CN110855350B - 基于温度矩阵的光模块检测方法 - Google Patents

基于温度矩阵的光模块检测方法 Download PDF

Info

Publication number
CN110855350B
CN110855350B CN201911120909.XA CN201911120909A CN110855350B CN 110855350 B CN110855350 B CN 110855350B CN 201911120909 A CN201911120909 A CN 201911120909A CN 110855350 B CN110855350 B CN 110855350B
Authority
CN
China
Prior art keywords
temperature
local detection
optical module
detection point
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911120909.XA
Other languages
English (en)
Other versions
CN110855350A (zh
Inventor
林锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Source Photonics Chengdu Co Ltd
Original Assignee
Source Photonics Chengdu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Source Photonics Chengdu Co Ltd filed Critical Source Photonics Chengdu Co Ltd
Priority to CN201911120909.XA priority Critical patent/CN110855350B/zh
Publication of CN110855350A publication Critical patent/CN110855350A/zh
Application granted granted Critical
Publication of CN110855350B publication Critical patent/CN110855350B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/073Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal
    • H04B10/0731Testing or characterisation of optical devices, e.g. amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明涉及一种基于温度矩阵的光模块检测方法,在光模块组装完成之后,在模块温循和调测试、老化之前,执行以下步骤:利用布置于光模块多个局部检测点的温度传感器,采集光模块在各个局部检测点的温度;基于采集到的各个局部检测点的温度,分析所述光模块是否存在故障。通过本发明方法可以在模块温循和调测试、老化之前检测出不合格产品,因此可以避免不合格产品占用温循设备和测试设备资源的问题,同时通过局部温度检测的方式可以避免组装和温循过程漏检的情况,提高调测试站的良率。

Description

基于温度矩阵的光模块检测方法
技术领域
本发明涉及光通信技术领域,特别涉及一种基于温度矩阵的光模块检测方法。
背景技术
光模块是一种可以将光信号转换为电信号以及将电信号转换为光信号的产品,包括光收发组件及处理电路。由于光模块的集成度越来越高,因此对装配难度越来越大,难免会出现冷焊、热垫装配、弯曲等在装配后的第一时间难以检测的问题。光模块在装配完成后需要进行温循、老化实验,以检测光模块的稳定性。一方面,在老化实验和测试过程中检测的只是MCU的平均温度,因此会导致部分问题漏测;另一方面,温循、老化实验设备非常昂贵,若存在上述问题的不合格产品在封装完成后直接进行温循、测试、老化,就会占用温循和老化、测试设备资源,使得温循、测试、老化实验设备得不到更有效地利用。
发明内容
本发明的目的在于改善现有技术中所存在的占用资源、易漏测的不足,提供一种基于温度矩阵的光模块检测方法,在温循、测试、老化实验前检测出部分不合格产品,以提高温循、测试、老化实验设备的利用率及老化实验的良率。
为了实现上述发明目的,本发明实施例提供了以下技术方案:
一种基于温度矩阵的光模块检测方法,在光模块组装完成之后,在模块温循和调测试、老化之前,执行以下步骤:
利用布置于光模块多个局部检测点的温度传感器,采集光模块在各个局部检测点的温度;
基于采集到的各个局部检测点的温度,分析所述光模块是否存在故障。
上述方法中,一方面,通过在多个局部检测点布置传感器形成传感器阵列,可以采集各个布局检测点的温度值,通过局部温度进行故障判断的准确性更高,因此可以发现在温循、测试、老化实验中不容易发现的问题,避免漏检;另一方面,在组装之后且温循、老化实验之前进行测试,不合格产品可以被提前检测出,即可避免不合格产品进行温循、测试、老化实验以占用资源,提高温循、测试、老化设备利用率,也降低产品测试成本。
在进一步细化的方案中,所述采集光模块在各个局部检测点的温度的步骤,包括:在光模块通电后,采集光模块的各个局部检测点在多个时间点的温度。在进一步优化方案中,针对于每个局部检测点,根据采集到的多个时间点的温度制作温度变化曲线。
在进一步细化的方案中,所述基于采集到的各个局部检测点的温度,分析所述光模块是否存在故障的步骤,包括:针对于每个局部检测点,将该局部检测点的检测温度与其他局部检测点的检测温度进行比较,根据差异性判断该局部检测点是否存在故障。和/或,针对于每个局部检测点,将该局部检测点的检测温度与标准温度进行比较,根据差异性判断局部检测点是否存在故障。
与现有技术相比,本发明的有益效果:通过本发明方法可以在模块温循和调测试、老化之前检测出不合格产品,因此可以避免不合格产品占用温循设备和测试设备资源的问题,同时通过局部温度检测的方式可以避免组装和温循过程漏检的情况,提高调测试站的良率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例中所述基于温度矩阵的光模块检测方法流程图。
图2为实验例中温度探测器在光模块顶部的分布示意图。
图3为实验例中所得的多个局部检测点的温度变化曲线对比图。
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
请参阅图1,本实施例中示意性地提供了一种基于温度矩阵的光模块检测方法,在光模块组装完成之后,在模块温循和调测试、老化之前,执行以下步骤:
步骤1,利用布置于光模块多个局部检测点的温度传感器,采集光模块在各个局部检测点的温度。
温度传感器的数量可以根据需求进行相应设置,例如根据光模块的尺寸大小设置,基于成本考虑和检测精度进行设置。温度传感器可以布置于光模块的一个面,例如图2所示中温度传感器布置于光模块的顶面,当然地,温度传感器也可以布置于光模块的其他面,也可以布置于多个面,且在一次检测中可以同时布置于一个面或者多个面,本方法对此都没有任何限制。同样的,本发明方法适用于任何封装形式的光模块。另外需要注意的是,图2所示中8个温度传感器分两行四列的矩形阵列形式排布,但是实际上多个温度传感器可以呈其他形式分布,只要实现一个温度传感器采集一个局部检测点的温度即可,即本文中的矩阵并不限定于是矩形阵列,而是指多个温度传感器分别分布于不同的局部检测点。
由于一个时间点的温度值很难体现出产品的真实情况,因此本步骤中,针对于每个局部检测点,采集局部检测点的温度时,优选在光模块通电后采集该局部检测点在多个时间点的温度,通过多个时间点的温度变化来反应产品的实际情况。如图3所示,为了便于分析,也可以将多个时间点的温度连线制作为温度变化曲线,基于温度变化曲线进行分析。
步骤2,基于采集到的各个局部检测点的温度,分析所述光模块是否存在故障。
本步骤的实施方式可以有多种,例如可以采用以下三种方式:
方式一:针对于每个局部检测点,将该局部检测点的检测温度与其他局部检测点的检测温度进行比较,根据差异性判断该局部检测点是否存在故障。此方式下,若该局部检测点的检测温度与其他局部检测点的检测温度变化差异较大,则判定为该局部检测点存在故障,否则判定为该局部检测点不存在故障。如图3所示,4号局部检测点的温度变化曲线与其他局部检测点的温度变化曲线差异较大,可判定4号局部检测点存在故障。对于温度变化差异大小的定义,用户可以自行定义,例如作为举例,例如温度变化率大于或小于其他所有(或大部分)局部检测点的温度变化率,且最大差值大于设定阈值(或超出阈值范围),即可定义为差异较大。
方式二:针对于每个局部检测点,将该局部检测点的检测温度与标准温度进行比较,根据差异性判断该局部检测点是否存在故障。此方式下,若该局部检测点的检测温度与标准温度变化差异较大,则判定为该局部检测点存在故障,否则判定为该局部检测点不存在故障。对于温度变化差异大小的定义,同样可以由用户自行定义,例如作为举例,例如温度变化率大于或小于标准温度变化率,且最大差值大于设定阈值(或超出阈值范围),即可定义为差异较大,又或者将每个时间点的检测温度与对应的标准温度做比较,若温度差值大于设定阈值的时间点的数量大于设定数量阈值,则可判定为存在故障。所述的标准温度是指根据产品设计要求,理论上达到的温度值或温度范围,如实验例中的表格2所示。
方式三:针对于每个局部检测点,将该局部检测点的检测温度,与其他局部检测点的检测温度和标准温度分别进行比较,根据差异性判断该局部检测点是否存在故障。此方式是结合了方式一和方式二,在此方式下,若该局部检测点的检测温度与其他局部检测点的检测温度的差异性较大,如前述的超过设定阈值范围,且与标准温度的差异性也超过设定阈值范围,则判定为该局部检测点存在故障;若该局部检测点的检测温度与其他局部检测点的检测温度的差异性超过设定阈值范围,或者与标准温度的差异性超过设定阈值范围,则可以重新采集温度进行检测,避免环境影响造成的差异,当然也可以直接判定为存在故障。当判定出存在故障后,可以打开外壳进行检查,检查后若无故障可以再次进行检测。
实验例
本次实验针对的是40G QSFP+封装的光模块,在光模块的顶面布置了8个同型号的温度传感器,且呈两行四列形式排布。分别采集5s、10s、15s、20s、25s、30s这六个时间点的温度值,检测结果如表1所示。
表1
实际测量 5s 10s 15s 20s 25s 30s
point1 24.3 29.6 32.3 35.8 38 39
point2 24.8 30.1 32.2 35.5 38 39
point3 24.5 30.5 32.4 35.5 38 39
point4 23.5 29.8 30.2 34 36.5 37.8
point5 24.5 29.9 32.2 35 38 39
point6 24.7 30 32.1 35 38 39
point7 24.8 29.8 32.9 35 38 39
point8 24.8 29.6 32.6 35 38 39
该产品对应的标准温度如表2所示。
根据表1所示的实际检测值绘制的温度变化曲线如图3所示。
经分析得出,4号局部检测点的温度升温曲线不正常,可能是导热胶贴装问题或漏装,为了排除故障可以打开光模块外壳进行故障排查。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种基于温度矩阵的光模块检测方法,其特征在于,在光模块组装完成之后,在模块温循和调测试、老化之前,执行以下步骤:
利用布置于光模块多个局部检测点的温度传感器,采集光模块在各个局部检测点的温度;
基于采集到的各个局部检测点的温度,分析所述光模块是否存在故障;本步骤具体为:
针对于每个局部检测点,将该局部检测点的检测温度与其他局部检测点的检测温度进行比较,根据差异性判断该局部检测点是否存在故障;
或者,针对于每个局部检测点,将该局部检测点的检测温度与标准温度进行比较,根据差异性判断该局部检测点是否存在故障;
或者,针对于每个局部检测点,将该局部检测点的检测温度,与其他局部检测点的检测温度和标准温度分别进行比较,根据差异性判断该局部检测点是否存在故障。
2.根据权利要求1所述的方法,其特征在于,所述采集光模块在各个局部检测点的温度的步骤,包括:在光模块通电后,采集光模块的各个局部检测点在多个时间点的温度。
3.根据权利要求2所述的方法,其特征在于,针对于每个局部检测点,根据采集到的多个时间点的温度制作温度变化曲线。
4.根据权利要求1所述的方法,其特征在于,若该局部检测点的检测温度与其他局部检测点的检测温度的差异性超过设定阈值范围,且与标准温度的差异性也超过设定阈值范围,则判定为该局部检测点存在故障;若该局部检测点的检测温度与其他局部检测点的检测温度的差异性超过设定阈值范围,或者与标准温度的差异性超过设定阈值范围,则重新采集温度进行检测。
CN201911120909.XA 2019-11-15 2019-11-15 基于温度矩阵的光模块检测方法 Active CN110855350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911120909.XA CN110855350B (zh) 2019-11-15 2019-11-15 基于温度矩阵的光模块检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911120909.XA CN110855350B (zh) 2019-11-15 2019-11-15 基于温度矩阵的光模块检测方法

Publications (2)

Publication Number Publication Date
CN110855350A CN110855350A (zh) 2020-02-28
CN110855350B true CN110855350B (zh) 2023-07-25

Family

ID=69601695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911120909.XA Active CN110855350B (zh) 2019-11-15 2019-11-15 基于温度矩阵的光模块检测方法

Country Status (1)

Country Link
CN (1) CN110855350B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105657548A (zh) * 2016-01-07 2016-06-08 Tcl通力电子(惠州)有限公司 视频播放设备的故障测试方法及系统
CN207964128U (zh) * 2018-03-28 2018-10-12 武汉电信器件有限公司 一种光模块温度校准平台及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480460B2 (en) * 2005-03-29 2009-01-20 University Of New Brunswick Dynamic strain distributed fiber optic sensor
CN105371967A (zh) * 2014-08-15 2016-03-02 华北电力大学(保定) 电力电缆接头测温装置
CN105301427B (zh) * 2015-10-26 2018-06-01 新疆金风科技股份有限公司 电缆接头的故障诊断方法及装置
CN107166638B (zh) * 2017-05-09 2020-04-17 广东美的暖通设备有限公司 温度传感器的故障检测方法、检测装置和多联式空调系统
CN108225580A (zh) * 2017-12-06 2018-06-29 国家电网公司 一种电力电缆测温装置及测温方法
CN109443598A (zh) * 2018-10-15 2019-03-08 武汉光迅科技股份有限公司 一种光模块温度校准方法与装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105657548A (zh) * 2016-01-07 2016-06-08 Tcl通力电子(惠州)有限公司 视频播放设备的故障测试方法及系统
CN207964128U (zh) * 2018-03-28 2018-10-12 武汉电信器件有限公司 一种光模块温度校准平台及系统

Also Published As

Publication number Publication date
CN110855350A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
CN109544533B (zh) 一种基于深度学习的金属板缺陷检测和度量方法
CN110008628B (zh) 一种光伏阵列故障参数辨识方法
CN101090083A (zh) 晶片检测方法
CN102412168B (zh) 晶片缺陷的检测方法及系统
CN110071692B (zh) 光伏组件故障判定方法、装置及控制器
CN108337645B (zh) 网格化无线电信号监测系统架构及干扰信号联合检测方法
WO2022028102A1 (zh) 测试方法及测试系统
CN104217420A (zh) 检测图像中的重复图案的方法及装置
CN106093069A (zh) 一种高压绝缘子串绝缘污秽故障的监测方法
CN110855350B (zh) 基于温度矩阵的光模块检测方法
CN111682846B (zh) 一种故障诊断方法及诊断设备
CN108306615B (zh) 一种用于光伏阵列故障类型诊断的方法及系统
US20070210824A1 (en) Method of inspecting quiescent power supply current in semiconductor integrated circuit and device for executing the method
CN108037433B (zh) 一种集成电路测试数据的筛选方法及装置
CN103077502A (zh) 一种星敏感器星点去噪方法
CN109376047A (zh) 一种cpu散热性能测试方法及系统
CN105403312A (zh) 一种输变电设备红外成像图谱识别及分析方法
CN116934732A (zh) 一种光伏组件的检测方法、装置及电子设备
CN103344893A (zh) 基于变频串联谐振耐压试验的分布式电缆局放测量方法
US20220043051A1 (en) Testing method and testing system
CN113933675B (zh) 一种半导体制冷产品检测方法、系统
CN112651460A (zh) 一种光伏功率异常数据的识别方法及装置
CN111323690A (zh) 电力采集终端的多路脉冲输入电路的测试方法
CN110991821A (zh) 一种变电站带电运检辅助分析方法
CN104022051A (zh) 一种检测机台机械臂出现异常的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant