh) * 2012-12-11 2013-04-03 西安交通大学 一种石墨烯基纳米银复合材料的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
2D transition metal–TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER);Qingming Deng等;《Journal of Catalysis》;20190122;第370卷;全文 *
Room-temperature synthesis of 3-dimentional Ag-graphene hybrid hydrogel with promising electrochemical properties;Haocheng Quan 等;《Materials Science and Engineering B》;20130808;第178卷;全文 *
Synthesis, characterization and morphology of reduced graphene oxide–metal–TCNQ nanocomposites;Edson Nossol等;《Journal of Materials Chemistry C》;20131122;第2卷;全文 *
TCNQ-induced in-situ electrochemical deposition for the synthesis of silver nanodendrites as efficient bifunctional electrocatalysts;Zhengyan Chen等;《Electrochimica Acta 》;20170411;第239卷;全文 *
纳米银-石墨烯复合材料的制备及可见光光催化性能;许若鹏等;《稀有金属材料与工程》;20170615;第46卷(第6期);全文 *
银-四氰基对苯二醌二甲烷纳米线阵列的制备及其场发射性能;田飞等;《高等学校化学学报》;20090510(第05期);全文 *

Also Published As

Publication number Publication date
CN110876960A (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
Song et al. Metal-organic framework derived Fe/Fe3C@ N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions
Wei et al. Incorporating ultra-small N-doped Mo2C nanoparticles onto 3D N-doped flower-like carbon nanospheres for robust electrocatalytic hydrogen evolution
Lin et al. The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction
Xiang et al. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution
Zhang et al. Encapsulating dual-phased Mo2C-WC nanocrystals into ultrathin carbon nanosheet assemblies for efficient electrocatalytic hydrogen evolution
Yao et al. Spatial isolation-inspired ultrafine CoSe2 for high-energy aluminum batteries with improved rate cyclability
Wu et al. Ultrathin N-doped Ti3C2-MXene decorated with NiCo2S4 nanosheets as advanced electrodes for supercapacitors
Lin et al. Cost-effective and environmentally friendly synthesis of 3D Ni 2 P from scrap nickel for highly efficient hydrogen evolution in both acidic and alkaline media
Song et al. Facile synthesis of Co, N enriched carbon nanotube and active site identifications for bifunctional oxygen reduction and evolution catalysis
Muthurasu et al. Vertically aligned metal–organic framework derived from sacrificial cobalt nanowire template interconnected with nickel foam supported selenite network as an integrated 3D electrode for overall water splitting
Chandrasekaran et al. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion
Kong et al. Plasma-assisted synthesis of nickel-cobalt nitride–oxide hybrids for high-efficiency electrochemical hydrogen evolution
Wang et al. Monodispersed nickel phosphide nanocrystals in situ grown on reduced graphene oxide with controllable size and composition as a counter electrode for dye-sensitized solar cells
Huang et al. Copper isolated sites on N-doped carbon nanoframes for efficient oxygen reduction
Lv et al. Graphdiyne-anchored ultrafine NiFe hydroxide nanodots electrocatalyst for water oxidation with high mass activity and superior durability
Hung et al. Highly efficient rechargeable Zn-air batteries based on hybrid CNT-grafted, Co/CoS2-Fe embedded, Nitrogen-doped porous carbon Nano-frameworks
Zhang et al. Atomically dispersed materials for rechargeable batteries
Zhang et al. Facile Synthesis of Mesoporous and Thin-Walled Ni–Co Sulfide Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction
Ye et al. Assembly of ZIF-67 nanoparticles and in situ grown Cu (OH) 2 nanowires serves as an effective electrocatalyst for oxygen evolution
Cheng et al. Controllable synthesis and phase-dependent electrocatalytic oxygen evolution performance of CoNiFe sulfide nanocubes
Li et al. PBA@ PPy derived N-doped mesoporous carbon nanocages embedded with FeCo alloy nanoparticles for enhanced performance of oxygen reduction reaction
Li et al. Porous biomass-derived carbon modified by Cu, N co-doping and Cu nanoparticles as high-efficient electrocatalyst for oxygen reduction reaction and zinc-air battery
Wang et al. Heterostructure Co3O4@ NiWO4 nanocone arrays with enriched active area for efficient hydrogen evolution reaction
Gao et al. NiCo-Se nanoparticles encapsulated N-doped CNTs derived from prussian blue analogues for high performance supercapacitors
CN110212204A (zh) 一种高效的碳纳米片支撑型燃料电池正极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant