CN110865307A - Battery module complementary energy detection method - Google Patents

Battery module complementary energy detection method Download PDF

Info

Publication number
CN110865307A
CN110865307A CN201911114201.3A CN201911114201A CN110865307A CN 110865307 A CN110865307 A CN 110865307A CN 201911114201 A CN201911114201 A CN 201911114201A CN 110865307 A CN110865307 A CN 110865307A
Authority
CN
China
Prior art keywords
battery module
voltage
single batteries
cut
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911114201.3A
Other languages
Chinese (zh)
Other versions
CN110865307B (en
Inventor
廖强强
李新周
谭轶童
刘鑫鑫
周豪磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yubang Zhiyuan Technology (Jiaxing) Co.,Ltd.
Original Assignee
Shanghai Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Power University filed Critical Shanghai Electric Power University
Priority to CN201911114201.3A priority Critical patent/CN110865307B/en
Publication of CN110865307A publication Critical patent/CN110865307A/en
Application granted granted Critical
Publication of CN110865307B publication Critical patent/CN110865307B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Abstract

The invention relates to a method for detecting the complementary energy of a battery module, which comprises the following steps: s1, acquiring performance data of different single batteries, and mutually connecting the single batteries with consistent performance data to form a battery module; s2, respectively obtaining the detection current, the charge cut-off voltage and the discharge cut-off voltage of the battery module according to the performance data of the single batteries and the connection relation of the single batteries in the battery module, wherein the detection current is I3Current flow; s3, performing constant current discharge on the battery module by adopting the detection current until the discharge cut-off voltage of the battery module, stopping the discharge, and standing the battery module for 1 h; s4, carrying out constant current charging on the battery module to the charging cut-off voltage of the battery module by adopting the detection current, and recording the constant current charging time; and S5, obtaining the capacity of the battery module according to the detection current and the constant current charging time, namely obtaining the residual energy detection value of the battery module. Compared with the prior art, the invention shortens the complementary energy detection time on the basis of ensuring the accuracyAnd (3) removing the solvent.

Description

Battery module complementary energy detection method
Technical Field
The invention relates to the technical field of storage batteries, in particular to a method for detecting the complementary energy of a battery module.
Background
In recent years, the number of pure electric vehicles is on a remarkable increase trend, and electric vehicles are considered as the best alternatives to conventional vehicles that address the problems of global warming and environmental pollution. Lithium ion batteries have become one of the main power sources of electric vehicles due to their characteristics of high efficiency, high specific energy and long service life. However, with the ever increasing demand and production of lithium ion batteries, recycling and disposal problems will arise in the coming years.
Generally, the average service life of the power battery is 5-8 years, the performance of the power battery is reduced along with the increase of the charging times, and when the capacity of the power battery is reduced to be below 80% of the rated capacity, the power battery is not suitable for the electric automobile. But the retired battery can still be further utilized in a plurality of fields such as energy storage, distributed photovoltaic power generation, household power consumption, low-speed electric vehicles and the like in a gradient way through links such as detection, maintenance and recombination. Before these retired batteries are utilized in a cascading manner, in order to ensure safe use and optimal performance of the retired batteries, a retired battery module needs to be subjected to complementary energy detection (SOH diagnosis).
According to the standard of 'vehicle power battery recycling complementary energy detection' (GB/T34015-2017) issued by the Chinese national standards committee, I is required after the decommissioning of a battery cell or a battery module5The current carries out capacity calibration 3-5 times, when 3 continuous capacity range is less than 3% of rated capacity, just can end the experiment, wherein, need carry out constant current charging and constant voltage charging respectively during the capacity calibration, the dead time is not higher than 1 hour after demarcating every time, therefore the time that a battery cell or battery module need occupy a detecting instrument under the greenhouse can the testing process be 36 ~ 60 hours, this undoubtedly can lead to the time cost that can detect is high, detecting instrument needs many scheduling problem. How to perform fast remaining energy detection on the capacity of the retired battery has become one of the key problems faced by using the battery module in a echelon.
Disclosure of Invention
The present invention is directed to a method for rapidly detecting remaining energy of a battery module, which overcomes the above-mentioned drawbacks of the prior art.
The purpose of the invention can be realized by the following technical scheme: a method for detecting the residual energy of a battery module comprises the following steps:
s1, acquiring performance data of different single batteries, and mutually connecting the single batteries with consistent performance data to form a battery module;
s2, respectively calculating the detection current, the charge cut-off voltage and the discharge cut-off voltage of the battery module according to the performance data of the single batteries and the connection relation of the single batteries in the battery module, wherein the detection current is I3Current flow;
s3, performing constant current discharge on the battery module by adopting the detection current until the discharge cut-off voltage of the battery module, stopping the discharge, and standing the battery module for 1 h;
s4, carrying out constant current charging on the battery module to the charging cut-off voltage of the battery module by adopting the detection current, and recording the constant current charging time;
and S5, calculating the capacity of the battery module according to the detection current and the constant current charging time, namely obtaining the residual energy detection value of the battery module.
Further, the performance data in the step S1 includes the rated capacity, the charge cut-off voltage, and the discharge cut-off voltage of the unit battery.
Further, the step S2 specifically includes the following steps:
s21, calculating I according to the rated capacity of the single batteries and the connection relation of the single batteries in the battery module3Current flow;
and S22, calculating the charge cut-off voltage and the discharge cut-off voltage of the battery module according to the charge cut-off voltage and the discharge cut-off voltage of the single batteries and the connection relation of the single batteries in the battery module.
Further, the step S21 specifically includes the following steps:
s211, calculating the rated capacity of the battery module according to the rated capacity of the single batteries and the connection relation of the single batteries in the battery module;
s212, calculating to obtain I according to rated capacity of the battery module3The current is applied.
Further, the rated capacity of the battery module in step S211 is specifically:
Figure BDA0002273609520000021
wherein H is the rated capacity of the battery module, scIs the rated capacity, p, of the series-connected portion of the single cells in the battery modulecThe rated capacity of the parallel part of the single batteries in the battery module is shown, n is the number of the parallel single batteries, and h is the rated capacity of the single batteries;
and when there is no single battery in series in the battery module, s c0; when there are the unit cells connected in series in the battery module, sc=h。
Further, I in the step S2123The current is specifically as follows:
Figure BDA0002273609520000031
further, the discharge cutoff voltage of the battery module in the step S22 is specifically:
Figure BDA0002273609520000032
wherein F is the discharge cut-off voltage of the battery module, sdFor the discharge cut-off voltage, p, of the series-connected portion of the single cells in the battery moduledThe discharge cut-off voltage of the parallel part of the single batteries in the battery module is m, the number of the single batteries connected in series is m, and f is the discharge cut-off voltage of the single batteries;
and when there is no parallel single battery in the battery module, p d0; when there are parallel-connected unit cells in the battery module, pd=f。
Further, the charge cut-off voltage of the battery module in the step S22 is specifically:
Figure BDA0002273609520000033
wherein R is the charge cut-off voltage of the battery module, seFor the charge cut-off voltage, p, of the series connection of the individual cells in the battery moduleeThe charging cut-off voltage of the parallel part of the single batteries in the battery module is m, the number of the single batteries connected in series is m, and r is the charging cut-off voltage of the single batteries;
and when there is no parallel single battery in the battery module, p e0; when there are parallel-connected unit cells in the battery module, pe=r。
Further, the capacity of the battery module in the step S5 is:
Cw=t*I3
wherein, CwThe capacity of the battery module is shown, and t is the constant current charging time.
Compared with the prior art, the invention adopts I3In addition, the invention only needs to carry out constant current charging on the battery module, omits the process of constant voltage charging, further reduces the residual energy detection time, namely, by increasing the charging and discharging multiplying power during the residual energy detection and reducing the charging and discharging steps of the residual energy detection, the problem of long time consumption of the residual energy detection can be solved while the residual energy detection precision is kept, and the subsequent echelon utilization of the retired battery is facilitated.
Drawings
FIG. 1 is a schematic flow diagram of the process of the present invention;
FIG. 2a is a diagram illustrating a comparison of constant current charging capacities of battery modules according to different complementary energy detection methods in an embodiment;
FIG. 2b is a graph illustrating a comparison of constant voltage charging capacities of battery modules according to different complementary energy detection methods in an embodiment;
FIG. 3a is a comparison graph of the actual charging capacities of battery modules according to different complementary energy detection methods in the embodiment;
FIG. 3b is a comparison graph of the actual charging time of the battery module under different complementary energy detection methods in the embodiment;
FIG. 4 is a comparison graph of test errors of different complementary energy detection methods in the embodiment.
Detailed Description
The invention is described in detail below with reference to the figures and specific embodiments.
As shown in fig. 1, a method for detecting the remaining energy of a battery module includes the following steps:
s1, acquiring performance data of different single batteries, and mutually connecting the single batteries with consistent performance data to form a battery module;
s2, respectively calculating the detection current, the charge cut-off voltage and the discharge cut-off voltage of the battery module according to the performance data of the single batteries and the connection relation of the single batteries in the battery module, wherein the detection current is I3Current flow;
s3, performing constant current discharge on the battery module by adopting the detection current until the discharge cut-off voltage of the battery module, stopping the discharge, and standing the battery module for 1 h;
s4, carrying out constant current charging on the battery module to the charging cut-off voltage of the battery module by adopting the detection current, and recording the constant current charging time;
and S5, calculating the capacity of the battery module according to the detection current and the constant current charging time, namely obtaining the residual energy detection value of the battery module.
To verify the effectiveness of the method provided by the present invention, the battery module used in this embodiment is derived from 4 retired lithium iron phosphate power module battery modules (15P4S, 15 parallel 4 strings) on a curiosa S18B electric vehicle, the nominal capacity of the battery module is 40Ah, the battery module is composed of 4 15P1S battery cells connected in series, and the rated voltage of the 15P1S battery cell is 3.2V. According to the difference of 5% of SOH, the retired battery modules are divided into four capacity grades from a 70-90% SOH interval, specifically shown in a chart 1, wherein the 70-75%, 75-80%, 80-85% and 85-90% of SOH are calibrated by adopting a Protocol2, the Protocol2 refers to the technical specification for testing the performance of the energy storage battery for the smart power grid in Shanghai City standard, one retired battery module is selected from each interval as a test object, four retired battery modules are selected in total to test and compare residual capacities of various different protocols, and the table 1 shows the basic performance and the battery name marks of the 4 battery modules before the experiment.
TABLE 1
Serial number Capacity (Ah C)3) Internal resistance (m omega) SOH(%) SOH interval (%)
#1 35.36 18.0 88.40 85-90
#2 33.21 19.5 83.03 80-85
#3 30.05 21.0 75.13 75-80
#4 28.66 20.0 71.65 70-75
Are respectively expressed by 1I1(1C magnification, 40A), 1I3(1/3C magnification, 13.3A), 1I5(1/5C magnification, 8A) and 1I10(1/10C multiplying power, 4A) four retired battery modules are respectively subjected to charge and discharge detection, and the four detected currents are respectively marked as Protocol 1, Protocol2, Protocol 3 and Protocol 4. The Protocol of Protocol 1 refers to the national standard 'requirement for electrical performance of power storage batteries for electric vehicles and experimental method', the Protocol of Protocol2 refers to the Shanghai standard 'technical specification for testing the performance of energy storage batteries for smart grids', the Protocol of Protocol 3 refers to the 'detection for recovery and utilization of complementary energy of power batteries for vehicles', and the Protocol4 refers to the low-rate capacity testing method.
1I in Protocol23Taking the current as an example, the retired battery module adopts 1I3(1/3C rate, 13.3A) constant current discharge, under the constant current discharge cutoff condition, discharging to the cutoff voltage (4 × 2.7V ═ 10.8V), and standing for 1 hour; then use 1I3Constant current charging, in which the constant current charging is stopped by charging to a stop voltage (4 × 3.65V: 14.6V), and then constant voltage charging is performed, in which the constant voltage charging is stopped by reducing the charging current to 0.1 × I3(1.2A) or the single-core voltage is larger than the single-core cut-off voltage (3.75V), stopping charging the battery, and standing for 1 hour; followed by 1I3The discharge was performed under the constant current discharge cutoff condition to a cutoff voltage (4 × 2.7V — 10.8V), and the procedure was completed. Finally 1I3(A) The battery capacity (in Ah) is calculated from the charging current value and the charging time data. While using 1I3(A) The relation between the capacity value detected by the residual energy of the retired battery module and the charge-discharge cutoff condition is studied by changing the charge cutoff condition and the discharge cutoff condition of the battery module as a research object.
Protocol 5 adopts the complementary energy detection method provided by the invention, the discharge cut-off condition is the total voltage (2.7 Xn) V of the battery module, the charge cut-off condition is (3.65 Xn) V, and the method does not comprise a moduleMonitoring of single-core voltage in the battery pack and a constant-voltage charging test Protocol, wherein the discharge cutoff condition of the Protocol 6 is battery module voltage (2.7 x n) V, and after constant-current charging is carried out to the cutoff condition (3.65 x n) V, constant-voltage charging is continued until the charging current is reduced to 0.1 x I3The charging process does not include an excessive constant voltage test protocol of single-core voltage monitoring, and in the embodiment, n is 4. Table 2 shows the test current and cut-off conditions for the capacity test Protocol (Protocol) for 6 different protocols.
TABLE 2
Figure BDA0002273609520000051
Figure BDA0002273609520000061
Table 3 shows the actual charging capacities (C) of 4 different battery modules under 6 different test protocolsch) And actual discharge capacity value (C)dis) As can be seen from table 3, the charge capacity and the discharge capacity of the batteries are very close, and therefore, for the S18 EV battery module, the discharge capacity may be replaced with the charge capacity to analyze the actual capacity of the battery module.
TABLE 3
Figure BDA0002273609520000062
FIG. 2a shows the charging capacity C of 4 battery modules under 6 different testing protocols for constant current chargingcc. Compared with the first type of Protocol, the capacities of the four modules #1, #2, #3 and #4 show a tendency of slightly increasing and then slightly decreasing, wherein the capacities of the 5 types of protocols such as Protocol2, Protocol 3, Protocol4, Protocol 5 and Protocol 6 are under CccThe values are very close and the measured values of Protocol 1 differ significantly compared to the other protocols. Using Protocol4 as comparison, wherein the maximum error of Protocol 1 compared with Protocol4 is 2.51Ah (7.422% SOH), which is 9 hours shorter than the detection time of Protocol 4; the maximum error of Protocol 5 compared to Protocol4 was 0.22Ah (0.651% SOH), and the detection time was 7 hours shorter than that of Protocol 4. Thus, it is possible to provideThe Protocol 5 constant current section is superior to other Protocol constant current section detection schemes in comprehensive consideration of time and precision as a battery complementary energy detection method.
FIG. 2b shows the value of the constant voltage charging capacity C under 6 different testing protocolscv. As can be seen from FIG. 2b, CcvThe value shows a gradually descending trend along with the reduction of the test current when CcvThe value does not decrease when it decreases to 0. And the consistency of the internal battery cell of the battery module is worsened along with the reduction of the capacity, the constant voltage charging process reaches the upper limit of the battery cell voltage of 3.75V in advance, so that the constant voltage charging process is ended in advance, namely CcvThe main cause of the value drop. Comparison of Protocol4 and Protocol 5, CcvThe values differ at most by not more than 0.36Ah (1.08% SOH), so CcvAnalysis of the values also indicated that the constant current section of Protocol 5 could be used for the residual energy detection.
FIG. 3a shows measured charge capacity values (C) of battery modules (#1, #2, #3, #4) under 6 different capacity test protocols (Protocol 1, Protocol2, Protocol 3, Protocol4, Protocol 5, Protocol 6)chI.e. CccValue and CcvThe sum). Wherein, C of Protocol 5chAnd CccThe values are equal. As can be seen from FIG. 3a, C for the #1 and #2 moduleschThe values slightly decrease under the first 5 protocols until the value increases for protocol 6, C for the #3 and #4 moduleschThe values are slightly increasing in the six protocols, and the remaining capacity of the retired battery and the difference in consistency of the batteries are the main causes of the different phenomena.
Fig. 3b shows the time required for the actually measured charge capacity of the battery modules (#1, #2, #3, #4) under 6 different capacity test protocols (Protocol 1, Protocol2, Protocol 3, Protocol4, Protocol 5, Protocol 6). Among them, Protocol 5 is a constant current period, and as can be seen from fig. 3b, the single detection time of Protocol 5 is reduced by 15 hours compared with Protocol4 and by 3 hours compared with protocols 2 and 6.
Fig. 4 shows that the errors of the measured charging capacity values of the modules (#1, #2, #3, #4) are large when the measured charging capacities of the Protocol4 batteries are compared under 5 different capacity test protocols (Protocol 1, Protocol2, Protocol 3, Protocol 5, Protocol 6)), and the errors of the protocols Protocol 1, Protocol2, Protocol 6 are found to be large when the errors are more than 3%, and the errors of the protocols Protocol 3, Protocol 5 are within 2%.
To sum up, in this embodiment, when the complementary energy detection method provided by the present invention is applied, the Protocol 5 first uses I as the retired battery module3(1/3C rate, 13.3A) constant current discharge to a discharge cut-off voltage (4 × 2.7V ═ 10.8V), and left for 1 hour; then with I3Constant current charging to a charge cut-off voltage (4 × 3.65V — 14.6V); finally according to I3(A) And calculating the current value and the charging time data during constant current charging to obtain the battery capacity (measured by Ah), namely the residual energy detection value of the battery module. The error measured by the method is within 2 percent, and the measuring time is reduced by 3 to 15 hours compared with other methods. Considering from the commercialization angle of retired battery module, it is very necessary that a large amount of retired battery modules are retired from the market, and it is necessary to shorten the residual energy detection time, and certain measurement accuracy needs to be guaranteed while shortening the time, and this embodiment verifies that the Protocol 5 constant current section is most suitable from the viewpoint of time efficiency and accuracy. Therefore, the method provided by the invention can be used for detecting the residual energy of the retired battery module, and the purpose of reducing the residual energy detection time can be realized on the basis of ensuring the detection accuracy.

Claims (9)

1. A method for detecting the residual energy of a battery module is characterized by comprising the following steps:
s1, acquiring performance data of different single batteries, and mutually connecting the single batteries with consistent performance data to form a battery module;
s2, respectively calculating the detection current, the charge cut-off voltage and the discharge cut-off voltage of the battery module according to the performance data of the single batteries and the connection relation of the single batteries in the battery module, wherein the detection current is I3Current flow;
s3, performing constant current discharge on the battery module by adopting the detection current until the discharge cut-off voltage of the battery module, stopping the discharge, and standing the battery module for 1 h;
s4, carrying out constant current charging on the battery module to the charging cut-off voltage of the battery module by adopting the detection current, and recording the constant current charging time;
and S5, calculating the capacity of the battery module according to the detection current and the constant current charging time, namely obtaining the residual energy detection value of the battery module.
2. The method as claimed in claim 1, wherein the performance data in step S1 includes the rated capacity, the charge cut-off voltage and the discharge cut-off voltage of the battery cell.
3. The method as claimed in claim 2, wherein the step S2 specifically comprises the following steps:
s21, calculating I according to the rated capacity of the single batteries and the connection relation of the single batteries in the battery module3Current flow;
and S22, calculating the charge cut-off voltage and the discharge cut-off voltage of the battery module according to the charge cut-off voltage and the discharge cut-off voltage of the single batteries and the connection relation of the single batteries in the battery module.
4. The method as claimed in claim 3, wherein the step S21 specifically comprises the following steps:
s211, calculating the rated capacity of the battery module according to the rated capacity of the single batteries and the connection relation of the single batteries in the battery module;
s212, calculating to obtain I according to rated capacity of the battery module3The current is applied.
5. The method for detecting the remaining energy of the battery module according to claim 4, wherein the rated capacity of the battery module in the step S211 is specifically as follows:
Figure FDA0002273609510000021
wherein H is a battery moduleRated capacity of the group, scIs the rated capacity, p, of the series-connected portion of the single cells in the battery modulecThe rated capacity of the parallel part of the single batteries in the battery module is shown, n is the number of the parallel single batteries, and h is the rated capacity of the single batteries;
and when there is no single battery in series in the battery module, sc0; when there are the unit cells connected in series in the battery module, sc=h。
6. The method as claimed in claim 5, wherein I in step S212 is3The current is specifically as follows:
Figure FDA0002273609510000022
7. the method as claimed in claim 3, wherein the discharge cut-off voltage of the battery module in the step S22 is specifically as follows:
Figure FDA0002273609510000023
wherein F is the discharge cut-off voltage of the battery module, sdFor the discharge cut-off voltage, p, of the series-connected portion of the single cells in the battery moduledThe discharge cut-off voltage of the parallel part of the single batteries in the battery module is m, the number of the single batteries connected in series is m, and f is the discharge cut-off voltage of the single batteries;
and when there is no parallel single battery in the battery module, pd0; when there are parallel-connected unit cells in the battery module, pd=f。
8. The method as claimed in claim 7, wherein the charge cut-off voltage of the battery module in the step S22 is specifically as follows:
Figure FDA0002273609510000024
wherein R is the charge cut-off voltage of the battery module, seFor the charge cut-off voltage, p, of the series connection of the individual cells in the battery moduleeThe charging cut-off voltage of the parallel part of the single batteries in the battery module is m, the number of the single batteries connected in series is m, and r is the charging cut-off voltage of the single batteries;
and when there is no parallel single battery in the battery module, pe0; when there are parallel-connected unit cells in the battery module, pe=r。
9. The method for detecting the remaining energy of the battery module as claimed in claim 1, wherein the capacity of the battery module in the step S5 is as follows:
Cw=t*I3
wherein, CwThe capacity of the battery module is shown, and t is the constant current charging time.
CN201911114201.3A 2019-11-14 2019-11-14 Battery module complementary energy detection method Active CN110865307B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911114201.3A CN110865307B (en) 2019-11-14 2019-11-14 Battery module complementary energy detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911114201.3A CN110865307B (en) 2019-11-14 2019-11-14 Battery module complementary energy detection method

Publications (2)

Publication Number Publication Date
CN110865307A true CN110865307A (en) 2020-03-06
CN110865307B CN110865307B (en) 2022-06-07

Family

ID=69654205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911114201.3A Active CN110865307B (en) 2019-11-14 2019-11-14 Battery module complementary energy detection method

Country Status (1)

Country Link
CN (1) CN110865307B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114184968A (en) * 2020-09-14 2022-03-15 蓝谷智慧(北京)能源科技有限公司 Method, device and equipment for evaluating capacity of battery pack
WO2022067485A1 (en) * 2020-09-29 2022-04-07 宁德时代新能源科技股份有限公司 Battery charging method and device, and storage medium
CN115954565A (en) * 2022-11-21 2023-04-11 上海玫克生储能科技有限公司 Method, system, equipment and medium for supplementing electricity to battery module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169002A (en) * 2011-01-04 2011-08-31 武汉理工大学 Method for measuring fuel consumption and discharge of hybrid electromobile
CN102854470A (en) * 2012-08-31 2013-01-02 哈尔滨工业大学 Measurement method for estimating actual available capacity by SOC (state of charge) of power battery set
CN103427459A (en) * 2013-07-29 2013-12-04 清华大学 Battery pack capacity equilibrium method
CN106199437A (en) * 2016-06-29 2016-12-07 重庆小康工业集团股份有限公司 Electromobile battery dump energy monitoring method and monitoring system thereof
CN106646261A (en) * 2017-01-03 2017-05-10 重庆长安汽车股份有限公司 Accuracy verification method and accuracy verification system for SOC of battery management system
CN107797070A (en) * 2017-10-24 2018-03-13 北京普莱德新能源电池科技有限公司 The appraisal procedure and apparatus for evaluating of electrokinetic cell health status
CN108490366A (en) * 2018-05-09 2018-09-04 上海电力学院 The fast evaluation method of the retired battery module health status of electric vehicle
CN109061477A (en) * 2018-06-12 2018-12-21 清华大学深圳研究生院 A kind of the verifying evaluation method and device of battery SOC estimating algorithm
JP2019060838A (en) * 2017-09-25 2019-04-18 富士通株式会社 Battery level measurement circuit, control circuit and sensor node
CN109738825A (en) * 2018-12-27 2019-05-10 上海毅信环保科技有限公司 Retired battery active volume and internal resistance detection method and device based on historical data
CN110441703A (en) * 2019-09-07 2019-11-12 深圳市凯德旺科技有限公司 A kind of evaluation method and its detection system of the lithium battery SOC of mobile charging system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169002A (en) * 2011-01-04 2011-08-31 武汉理工大学 Method for measuring fuel consumption and discharge of hybrid electromobile
CN102854470A (en) * 2012-08-31 2013-01-02 哈尔滨工业大学 Measurement method for estimating actual available capacity by SOC (state of charge) of power battery set
CN103427459A (en) * 2013-07-29 2013-12-04 清华大学 Battery pack capacity equilibrium method
CN106199437A (en) * 2016-06-29 2016-12-07 重庆小康工业集团股份有限公司 Electromobile battery dump energy monitoring method and monitoring system thereof
CN106646261A (en) * 2017-01-03 2017-05-10 重庆长安汽车股份有限公司 Accuracy verification method and accuracy verification system for SOC of battery management system
JP2019060838A (en) * 2017-09-25 2019-04-18 富士通株式会社 Battery level measurement circuit, control circuit and sensor node
CN107797070A (en) * 2017-10-24 2018-03-13 北京普莱德新能源电池科技有限公司 The appraisal procedure and apparatus for evaluating of electrokinetic cell health status
CN108490366A (en) * 2018-05-09 2018-09-04 上海电力学院 The fast evaluation method of the retired battery module health status of electric vehicle
CN109061477A (en) * 2018-06-12 2018-12-21 清华大学深圳研究生院 A kind of the verifying evaluation method and device of battery SOC estimating algorithm
CN109738825A (en) * 2018-12-27 2019-05-10 上海毅信环保科技有限公司 Retired battery active volume and internal resistance detection method and device based on historical data
CN110441703A (en) * 2019-09-07 2019-11-12 深圳市凯德旺科技有限公司 A kind of evaluation method and its detection system of the lithium battery SOC of mobile charging system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHIRUI LIANG ET AL.: "Residual capacity estimation of valve-regulated lead-acid (VRLA) batteries for second-use", 《2019 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT ASIA)》 *
李程等: "退役电池模组余能检测充放电协议的优化研究", 《电器工业》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114184968A (en) * 2020-09-14 2022-03-15 蓝谷智慧(北京)能源科技有限公司 Method, device and equipment for evaluating capacity of battery pack
CN114184968B (en) * 2020-09-14 2023-11-10 蓝谷智慧(北京)能源科技有限公司 Method, device and equipment for evaluating capacity of battery pack
WO2022067485A1 (en) * 2020-09-29 2022-04-07 宁德时代新能源科技股份有限公司 Battery charging method and device, and storage medium
CN115954565A (en) * 2022-11-21 2023-04-11 上海玫克生储能科技有限公司 Method, system, equipment and medium for supplementing electricity to battery module
CN115954565B (en) * 2022-11-21 2023-08-25 上海玫克生储能科技有限公司 Battery module electricity supplementing method, system, equipment and medium

Also Published As

Publication number Publication date
CN110865307B (en) 2022-06-07

Similar Documents

Publication Publication Date Title
CN109031145B (en) Series-parallel battery pack model considering inconsistency and implementation method
CN103545567B (en) A kind of method of quick sorting lithium ion battery
CN104391252B (en) Automobile lead-acid battery health state detection method
CN103163464B (en) The detection method of battery core in power brick
CN110865307B (en) Battery module complementary energy detection method
CN108490366B (en) Rapid assessment method for state of health of electric automobile retired battery module
CN204269787U (en) The conforming detection system of a kind of lithium ion battery cryogenic property
CN108508365B (en) Lithium ion battery self-discharge screening method
CN104741327A (en) Dynamic consistent sorting method for lithium-ion power battery
CN102944849A (en) Rapid battery capacity detecting method for lithium ion batteries
CN102124360A (en) Storage battery device, storage battery state of charge evaluation device and method
CN101950001A (en) Evaluation method of consistency of lithium ion battery pack for electric vehicle
CN101458310A (en) Battery consistency evaluating method
CN103008261A (en) Method for sorting degrees of self-discharging of lithium ion batteries
CN102520367A (en) Method for evaluating life of space hydrogen-nickel storage batteries
CN110749832B (en) Method for quickly estimating actual capacity of retired lithium ion battery of electric vehicle
CN107607874A (en) The bikini screening technique of quick charge/discharge lithium ion battery
CN103269096A (en) Battery pack equilibrium method based on clustering analysis
CN103424713B (en) Lead-acid power battery capacity method for group matching
CN104237802A (en) Detection method for low-temperature performance uniformity of lithium ion batteries
CN107618397A (en) Battery management system
CN111064253A (en) Battery health degree rapid evaluation method based on average discrete Frechet distance
CN112186278B (en) Lithium ion battery matching method
CN104681851A (en) Method for matching lithium ion power batteries for automobiles
CN113484773A (en) Screening method for self-discharge of lithium ion battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240104

Address after: Building 6, 3rd Floor, No. 929 Fengtan Road, Wuyuan Street, Haiyan County, Jiaxing City, Zhejiang Province, 314300

Patentee after: Yubang Zhiyuan Technology (Jiaxing) Co.,Ltd.

Address before: 200090 No. 2103, Pingliang Road, Shanghai, Yangpu District

Patentee before: Shanghai Electric Power University

TR01 Transfer of patent right