CN110854252A - 一种用于深紫外led光抽取效率提高的铝铑纳米颗粒阵列的制备方法 - Google Patents

一种用于深紫外led光抽取效率提高的铝铑纳米颗粒阵列的制备方法 Download PDF

Info

Publication number
CN110854252A
CN110854252A CN201911162736.8A CN201911162736A CN110854252A CN 110854252 A CN110854252 A CN 110854252A CN 201911162736 A CN201911162736 A CN 201911162736A CN 110854252 A CN110854252 A CN 110854252A
Authority
CN
China
Prior art keywords
aluminum
deep ultraviolet
ultraviolet led
rhodium
light extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911162736.8A
Other languages
English (en)
Other versions
CN110854252B (zh
Inventor
黄凯
刘春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Juzhi Photoelectric Co Ltd
Original Assignee
Xiamen Juzhi Photoelectric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Juzhi Photoelectric Co Ltd filed Critical Xiamen Juzhi Photoelectric Co Ltd
Priority to CN201911162736.8A priority Critical patent/CN110854252B/zh
Publication of CN110854252A publication Critical patent/CN110854252A/zh
Application granted granted Critical
Publication of CN110854252B publication Critical patent/CN110854252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种用于深紫外LED光抽取效率提高的铝铑纳米颗粒阵列的制备方法,其特征在于:在深紫外LED表面沉积铝纳米颗粒阵列,在所述铝纳米颗粒阵列外进一步沉积有铑壳层。本发明方法制得铝铑核壳结构纳米颗粒阵列,纳米颗粒尺寸密度可调控,有利于制备电学/光电器件。采用铝纳米颗粒阵列+铑壳层的结构可在大幅提高器件光抽取效率的同时,增强器件稳定性并降低生产成本。同时,本制备方法条件简单,不需要复杂设备,在规模化工业生产中具有良好的应用前景。

Description

一种用于深紫外LED光抽取效率提高的铝铑纳米颗粒阵列的 制备方法
技术领域
本发明涉及一种用于深紫外LED光抽取效率提高的铝铑纳米颗粒阵列的制备方法,属于发光二极管领域。
背景技术
发光二极管(LED)作为继白炽灯和荧光灯后的新一代光源,具有使用寿命长、发热量低、响应速度快、环保、安全、体积小等显著优点。其中,波长在220~350nm之间的深紫外LED(Deep Ultraviolet Light Emitting Diode,DUV-LED)在生物医疗、防伪鉴定、水和空气净化、计算机数据存储和军事等领域有着重要的应用。然而,由于受到薄膜缺陷密度高、极性混杂、电极对光的吸收等因素的制约,造成光输出功率损失严重,从而制约了深紫外LED外量子效率的进一步提高。与蓝光LED相比,深紫外LED的外量子效率处在一个很低的水平。而相比于提高内量子效率,光抽取效率的提高是有效增强LED外量子效率的关键。
当特定波长的光照射到金属上时,金属中的电子将在电场的作用下发生集体振荡,这种效应就称之为表面等离子体激元效应(Surface Plasmon Resonance,SPR)。如果将金属制备成纳米颗粒,当特定波长的光照射到金属纳米颗粒上时,金属纳米颗粒中的电子将产生集体振荡,而这种振荡将被局域在相应的纳米颗粒中,称之为局域表面等离子体振荡(Localized Surface Plasmon Resonance,LSPR)效应,相比于SPR效应,由于金属纳米颗粒的表面曲率半径极小,LSPR效应可以使得金属纳米颗粒表面附近空间中的局域电磁场得到极大的增强,这种效应最显著的光学表现就是增强光散射和光吸收,从而使金属纳米颗粒的吸收谱中产生强烈的共振吸收峰。LSPR共振吸收峰的峰位对于纳米颗粒的大小,形状、颗粒间的间距、介电环境和介电特性非常的敏感,所以通过改变金属纳米颗粒的大小、形状、成分以及介电环境可以很有效地控制LSPR效应。
制备表面等离激元的材料一般有金、银、铝等金属。金和银的表面等离激元共振峰一般位于近紫外-可见光波段。而金属铝(Al)的表面等离激元共振峰可达250nm的深紫外波段,是目前所知与深紫外光耦合产生表面等离激元最有效的一种金属,为提高深紫外LED外量子效率提供了理想的来源。
目前提高光抽取效率的方法,有:
如CN 109524519A公开的一种氮化物量子阱结构发光二极管,由下至上依次包括:N型氮化物半导体、量子阱和P型氮化物半导体,量子阱为多量子阱结构,由垒层与阱层交叠构成,阱层由下至上包含有Al x Ga 1-x N层和In y Al 1-y N层,其中,0.9≥x≥0.4,0.35≥y≥0.04。该发明通过设计一种type-II型能带排列的量子阱结构,提高TE偏振的发光强度,从而提高沿c轴生长的深紫外LED的光抽取效率。
或通过在完整的深紫外LED上蒸镀一层铝薄膜来有效提高深紫外LED的光抽取效率,但薄膜结构并非最有利于增强出光的结构,一方面薄膜无法和TE波进行耦合,原有沿出射光锥出射的TE波在穿透铝薄膜时将会发生很强的反射和吸收,从而只有很小部分能穿透铝膜而出射;另一方面虽然TM薄可以与薄膜进行耦合,但其耦合后在Al/半导体界面处所产生的表面等离激元在穿透铝膜时将发生衰减。铝在空气中易被氧化,同时其热稳定性、化学稳定性均较差,无法实现高稳定性的器件。
发明内容
针对上述技术问题,本发明的第一目的在于提供一种光抽取效率提高的深紫外LED,第二目的在于提供用于深紫外LED光抽取效率提高的铝铑纳米颗粒阵列的制备方法。大幅提高器件光抽取效率的同时,增强器件稳定性并降低生产成本。
为了实现上述第一目的,本发明的技术方案为:一种光抽取效率提高的深紫外LED,其特征在于:在深紫外LED表面沉积铝纳米颗粒阵列,在所述铝纳米颗粒阵列外进一步沉积有铑壳层。
上述方案中:所述深紫外LED可采用波长在220nm-300nm之间的深紫外LED。
相比于蒸镀铝薄膜,本发明在深紫外LED上沉积一层铝纳米颗粒可以更好地与多种波导模式(TM和TE模式)的光之间发生耦合,并且在LSP复合时,也不会发生穿透金属时所产生的衰减,更有利于深紫外LED光抽取效率的提高,从而提高外量子效率。在铝纳米颗粒阵列外沉积铑壳层,铑金属(Rh)与深紫外光的耦合效率仅次于Al,且其热稳定性、化学稳定性、抗氧化性均极佳。
本发明的第二目的是这样实现的:一种用于深紫外LED光抽取效率提高的铝铑纳米颗粒阵列的制备方法,其特征在于:首先在深紫外LED表面沉积铝纳米颗粒阵列,然后在同一台设备或不同的设备中进一步沉积铑壳层。
采用电子束蒸发(E-beam)、热蒸发、脉冲激光沉积方法中的一种沉积铝纳米颗粒阵列以及铑壳层。制备工艺简单,可控。铝核的尺寸、密度可依据不同的蒸镀方法由沉积时衬底与粒子流之间的倾斜角度;蒸镀后原位退火温度、时间参数控制。铑壳层的厚度可依据不同的沉积方法由沉积功率、温度和时间控制。
有益效果:本发明方法制得铝铑核壳结构纳米颗粒阵列,纳米颗粒尺寸密度可调控,有利于制备电学/光电器件。采用铝纳米颗粒阵列+铑壳层的结构可在大幅提高器件光抽取效率的同时,增强器件稳定性并降低生产成本。同时,本制备方法条件简单,不需要复杂设备,在规模化工业生产中具有良好的应用前景。
具体实施方式
下面通过实施例,对本发明作进一步说明:
实施例1
(1)LED放置:在E-Beam生长腔体中,放入带有倾角的纸质楔形台或其他楔形绝缘体作为样品台,然后将LED放置于样品台上。
(2)制备铝纳米颗粒阵列核层:将材料铝置于高真空环境中(E-Beam生长腔体内真空度为5*10-6Torr),随后用高能电子束轰击铝靶材,使之表面产生很高的温度后由固态直接升华到气态,并沉积在衬底上。生长过程中工作压强为10-5Torr,生长温度为25-30℃即在常温下生长,生长速率设定为0.1nm/s,生长时间为50s。
(3)制备铑壳层:在同一生长腔内沉积铑壳层,随后用高能电子束轰击膜料铑,使之表面产生很高的温度后由固态直接升华到气态,并沉积在衬底上。生长过程中工作压强为10-5Torr,生长温度为25-30℃即在常温下生长,生长速率设定为0.1nm/s,生长时间为20s。
实施例2
(1)LED放置:在热蒸发设备生长腔体中,放入平面样品台,然后将LED放置于样品台上。
(2)制备铝纳米颗粒阵列核层:将材料铝置于高真空环境中,随后加热至蒸发,并沉积在衬底上。生长速率设定为1nm/s,生长时间为10s。停止蒸镀铝,提高衬底温度至350℃,热退火10分钟以形成铝纳米颗粒阵列核层。
(3)制备铑壳层:将制备了铝纳米颗粒阵列核层的深紫外LED在惰性气体保护下转移至电子束蒸发设备生长腔体中沉积铑壳层,随后用高能电子束轰击膜料铑,使之表面产生很高的温度后由固态直接升华到气态,并沉积在衬底上。生长过程中工作压强为10- 5Torr,生长温度为25-30℃即在常温下生长,生长速率设定为0.1nm/s,生长时间为30s。
实施例3
(1)LED放置:在激光脉冲沉积(PLD)设备生长腔体中,放入平面样品台,然后将LED放置于样品台上。
(2)制备铝纳米颗粒阵列核层:将材料铝置于高真空环境中,利用脉冲激光轰击铝靶材,使之蒸发并沉积在衬底上。生长速率设定为0.5nm/s,生长时间为20s。提高衬底温度至350℃,热退火10分钟以形成铝纳米颗粒阵列核层。
(3)制备铑壳层:将制备了铝纳米颗粒阵列核层的深紫外LED在真空保护下转移至电子束蒸发设备生长腔体中沉积铑壳层,随后用高能电子束轰击膜料铑,使之表面产生很高的温度后由固态直接升华到气态,并沉积在衬底上。生长过程中工作压强为10-5Torr,生长温度为25-30℃即在常温下生长,生长速率设定为0.1nm/s,生长时间为40s。
本发明不局限于上述实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (4)

1.一种光抽取效率提高的深紫外LED,其特征在于:在深紫外LED表面沉积铝纳米颗粒阵列,在所述铝纳米颗粒阵列外进一步沉积有铑壳层。
2.根据权利要求1所述光抽取效率提高的深紫外LED,其特征在于:所述深紫外LED可采用波长在220nm-300nm之间的深紫外LED。
3.一种用于深紫外LED光抽取效率提高的铝铑纳米颗粒阵列的制备方法,其特征在于:首先在深紫外LED表面沉积铝纳米颗粒阵列,然后在同一台设备或不同的设备中进一步沉积铑壳层。
4.根据权利要求3所述用于深紫外LED光抽取效率提高的铝铑纳米颗粒阵列的制备方法,其特征在于:采用电子束蒸发(E-beam)、热蒸发、脉冲激光沉积方法中的一种沉积铝纳米颗粒阵列以及铑壳层。
CN201911162736.8A 2019-11-25 2019-11-25 一种用于深紫外led光抽取效率提高的铝铑纳米颗粒阵列的制备方法 Active CN110854252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911162736.8A CN110854252B (zh) 2019-11-25 2019-11-25 一种用于深紫外led光抽取效率提高的铝铑纳米颗粒阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911162736.8A CN110854252B (zh) 2019-11-25 2019-11-25 一种用于深紫外led光抽取效率提高的铝铑纳米颗粒阵列的制备方法

Publications (2)

Publication Number Publication Date
CN110854252A true CN110854252A (zh) 2020-02-28
CN110854252B CN110854252B (zh) 2020-11-17

Family

ID=69604203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911162736.8A Active CN110854252B (zh) 2019-11-25 2019-11-25 一种用于深紫外led光抽取效率提高的铝铑纳米颗粒阵列的制备方法

Country Status (1)

Country Link
CN (1) CN110854252B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154010A (zh) * 2011-01-29 2011-08-17 陈哲艮 光增强光致发光材料及其制备方法和应用
US20150155449A1 (en) * 2013-05-23 2015-06-04 Samsung Total Petrochemicals Co., Ltd Light conversion light-emitting device with enhanced light luminescence efficiency using anisotropic metal nanoparticles
US20150263252A1 (en) * 2012-07-03 2015-09-17 Invensas Corporation Optical enhancement of light emitting devices
US10018751B2 (en) * 2014-05-27 2018-07-10 Lumileds Llc Spatial positioning of photon emitters in a plasmonic illumination device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154010A (zh) * 2011-01-29 2011-08-17 陈哲艮 光增强光致发光材料及其制备方法和应用
US20150263252A1 (en) * 2012-07-03 2015-09-17 Invensas Corporation Optical enhancement of light emitting devices
US20150155449A1 (en) * 2013-05-23 2015-06-04 Samsung Total Petrochemicals Co., Ltd Light conversion light-emitting device with enhanced light luminescence efficiency using anisotropic metal nanoparticles
US10018751B2 (en) * 2014-05-27 2018-07-10 Lumileds Llc Spatial positioning of photon emitters in a plasmonic illumination device

Also Published As

Publication number Publication date
CN110854252B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
US20040197943A1 (en) Nanosilicon light-emitting element and manufacturing method thereof
Lan et al. Vapor‐phase growth of CsPbBr3 microstructures for highly efficient pure green light emission
US10381526B2 (en) Orderly patterned remote phosphor crystal material and method for preparation the material and its application
Roy et al. Multicolor ultralow‐threshold random laser assisted by vertical‐graphene network
US20140238492A1 (en) Photoelectric conversion device
Zhou et al. Hybrid quadrupole plasmon induced spectrally pure ultraviolet emission from a single AgNPs@ ZnO: Ga microwire based heterojunction diode
CN103346232A (zh) 一种深紫外发光二极管及其制备方法
Yang et al. Enhanced Electroluminescence from ZnO Quantum Dot Light‐Emitting Diodes via Introducing Al2O3 Retarding Layer and Ag@ ZnO Hybrid Nanodots
CN103928579A (zh) 一种紫外发光二极管
CN102800771A (zh) 发光二极管表面金属亚波长嵌入式光栅结构及制备方法
CN109786494B (zh) 一种微腔结构紫外探测器及其制备方法
Fan et al. Random lasing of CsPbBr 3 perovskite thin films pumped by modulated electron beam
CN110854252B (zh) 一种用于深紫外led光抽取效率提高的铝铑纳米颗粒阵列的制备方法
Wang et al. Low-threshold green and red random lasing emission in inorganic halide lead perovskite microcrystals with plasmonic and interferential enhancement
Lu et al. Exploring the role of spin-triplets and trap states in photovoltaic processes of perovskite solar cells
Yu et al. Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics
CN207250548U (zh) 一种核壳结构发白光器件
CN116240496A (zh) 一种基于合金纳米粒子调控局域表面等离子共振的方法
KR102425182B1 (ko) Al 및 ZnO의 이종구조를 포함하는 광검출기용 기판, 및 이를 포함하는 UV 광검출기
JP5032138B2 (ja) 発光ダイオード素子の製造方法
CN103866246A (zh) 一种紫外波段具有杂化四极子的Ag纳米材料及其制备方法
Ning et al. Enhancement of lasing in organic gain media assisted by the metallic nanoparticles–metallic film plasmonic hybrid structure
CN103320753A (zh) 一种尺寸密度可控铝纳米颗粒阵列的制备方法
Cao et al. Recent Advances in Encapsulation for Highly Stable Perovskite Nanocrystals and their Potential Applications in Optoelectronic Devices
CN113130786A (zh) 发光二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant