CN110862538A - 一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法 - Google Patents

一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法 Download PDF

Info

Publication number
CN110862538A
CN110862538A CN201911187160.0A CN201911187160A CN110862538A CN 110862538 A CN110862538 A CN 110862538A CN 201911187160 A CN201911187160 A CN 201911187160A CN 110862538 A CN110862538 A CN 110862538A
Authority
CN
China
Prior art keywords
cnts
fuel cell
microbial fuel
cooh
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911187160.0A
Other languages
English (en)
Other versions
CN110862538B (zh
Inventor
陈可泉
冯娇
陆秋豪
黄书悦
许晟
王昕�
欧阳平凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201911187160.0A priority Critical patent/CN110862538B/zh
Publication of CN110862538A publication Critical patent/CN110862538A/zh
Application granted granted Critical
Publication of CN110862538B publication Critical patent/CN110862538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法,其特征在于,包括以下步骤:步骤1,将羟基化多臂碳纳米管加入溶剂超声分散;步骤2,将超声后的CNTs‑COOH和盐酸多巴胺按质量比例1:0.6‑:6混合得混合物;步骤3,将混合物接入搭建好的MFC阳极室中,使其HCl‑DA的终浓度为0.1‑1 mg/mL;步骤4,采用Ag/AgCl为参比电极,通过循环伏安法扫描在(‑1.0)V‑(+1.0)V进行电聚合。与现有技术相比,本发明微生物燃料电池通过碳纳米管聚多巴胺复合材料为原料,结合菌作为电池的阳极液,良好的稳定性和分散性,提高了MFC的产电量,具有良好的市场前景。

Description

一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法
技术领域
本发明属于微生物燃料电池制备技术领域,具体涉及一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法。
背景技术
微生物燃料电池(MFC)是一种以微生物为催化剂将化学能转化成电能的装置,因其降解有机物的同时收获电能的突出特点受到广泛关注。但其发展的主要问题之一是单位电极面积上的输出效率比较低,无法在实际应用上很好地放大试验。阳极直接参与了微生物催化氧化过程得到了广泛的研究。多臂碳纳米管(CNTs) 由于具有良好的导电性,较大的比表面积,在MFC中可以增加细胞接触面积,因此,常用于MFC的以增强电池的电化学性能。
CNTs是由单层或者多层的石墨烯片按一定的螺旋角形成的同轴纳米级管状分子,具有高度离域化的大π键,其上有许多处于高速运动中的未成键电子,赋予了它良好的导电性。但其应用过程中也发现了一些缺陷。(1)一般会将CNTs 制成溶液,滴凃在电极材料表面,空气中风干后使用。这种修饰方式操作非常简单,效率也很高,但是稳定性很差,通常在电池运行1-2天内就会大面积地脱落。 (2)CNTs之间有很强的范德华力,而且分子量较大,在水溶液中容易发生团聚和缠绕,集结成大的束或绳状。这限制了其应用,因此对于CNTs的研究首要解决的就是分散和稳定问题。超声是一种常用于溶液中CNTs分散的物理方法,该方法操作简单,见效快,但不能长期保持分散状态。(3)CNTs的暴露可能会导致细胞毒性和遗传毒性,对于微生物而言也有损伤细胞膜的隐患。
现有技术中对CNTS的改性处理方法比较多,但是效果并不理想。比如说通过化学反应以共价键的形式将功能化基团引入CNTs的侧壁从而改性的方法称为共价改性法,引入的功能性基团通常以羧基、羟基和氨基等,增加了CNTs表面的活性位点,提高了分散性。但这种方法破坏了CNTs原有的结构,会削弱它的导电性和机械强度。
聚多巴胺(PDA)是一种有机聚合材料,也是第一种几乎可以对一切化学材料进行表面功能化的黏合性聚合物。PDA的亲水性很好,这是因为其结构中含有的酚羟基和氨基基团,能够与水分子形成氢键。PDA的单体多巴胺(DA)是生物体内一种重要的神经递质,参与多种情绪的产生,因此PDA的具有很好的生物相容性。近年来,PDA在材料、医学、化学等多个研究领域得到了积极的研究和广泛的应用。
发明内容
针对上述技术问题,本发明提供一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法,该方法简单易于制备,稳定性和分散型好,且所得燃料电池的 MFC的产电量高。
一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法,包括以下步骤:
步骤1,将羟基化多臂碳纳米管CNTs-COOH加入溶剂超声分散15-60min;
步骤2,将超声后的CNTs-COOH和盐酸多巴胺(HCl-DA)按质量比例1:0.6-:6 混合得混合物;
步骤3,将混合物接入搭建好的MFC阳极室中,使其HCl-DA的终浓度为 0.1-1mg/mL;
步骤4,采用Ag/AgCl为参比电极,通过循环伏安法扫描在(-1.0)-(+1.0) V进行电聚合。
作为改进的是,步骤2中C NTs-COOH和盐酸多巴胺(HCl-DA)的质量比为为1:3。
作为改进的是,步骤3中MFC中加入的HCl-DA的终浓度为0.5mg/ml。
作为改进的是,步骤4中循环伏安扫描在三电极体系下进行,以Ag/AgCl 为参比电极扫描范围是(-0.8)-(+0.6)V。
有益效果:
与现有技术相比,本发明一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法具有如下优势:
采用具有化学活性优良的羧基化碳纳米管(Carboxylic Carbon Nanotubes,CNTs-COOH),结合具有良好生物相容性的多巴胺材料,进行在适当电解液的电解池里,通过一定的电化学方式进行电解,使多巴胺在电极上因氧化还原而发生聚合,形成碳纳米管聚多巴胺复合材料。利用聚多巴胺的黏附性可以改善CNTs的脱落,良好生物相容性减轻其对细胞的损伤,可溶性聚合物聚多巴胺使碳纳米管吸附在表面,提高其分散度。同时在接入作用菌株的MFC中进行电聚合,可以有效的增加菌株与材料的接触,更快的使菌株吸附于改造后的阳极上。最终,利用 CNTs-COOH@PDA复合材料具有导电性和强黏附性,增强CNTs-COOH的分散性,并作用于微生物燃料电池阳极,提高MFC的产电量。
附图说明
图1为pH 8.5时氧化自聚0.5h、1.0h、1.5h、2.0h、2.5h、3.0h 后所得CNTs-COOH@PDA混悬液静置10min后的实物图;
图2为碳粘、碳粘+CNTs-COOH和碳粘+DA+CNTs-COOH电聚合后的扫描电镜图;
图3为空白对照组、CNTs-COOH组、DA+CNTs-COOH组的输出电压,MFC阴阳极室间外接2000Ω的电阻,以万用表定期测定外部电压值。
具体实施方式
下面结合附图和具体实施例对本发明作进一步描述。
实施例1活化产电菌株
本实验采用实验室前期构建好的自产电子介体吩嗪-1-羧酸及直接电子传递 Mtr途径的重组菌株E.coli-phz-Mtr,所述重组菌株E.coli-phz-Mtr的构建方法如下:
构建质粒pBBR1MCS-MtrCBA,具体步骤见申请号201910994832.2的专利公开内容;
构建质粒pCWJ-phz,将专利201811344851.2中的质粒ptrc99a-phz用SacI 和HindIII限制性内切酶进行双酶切,同时将质粒pCWJ用SacI和HindIII限制性内切酶进行双酶切,之后将含有phzA-G基因的片段与酶切后的pCWJ线性质粒片段进行连接,得到重组质粒pCWJ-phz;
将质粒pBBR1MCS-MtrCBA与pCWJ-phz共转化至E.coli BA102感受态细胞中,得到重组菌株E.coli-phz-Mtr。
50mL摇管中将菌株37℃摇床活化12h,以2%接种量接入含100mL LB培养基的500mL摇瓶中,加入终浓度100μg/ml氨苄青霉素和50μg/ml庆大霉素,入37℃摇床培养至OD600约0.4时,每个摇瓶中加入总浓度0.01mM的IPTG,放入30℃摇床培养7h,所得菌体培养液,保藏备用。
实施例2微生物燃料电池阴阳极液的配置阴极液为含50mM K3[Fe(CN)6]和50mMKCl。
阳极液为菌体培养液(100ml)加入20mL PBS缓冲液、终浓度10g/L葡萄糖溶液、100ug/ml氨苄青霉素、50ug/ml庆大霉素和0.01mM的IPTG。
实施例3搭建MFC装置
双室H型MFC装置,121℃条件下高温灭菌20min,之后放入超净工作台中备用。Ag/AgCl参比电极和磁力转子浸泡在体积分数为75%乙醇溶液中,放入超净台紫外灭菌20min。将MFC装置阳极室下口插入Ag/AgCl参比电极。标记后分别加入对应的阳极菌液,无其他添加物的为对照组1,加入20mg CNTs-COOH 的为对照组2,加入20mg CNTs-COOH同时加入0.1-1.0mg/mL的HCl-DA为实验组,加入磁力转子,阴极室倒入阴极液。将MFC装置放入恒温培养箱中,阳极室下方加磁力搅拌器。
实施例4制作修饰电极
将MFC连接到多通道电化学综合测试仪,用循环伏安法扫描5个循环,扫描范围为-0.8-0.8v,扫速为20mv/s。扫描结束后,断开连接,在阴极与阳极之间外接2000Ω的电阻,定期测量电压值。当电压值出现明显下降时,替换阴极液和阳极液,在替换阳极液时要注意不要破坏阳极电极表面生长的微生物膜。重复替换三次。
参照上述连接方式,设置两组对比组,分别如下所示:
对比组1为空白对照组;
对比组2为CNTs-COOH组,CNTs-COOH组内为加入20mg的CNTs-COOH;
实验组为DA0.5组,DA0.5组加入20mg CNTs-COOH同时加入0.5mg/mL的 HCl-DA。
在MFC第一阶段,空白对照组的电压值整体较高。CNTs-COOH组初期的电压值比其他两组更高,但持续性较差,在运行44h左右时,电压值开始低于空白对照组;运行65h左右时,电压值下降速度加快,大约为10mV/h;运行81h 左右时,电压值下降至59mV,之后,电压值仍在下降,但降速减小,约为3mV/h。 DA+CNTs-CCOH组的电压值低于空白对照组,差值约为50mV。运行65h左右时,与CNTs-COOH组电压值基本持平,之后均高于CNTs-COOH组,截止第一阶段结束, DA+CNTs-COOH组的电压值保持在300mV左右。
第90h时,更换电极溶液,进入MFC的第二阶段,第二阶段开始20h左右,三组的电压值相差不大。运行111h左右时,DA+CNTs-COOH组的电压值开始升高,逐渐高于其余两组,并且随着运行时间延长,与其余两组的差距都越来越大。从127h左右开始,空白对照组的电压值开始快速下跌,下降速度约为15mV/h。至运行150h左右时,电压值跌至60mV,并且降速减小。CNTs-COOH组的电压值在运行154h左右,即第二阶段开始64h左右,电压值下降速度明显加快,这与上一阶段同期的趋势相似。
第160h时,更换电极溶液,进入MFC的第三阶段,从第三阶段开始至运行 24h左右,空白对照组和CNTs-COOH组的降幅均在100mV左右,而DA+CNTs-COOH 组的降幅仅为50mV。从运行184h左右之后,三组电压值保持为:DA+CNTs-COOH 组>空白对照组>CNTs-COOH组。运行228h左右,即第三阶段开始68h左右, CNTs-COOH组的电压值开始大幅度下降,CNTs-COOH组在三个阶段的电压值趋势大致相同。运行250h左右时,即第三阶段开始90h左右,空白对照组电压值开始显著下降。综合三个阶段来看,第二阶段空白对照组电压值大幅度下跌趋势出现的时间较早,这可能是因为MFC在前期的电压值不稳定。MFC运行268h左右时,空白对照组和CNTs-COOH组的电压值分别降为78mV和35mV,而 DA+CNTs-COOH组仍保持在400mV左右。
从图3可以看出,CNTs-COOH@PDA修饰的碳毡电极表现出了持续时间较长的高电压值,说明它的电压稳定性较好,导电性较强,能够提高MFC的产电量。这可能因为PDA薄层吸附了更多的CNTs-COOH,提高了碳毡的导电性;同时 CNTs-COOH@PDA良好的生物相容性也能促进碳毡表面生物菌膜的生长,提高了碳毡表面的产电细菌附着量。
Figure BDA0002292668800000061
另外,通过改变HCl-DA加入浓度,检测电路的电压情况。具体如下表1所示。
通从上述结果可以看出,0.5mg/mL HCl-DA组运行的电压值表现出了持续时间较长的高电压值。0.1mg/mL DA组电压值较低的原因可能是碳毡表面形成的PDA比较少,对CNTs-COOH的黏附能力弱,导电性提升较小,同时存在部分的 CNTs-COOH暴露,损伤了产电细菌。1.0mg/mL DA组的电压值较低的原因是碳毡表面形成的PDA层比较致密,由于PDA本身没有导电性,过厚的PDA膜阻断了电子的传递过程。因此,优选HCl-DA的浓度为0.5mg/mL。

Claims (4)

1.一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法,其特征在于,包括以下步骤:步骤1,将CNTs-COOH加入溶剂超声分散15-60 min;步骤2,将超声后的CNTs-COOH和盐酸多巴胺(HCl-DA)按质量比例1:0.6-6混合得混合物;步骤3,将混合物接入搭建好的MFC阳极室中,使其HCl-DA的终浓度为0.1-1 mg/mL;步骤4,采用Ag/AgCl为参比电极,通过循环伏安法扫描在(-1.0)-(+1.0)V进行电聚合。
2.根据权利要求1所述的基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法,其特征在于,步骤2中C NTs-COOH和盐酸多巴胺(HCl-DA)的质量比为为1:3。
3.根据权利要求1所述的基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法,其特征在于,步骤3中MFC中加入的HCl-DA的终浓度为0.5 mg/ml。
4.根据权利要求1所述的基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法,其特征在于,步骤4中循环伏安法扫描范围是(-0.8)V- (+0.6)V。
CN201911187160.0A 2019-11-28 2019-11-28 一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法 Active CN110862538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911187160.0A CN110862538B (zh) 2019-11-28 2019-11-28 一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911187160.0A CN110862538B (zh) 2019-11-28 2019-11-28 一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法

Publications (2)

Publication Number Publication Date
CN110862538A true CN110862538A (zh) 2020-03-06
CN110862538B CN110862538B (zh) 2022-05-13

Family

ID=69655466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911187160.0A Active CN110862538B (zh) 2019-11-28 2019-11-28 一种基于碳纳米管聚多巴胺复合材料微生物燃料电池的方法

Country Status (1)

Country Link
CN (1) CN110862538B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780010A (zh) * 2012-08-07 2012-11-14 青岛科技大学 一种导电复合物修饰碳基材料微生物燃料电池复合阳极的制备方法
CN103012806A (zh) * 2012-12-27 2013-04-03 复旦大学 一种聚多巴胺修饰的碳纳米管复合材料的合成方法及其应用
KR20160134421A (ko) * 2015-05-13 2016-11-23 광주과학기술원 정삼투-미생물 연료전지 시스템을 포함하는 해수 담수용 전처리 설비 및 이를 포함하는 해수 담수화 설비
CN107768692A (zh) * 2017-08-31 2018-03-06 华南师范大学 一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池
CN109742411A (zh) * 2018-12-06 2019-05-10 东南大学 一种多巴胺修饰石墨烯微生物燃料电池阳极的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780010A (zh) * 2012-08-07 2012-11-14 青岛科技大学 一种导电复合物修饰碳基材料微生物燃料电池复合阳极的制备方法
CN103012806A (zh) * 2012-12-27 2013-04-03 复旦大学 一种聚多巴胺修饰的碳纳米管复合材料的合成方法及其应用
KR20160134421A (ko) * 2015-05-13 2016-11-23 광주과학기술원 정삼투-미생물 연료전지 시스템을 포함하는 해수 담수용 전처리 설비 및 이를 포함하는 해수 담수화 설비
CN107768692A (zh) * 2017-08-31 2018-03-06 华南师范大学 一款聚多巴胺包覆碳纳米管增强抗坏血酸/葡萄糖燃料电池
CN109742411A (zh) * 2018-12-06 2019-05-10 东南大学 一种多巴胺修饰石墨烯微生物燃料电池阳极的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIZHEN ZENG ET AL: "Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells", 《JOURNAL OF POWER SOURCES》 *
叶芳 等: "多巴胺在多壁碳纳米管修饰电极上的电化学行为", 《韶关学院学报》 *
常凤霞 等: "聚多巴胺及碳纳米管复合物修饰电极的构建", 《西南民族大学学报》 *

Also Published As

Publication number Publication date
CN110862538B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Zhao et al. Nanostructured material-based biofuel cells: recent advances and future prospects
Hindatu et al. Mini-review: Anode modification for improved performance of microbial fuel cell
Zhang et al. Performance improvement of air-cathode single-chamber microbial fuel cell using a mesoporous carbon modified anode
Higgins et al. Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation
Qiao et al. Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry
Li et al. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis
Mehdinia et al. Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells
Liao et al. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells
Wen et al. Enzymatic biofuel cells on porous nanostructures
Fan et al. Different modified multi-walled carbon nanotube–based anodes to improve the performance of microbial fuel cells
Chung et al. Development of a glucose oxidase-based biocatalyst adopting both physical entrapment and crosslinking, and its use in biofuel cells
Tang et al. Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells
Zou et al. Boosting microbial electrocatalytic kinetics for high power density: insights into synthetic biology and advanced nanoscience
Zhang et al. Layer-by-layer assembly for immobilizing enzymes in enzymatic biofuel cells
Wu et al. Direct electron transfer of glucose oxidase immobilized in an ionic liquid reconstituted cellulose–carbon nanotube matrix
Tawalbeh et al. The novel advancements of nanomaterials in biofuel cells with a focus on electrodes’ applications
Karthikeyan et al. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts
CN108585544B (zh) 一种基于碳纳米管组装复合材料对基底材料进行表面修饰的方法
Wu et al. Sensitive enzymatic glucose biosensor fabricated by electrospinning composite nanofibers and electrodepositing Prussian blue film
Truong et al. In situ fabrication of electrically conducting bacterial cellulose-polyaniline-titanium-dioxide composites with the immobilization of Shewanella xiamenensis and its application as bioanode in microbial fuel cell
CN102760888A (zh) 石墨烯/基底电极和聚苯胺-石墨烯/基底电极的制备及应用
CN103066304B (zh) 一种酶生物燃料电池阳极及其制备方法与应用
CN107706428B (zh) 一种聚苯胺纳米花修饰的碳布电极及其制备方法和用途
Hu et al. Cultivation of exoelectrogenic bacteria in conductive DNA nanocomposite hydrogels yields a programmable biohybrid materials system
CN109244479B (zh) 网状氮掺杂碳包覆二氧化锰碳布电极及制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Feng Jiao

Inventor after: Chen Kequan

Inventor after: Lu Qiuhao

Inventor after: Huang Shuyue

Inventor after: Xu Cheng

Inventor after: Wang Xin

Inventor after: Ouyang Pingkai

Inventor before: Chen Kequan

Inventor before: Feng Jiao

Inventor before: Lu Qiuhao

Inventor before: Huang Shuyue

Inventor before: Xu Cheng

Inventor before: Wang Xin

Inventor before: OuYang Pingkai

GR01 Patent grant
GR01 Patent grant