CN110866537A - 一种基于脑电波的用于游戏评估的情感识别方法 - Google Patents
一种基于脑电波的用于游戏评估的情感识别方法 Download PDFInfo
- Publication number
- CN110866537A CN110866537A CN201910925438.3A CN201910925438A CN110866537A CN 110866537 A CN110866537 A CN 110866537A CN 201910925438 A CN201910925438 A CN 201910925438A CN 110866537 A CN110866537 A CN 110866537A
- Authority
- CN
- China
- Prior art keywords
- layer
- node
- fuzzy
- output
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000004556 brain Anatomy 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 52
- 230000008909 emotion recognition Effects 0.000 title claims abstract description 28
- 238000011156 evaluation Methods 0.000 title claims abstract description 20
- 238000003062 neural network model Methods 0.000 claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 23
- 230000002996 emotional effect Effects 0.000 claims abstract description 22
- 238000012360 testing method Methods 0.000 claims abstract description 17
- 238000012549 training Methods 0.000 claims abstract description 13
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 10
- 230000004913 activation Effects 0.000 claims description 30
- 230000006870 function Effects 0.000 claims description 18
- 210000002569 neuron Anatomy 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 6
- 230000000306 recurrent effect Effects 0.000 claims description 6
- 238000012886 linear function Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 2
- 230000008451 emotion Effects 0.000 abstract description 13
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008921 facial expression Effects 0.000 description 2
- 210000001428 peripheral nervous system Anatomy 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002567 electromyography Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001020 rhythmical effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/165—Evaluating the state of mind, e.g. depression, anxiety
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/20—Input arrangements for video game devices
- A63F13/21—Input arrangements for video game devices characterised by their sensors, purposes or types
- A63F13/212—Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/043—Architecture, e.g. interconnection topology based on fuzzy logic, fuzzy membership or fuzzy inference, e.g. adaptive neuro-fuzzy inference systems [ANFIS]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/10—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
- A63F2300/1012—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals involving biosensors worn by the player, e.g. for measuring heart beat, limb activity
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Biomedical Technology (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Multimedia (AREA)
- Psychiatry (AREA)
- Human Computer Interaction (AREA)
- Heart & Thoracic Surgery (AREA)
- Automation & Control Theory (AREA)
- Educational Technology (AREA)
- Fuzzy Systems (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Cardiology (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Computational Mathematics (AREA)
- Hospice & Palliative Care (AREA)
- Psychology (AREA)
- Social Psychology (AREA)
- Pathology (AREA)
Abstract
本发明提出了一种基于脑电波的用于游戏评估的情感识别方法。所述方法包括以下步骤:采用emotivepoc+设备进行脑电波数据的采集;使用改进的循环自进化模糊神经网络模型对部分脑电波数据即训练集进行训练;通过训练好的改进的循环自进化模糊神经网络模型对另外的脑电波数据即测试集进行测试。emotivepoc+设备能够采集人脑中的脑电波数值数据。改进的循环自进化模糊神经网络模型是一种神经网络模型,以脑电波数据作为输入,以玩家的情感状态类别作为输出。本发明采用脑电波数据进行情感识别,玩家在游戏中的情感无法被伪造,可以得到在游戏过程中的真实情感,具有较高的情感识别准确率。
Description
技术领域
本发明涉及人工智能领域,具体涉及一种基于脑电波的用于游戏评估的情感识别方法。
背景技术
游戏具有丰富的场景表现力,因而在人们的娱乐和教育等方面扮演着越来越重要的角色。游戏的主要目标之一是提供乐趣等情感体验,如果游戏设计者一位地从自身的角度去进行游戏设计,而不考虑玩家的游戏情感体验,那么玩家可能会因为游戏难度过低而感到无聊或者是由于游戏难度过高而产生颓废的情绪,这会导致他们对游戏的参与度降低甚至是结束该游戏。情感识别可以使得我们在玩家不中断游戏进程的情况下,获得玩家的实时情感状态。针对玩家的实时情感,游戏设计者可以相应地调整游戏的难度和内容以保持玩家的参与度,增强游戏体验,因此这是一个很有前景的研究领域。
迄今为止已提出了不少用于游戏评估的情感识别模型,且基本能够满足情感识别的需要,但仍有很多问题亟待解决或值得进一步研究。目前用于游戏评估的情感识别方法大都是基于面部表情或者外围神经系统的生理数据(如肌电图)来进行识别的。第一,基于面部表情的情感识别方法存在一个问题:玩家可以通过伪装来隐藏游戏过程中的真实情感状态,这就导致游戏评估环节存在偏差甚至出错。第二,使用肌电图等外围神经系统的胜利数据来进行情感识别要比使用脑电波等中央神经系统的生理数据的准确率低。有相当的关于认知理论的研究表明,人类的情感与人脑有着极其密切的联系,通过使用脑电波的数据,玩家游戏过程中的真实情感的识别准确率会大大提升。
发明内容
为了解决上述现有技术所存在的问题,本发明提供一种基于脑电波的用于游戏评估的情感识别方法,实现在不中断玩家游戏过程的条件下,获取玩家真实的情感状态。
本发明的目的至少通过如下技术方案之一实现。
一种基于脑电波的用于游戏评估的情感识别方法,包括以下步骤:
S1、采用emotiv epoc+设备进行脑电波数据的采集;
S2、使用改进的循环自进化模糊神经网络(RSEFNN)模型对部分脑电波数据即训练集进行训练;
S3、通过训练好的改进的循环自进化模糊神经网络模型对另外的脑电波数据即测试集进行测试。
进一步地,步骤S1中,所述emotiv epoc+设备能够采集人脑中的脑电波并采样计算一定时间间隔的平均值;采集多个实验者在游戏过程中的脑电波数据,并记录实验者在游戏过程中真实的情感状态的类别。
进一步地,在实验过程中,需要选取人脑中特定的区域来进行脑电波数据的采集。
进一步地,所述情感状态的类别包括愉悦、生气、害怕和难过。
进一步地,步骤S2中,利用步骤S1采集到的脑电波数据,通过改进的循环自进化模糊神经网络(RSEFNN)模型对其中训练集数据进行训练,以形成与实验者无关的情感识别模型;该模型以脑电波的数值数据作为输入,以实验者的真实情感状态的类别作为期望输出,使该模型尽可能拟合输入的脑电波数据。
进一步地,所述改进的循环自进化模糊神经网络模型包括输入层、模糊化层、空间激活层、循环层、结果层和输出层,每一层都包含节点,节点通过任意类型的非线性算子作为神经元。
所述模糊化层即隶属函数层中,每个节点都使用一个高斯隶属函数,模糊化层计算的隶属度值即模糊化层的输出如下:
其中,指的是模糊化层的第j个节点因输入层的第i个节点的输入所对应的输出;mij,分别是输入层第i个节点的输入传递到模糊化层第j个隐藏神经元的高斯隶属函数的平均值和方差;高斯隶属函数的均值和方差是参数,由于每个节点都使用不同的高斯隶属函数,因此每个隶属函数的均值和方差需人为确定或随机生成;
所述空间激活层中,每个节点对应一个模糊规则作为空间规则节点函数;空间激活层的节点根据对应的规则从模糊化层的集合节点接收到一维的隶属度;使用模糊和算子对模糊规则进行预处理,通过运算得到空间激活强度Fj作为空间激活层的输出:
所述结果层中的节点为结果节点,计算公式如下:
所述输出层中的输出节点执行模糊去模糊化,采用加权平均去模糊法:
进一步地,步骤S3中,使用训练好的改进的循环自进化模糊神经网络模型对测试集的数据进行测试,以实验者脑电波的数值数据作为输入,并以得到的实验者的测试情感状态的类别作为输出,与步骤S1中记录的真实的情感状态的类别作对比,得出改进的循环自进化模糊神经网络模型的准确率。
在真实情景下,以玩家的在游戏过程中的脑电波数据作为输入,并得到对应的输出即在游戏过程中的情感状态的类别。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明采用脑电波数据进行情感识别,玩家在游戏中的情感无法被伪造,可以得到在游戏过程中的真实情感。
2、本发明采用中央神经系统的脑电波数据进行预测。情感认知理论认为,人类的情感极大地受到人脑生理状态的影响。除此之外,相比于心电图的生理数据,脑电波数据具有更丰富的特征,更复杂的空间结构,因此,本发明的准确率要比采用心电图等的生理数据进行预测高。
附图说明
图1为本发明基于脑电波的用于游戏评估的情感识别框架技术路线图;
图2为本发明实施例中展示的人脑不同区域图;
图3为本发明实施例中循环自进化模糊神经网络(RSEFNN)模型结构图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合附图并举实施例,对本发明的具体实施进行详细说明。
实施例:
一种基于脑电波的用于游戏评估的情感识别方法,如图1所示,包括以下步骤:
S1、采用emotiv epoc+设备进行脑电波数据的采集;
其中,所述emotiv epoc+设备能够采集人脑中的脑电波并采样计算一定时间间隔的平均值;实验过程中,采集多个实验者在游戏过程中的脑电波数据,并记录实验者在游戏过程中真实的情感状态的类别。
脑电波是一些自发的有节律的神经电活动,其频率变动范围在每秒1-30次之间的,可划分为四个波段,即δ(1-3Hz)、θ(4-7Hz)、α(8-13Hz)、β(14-30Hz)。除此之外,在觉醒并专注于某一事时,常可见一种频率较β波更高的γ波,其频率为30~80Hz,波幅范围不定。
在实验过程中,需要选取人脑中特定的区域来进行脑电波数据的采集。
人脑不同区域如图2所示,本实施例中,选取AF3,AF4,F3,F4,F7,F8,FC5,FC6, T7,T8,P7,P8,O1,O2这14个人脑位置中的脑电波数据进行采集。
所述情感状态的类别包括愉悦、生气、害怕和难过。
S2、使用改进的循环自进化模糊神经网络模型对部分脑电波数据即训练集进行训练;
利用步骤S1采集到的脑电波数据,通过改进的循环自进化模糊神经网络模型对其中训练集数据进行训练,以形成与实验者无关的情感识别模型;该模型以脑电波的数值数据作为输入,以实验者的真实情感状态的类别作为期望输出,使该模型尽可能拟合输入的脑电波数据。
如图3所示,所述改进的循环自进化模糊神经网络模型包括输入层(Layer1)、模糊化层 (Layer2)、空间激活层(Layer3)、循环层(Layer4)、结果层(Layer5)和输出层(Layer6),每一层都包含节点,节点通过任意类型的非线性算子作为神经元。
所述模糊化层即隶属函数层中,每个节点都使用一个高斯隶属函数,模糊化层计算的隶属度值即模糊化层的输出如下:
其中,指的是模糊化层的第j个节点因输入层的第i个节点的输入所对应的输出;mij,分别是输入层第i个节点的输入传递到模糊化层第j个隐藏神经元的高斯隶属函数的平均值和方差;高斯隶属函数的均值和方差是参数,由于每个节点都使用不同的高斯隶属函数,因此每个隶属函数的均值和方差需人为确定或随机生成;
所述空间激活层中,每个节点对应一个模糊规则作为空间规则节点函数;空间激活层的节点根据对应的规则从模糊化层的集合节点接收到一维的隶属度;使用模糊和算子对模糊规则进行预处理,通过运算得到空间激活强度Fj作为空间激活层的输出:
所述结果层中的节点为结果节点,计算公式如下:
所述输出层中的输出节点执行模糊去模糊化,采用加权平均去模糊法:
S3、通过训练好的改进的循环自进化模糊神经网络模型对另外的脑电波数据即测试集进行测试。
步骤S3中,使用训练好的改进的循环自进化模糊神经网络模型对测试集的数据进行测试,在实验过程中,以实验者脑电波的数值数据作为输入,并以得到的实验者的测试情感状态的类别作为输出,与步骤S1中记录的真实的情感状态的类别作对比,得出改进的循环自进化模糊神经网络模型的准确率。
情感认知理论认为,人类的情感极大地受到人脑生理状态的影响。除此之外,相比于心电图的生理数据,脑电波数据具有更丰富的特征,更复杂的空间结构,因此,本发明的准确率要比采用心电图等的生理数据进行预测高。
在真实情景下,以玩家的在游戏过程中的脑电波数据作为输入,并得到对应的输出即在游戏过程中的情感状态的类别。
Claims (9)
1.一种基于脑电波的用于游戏评估的情感识别方法,其特征在于,包括以下步骤:
S1、采用emotivepoc+设备进行脑电波数据的采集;
S2、使用改进的循环自进化模糊神经网络模型对部分脑电波数据即训练集进行训练;
S3、通过训练好的改进的循环自进化模糊神经网络模型对另外的脑电波数据即测试集进行测试。
2.根据权利要求1所述的一种基于脑电波的用于游戏评估的情感识别方法,其特征在于,步骤S1中,所述emotivepoc+设备能够采集人脑中的脑电波并采样计算一定时间间隔的平均值;采集多个实验者在游戏过程中的脑电波数据,并记录实验者在游戏过程中真实的情感状态的类别。
3.根据权利要求2所述的一种基于脑电波的用于游戏评估的情感识别方法,其特征在于,需要选取人脑中特定的区域来进行脑电波数据的采集。
4.根据权利要求2所述的一种基于脑电波的用于游戏评估的情感识别方法,其特征在于,所述情感状态的类别包括愉悦、生气、害怕和难过。
5.根据权利要求1所述的一种基于脑电波的用于游戏评估的情感识别方法,其特征在于,步骤S2中,利用步骤S1采集到的脑电波数据,通过改进的循环自进化模糊神经网络模型对其中训练集数据进行训练,以形成与实验者无关的情感识别模型;该模型以脑电波的数值数据作为输入,以实验者的真实情感状态的类别作为期望输出,使该模型尽可能拟合输入的脑电波数据。
6.根据权利要求5所述的一种基于脑电波的用于游戏评估的情感识别方法,其特征在于,所述改进的循环自进化模糊神经网络模型包括输入层、模糊化层、空间激活层、循环层、结果层和输出层,每一层都包含节点,节点通过任意类型的非线性算子作为神经元。
所述模糊化层即隶属函数层中,每个节点都使用一个高斯隶属函数,模糊化层计算的隶属度值即模糊化层的输出如下:
所述空间激活层中,每个节点对应一个模糊规则作为空间规则节点函数;空间激活层的节点根据对应的规则从模糊化层的集合节点接收到一维的隶属度;使用模糊和算子对模糊规则进行预处理,通过运算得到空间激活强度Fj作为空间激活层的输出:
8.根据权利要求6所述的一种基于脑电波的用于游戏评估的情感识别方法,其特征在于,所述循环层中,每个节点都是一个循环模糊规则节点,形成一个内部反馈循环;这种循环模糊规则节点的输出是一个暂时的激活强度结合了空激活强度和时间激活强度计算公式如下:
所述结果层中的节点为结果节点,计算公式如下:
所述输出层中的输出节点执行模糊去模糊化,采用加权平均去模糊法:
9.根据权利要求1所述的一种基于脑电波的用于游戏评估的情感识别方法,其特征在于,步骤S3中,使用训练好的改进的循环自进化模糊神经网络模型对测试集的数据进行测试,以实验者脑电波的数值数据作为输入,并以得到的实验者的测试情感状态的类别作为输出,与步骤S1中记录的真实的情感状态的类别作对比,得出改进的循环自进化模糊神经网络模型的准确率。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910925438.3A CN110866537B (zh) | 2019-09-27 | 2019-09-27 | 一种基于脑电波的用于游戏评估的情感识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910925438.3A CN110866537B (zh) | 2019-09-27 | 2019-09-27 | 一种基于脑电波的用于游戏评估的情感识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110866537A true CN110866537A (zh) | 2020-03-06 |
CN110866537B CN110866537B (zh) | 2022-10-25 |
Family
ID=69652784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910925438.3A Expired - Fee Related CN110866537B (zh) | 2019-09-27 | 2019-09-27 | 一种基于脑电波的用于游戏评估的情感识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110866537B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111407260A (zh) * | 2020-03-30 | 2020-07-14 | 华南理工大学 | 方向盘嵌入心电传感器的基于脑电和心电的疲劳检测方法 |
CN111407269A (zh) * | 2020-03-30 | 2020-07-14 | 华南理工大学 | 一种基于增强学习的eeg信号情感识别方法 |
CN111461204A (zh) * | 2020-03-30 | 2020-07-28 | 华南理工大学 | 一种用于游戏评估的基于脑电信号的情感识别方法 |
CN114098729A (zh) * | 2020-08-27 | 2022-03-01 | 北京晶栈信息技术有限公司 | 基于心脏间期的情绪状态客观测量方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5828812A (en) * | 1993-03-24 | 1998-10-27 | National Semiconductor Corporation | Recurrent neural network-based fuzzy logic system and method |
US20140143193A1 (en) * | 2012-11-20 | 2014-05-22 | Qualcomm Incorporated | Method and apparatus for designing emergent multi-layer spiking networks |
US20170286830A1 (en) * | 2016-04-04 | 2017-10-05 | Technion Research & Development Foundation Limited | Quantized neural network training and inference |
CN108268887A (zh) * | 2017-12-15 | 2018-07-10 | 西安电子科技大学 | 基于虚拟驾驶与eeg检测的驾驶人安全意识评估方法 |
CN108499111A (zh) * | 2018-03-15 | 2018-09-07 | 广东欧珀移动通信有限公司 | 游戏难度调整方法及相关产品 |
CN108898214A (zh) * | 2018-06-29 | 2018-11-27 | 山东师范大学 | 一种在线序列数据预测方法及装置 |
WO2019017962A1 (en) * | 2017-07-21 | 2019-01-24 | Landmark Graphics Corporation | TANK MODELING BASED ON DEEP LEARNING |
-
2019
- 2019-09-27 CN CN201910925438.3A patent/CN110866537B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5828812A (en) * | 1993-03-24 | 1998-10-27 | National Semiconductor Corporation | Recurrent neural network-based fuzzy logic system and method |
US20140143193A1 (en) * | 2012-11-20 | 2014-05-22 | Qualcomm Incorporated | Method and apparatus for designing emergent multi-layer spiking networks |
US20170286830A1 (en) * | 2016-04-04 | 2017-10-05 | Technion Research & Development Foundation Limited | Quantized neural network training and inference |
WO2019017962A1 (en) * | 2017-07-21 | 2019-01-24 | Landmark Graphics Corporation | TANK MODELING BASED ON DEEP LEARNING |
CN108268887A (zh) * | 2017-12-15 | 2018-07-10 | 西安电子科技大学 | 基于虚拟驾驶与eeg检测的驾驶人安全意识评估方法 |
CN108499111A (zh) * | 2018-03-15 | 2018-09-07 | 广东欧珀移动通信有限公司 | 游戏难度调整方法及相关产品 |
CN108898214A (zh) * | 2018-06-29 | 2018-11-27 | 山东师范大学 | 一种在线序列数据预测方法及装置 |
Non-Patent Citations (4)
Title |
---|
YU-TING LIU 等,: "Assessment of Mental Fatigue: An EEG-Based Forecasting System for Driving Safety", 《2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS》 * |
YU-TING LIU 等,: "Driving fatigue prediction with pre-event electroencephalography (EEG) via a recurrent fuzzy neural network", 《2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE)》 * |
李迪 等,: "自组织递归区间二型模糊神经网络在动态时变系统辨识中的应用", 《光学精密工程》 * |
陈明,: "基于脑电信号的情绪识别", 《中国优秀博硕士学位论文全文数据库(硕士)医药卫生科技辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111407260A (zh) * | 2020-03-30 | 2020-07-14 | 华南理工大学 | 方向盘嵌入心电传感器的基于脑电和心电的疲劳检测方法 |
CN111407269A (zh) * | 2020-03-30 | 2020-07-14 | 华南理工大学 | 一种基于增强学习的eeg信号情感识别方法 |
CN111461204A (zh) * | 2020-03-30 | 2020-07-28 | 华南理工大学 | 一种用于游戏评估的基于脑电信号的情感识别方法 |
CN111461204B (zh) * | 2020-03-30 | 2023-05-26 | 华南理工大学 | 一种用于游戏评估的基于脑电信号的情感识别方法 |
CN114098729A (zh) * | 2020-08-27 | 2022-03-01 | 北京晶栈信息技术有限公司 | 基于心脏间期的情绪状态客观测量方法 |
CN114098729B (zh) * | 2020-08-27 | 2023-11-10 | 中国科学院心理研究所 | 基于心脏间期的情绪状态客观测量方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110866537B (zh) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110866537B (zh) | 一种基于脑电波的用于游戏评估的情感识别方法 | |
Bird et al. | A Deep Evolutionary Approach to Bioinspired Classifier Optimisation for Brain‐Machine Interaction | |
CN111461204B (zh) | 一种用于游戏评估的基于脑电信号的情感识别方法 | |
CN112656427A (zh) | 一种基于维度模型的脑电信号情绪识别方法 | |
Kołodziej et al. | A new method of EEG classification for BCI with feature extraction based on higher order statistics of wavelet components and selection with genetic algorithms | |
CN109871831B (zh) | 一种情感识别方法及系统 | |
CN108992066A (zh) | 基于肌电信号的便携式下肢行为模式实时识别系统及方法 | |
Wang et al. | An approach of one-vs-rest filter bank common spatial pattern and spiking neural networks for multiple motor imagery decoding | |
Pandey et al. | A multistage deep residual network for biomedical cyber-physical systems | |
CN114343638B (zh) | 一种基于多模态生理参数信号的疲劳程度评估方法及系统 | |
Rejer et al. | Gamers’ involvement detection from EEG data with cGAAM–A method for feature selection for clustering | |
Lin et al. | An EEG-based cross-subject interpretable CNN for game player expertise level classification | |
Ming-Ai et al. | Feature extraction and classification of mental EEG for motor imagery | |
KR20080107961A (ko) | 오감 정보 처리기법 및 뇌파를 활용한 사용자 적응형임상진단/치료시스템 | |
Sargolzaei et al. | Functional connectivity network based on graph analysis of scalp EEG for epileptic classification | |
Gaso et al. | Electromyography signal classification using deep learning | |
KR20220060976A (ko) | 효율적인 멀티모달 특징그룹과 모델 선택 기반 감정인식을 위한 딥러닝 방법 및 장치 | |
Wang et al. | A shallow convolutional neural network for classifying MI-EEG | |
Gayatri et al. | Implementation of epileptic EEG using recurrent neural network | |
CN115736840A (zh) | 一种基于心电数据的睡眠质量识别分类方法 | |
Shukla et al. | A review on classification methods used in eeg-based home control systems | |
CN116327219A (zh) | 自动进化脑波侦测系统与用于脑波数据库的自动进化方法 | |
Hsiao et al. | Emotion inference of game users with heart rate wristbands and artificial neural networks | |
Tsien | Neural coding of episodic memory | |
Yuan et al. | Activity EMG signal identification based on radial basis function neural networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221025 |