CN110854007A - Flat-panel X-ray source based on X-ray micro-pixel unit and preparation method thereof - Google Patents
Flat-panel X-ray source based on X-ray micro-pixel unit and preparation method thereof Download PDFInfo
- Publication number
- CN110854007A CN110854007A CN201911102584.2A CN201911102584A CN110854007A CN 110854007 A CN110854007 A CN 110854007A CN 201911102584 A CN201911102584 A CN 201911102584A CN 110854007 A CN110854007 A CN 110854007A
- Authority
- CN
- China
- Prior art keywords
- cathode
- substrate
- anode
- cathode electrode
- ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 157
- 229910052751 metal Inorganic materials 0.000 claims abstract description 55
- 239000002184 metal Substances 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 45
- 125000006850 spacer group Chemical group 0.000 claims abstract description 14
- 239000002070 nanowire Substances 0.000 claims description 29
- 238000005530 etching Methods 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 claims description 13
- 238000007254 oxidation reaction Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000004321 preservation Methods 0.000 claims description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical group [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 3
- 239000005751 Copper oxide Substances 0.000 claims description 3
- 229910000431 copper oxide Inorganic materials 0.000 claims description 3
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims 3
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- 230000005684 electric field Effects 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 77
- 239000010408 film Substances 0.000 description 64
- 238000005516 engineering process Methods 0.000 description 21
- 238000000206 photolithography Methods 0.000 description 20
- 238000001771 vacuum deposition Methods 0.000 description 15
- 239000011521 glass Substances 0.000 description 8
- 238000001755 magnetron sputter deposition Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000005566 electron beam evaporation Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000002207 thermal evaporation Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000004846 x-ray emission Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/06—Cathodes
- H01J35/065—Field emission, photo emission or secondary emission cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
Abstract
本申请公开了一种基于X射线微像素单元的平板X射线源,包括阴极基板、阳极基板及高压绝缘隔离体;所述阴极基板和所述阳极基板相对平行设置,所述高压绝缘隔离体设置于所述阴极基板和所述阳极基板之间以将两者隔离开,还公开了一种基于X射线微像素单元的平板X射线源的制备方法,包括制作阴极基板,制作阳极基板和组装,绝缘层覆盖法可有效降低了底部阴极电极条的边缘电场,减少放电现象发生的可能,从而实现阳极电压的进一步提高,同时,可以改善器件工作稳定性,延长器件使用寿命,阳极基板上的圆形金属靶排布并与顶部阴极电极及生长源薄膜一一对应,构成阵列式排布的X射线微像素单元阵列,从而使得平板X射线源具有空间分辨率。
The present application discloses a flat-panel X-ray source based on an X-ray micro-pixel unit, comprising a cathode substrate, an anode substrate and a high-voltage insulating spacer; the cathode substrate and the anode substrate are arranged relatively parallel, and the high-voltage insulating spacer is arranged The invention also discloses a preparation method of a flat-panel X-ray source based on an X-ray micro-pixel unit, including manufacturing a cathode substrate, manufacturing an anode substrate and assembling, The insulating layer covering method can effectively reduce the fringe electric field of the bottom cathode electrode strip and reduce the possibility of discharge phenomenon, thereby further improving the anode voltage. At the same time, it can improve the working stability of the device and prolong the service life of the device. The flat metal targets are arranged in one-to-one correspondence with the top cathode electrode and the growth source film to form an array of X-ray micro-pixel units, so that the flat-panel X-ray source has spatial resolution.
Description
技术领域technical field
本发明涉及,更具体地,涉及一种基于X射线微像素单元的平板X射线源及其制备方法。The present invention relates, more particularly, to a flat-panel X-ray source based on an X-ray micro-pixel unit and a preparation method thereof.
背景技术Background technique
中国专利CN201811178220.8的“一种可寻址的纳米冷阴极平板X射线源及其制备方法”公开了一种采用阴极电极条与阳极电极条在空间上直接交叉的平板X射线源,虽然可以实现寻址功能,但由于其裸露在外部的阴极电极,会极易导致高压工作中的电极边缘放电问题,从而损坏器件,导致阳极电压不够,无法实现对高密度组织及金属材料的透射成像,同时整条阳极电极条的使用会导致平板X射线源不具有空间分辨率,无法构成真正意义上的X射线微像素单元阵列,整条阳极电极条没有和生长源薄膜实现真正意义上的一一对应,这就意味着,除与生长源薄膜对应的圆盘区域外,其他线状区域也将会有X射线产生,为保持导电性,阳极电极条的线状区域宽度基本不变,当阵列数目越多,阳极金属靶电极条中的圆盘区域面积越来越小,从而越倾向于线状,使得平板X射线源不具有空间分辨率,使其在医学成像、工业探伤及安全检查等领域的应用受到了一定的限制。Chinese patent CN201811178220.8 "An addressable nano-cold cathode flat X-ray source and its preparation method" discloses a flat X-ray source that uses cathode electrode strips and anode electrode strips to directly intersect in space, although it can be It realizes the addressing function, but due to its exposed cathode electrode, it will easily lead to the problem of electrode edge discharge in high-voltage operation, which will damage the device and cause insufficient anode voltage to achieve transmission imaging of high-density tissue and metal materials. At the same time, the use of the entire anode electrode strip will cause the flat-panel X-ray source to have no spatial resolution, and it cannot form a true X-ray micro-pixel unit array. Correspondingly, this means that, in addition to the disk area corresponding to the growth source film, other linear areas will also generate X-rays. In order to maintain conductivity, the width of the linear area of the anode electrode strip is basically unchanged. The larger the number, the smaller the area of the disc area in the anode metal target electrode strip, which tends to be more linear, making the flat-panel X-ray source without spatial resolution, making it suitable for medical imaging, industrial flaw detection and safety inspection, etc. The application in the field is limited to a certain extent.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于X射线微像素单元的平板X射线源,所述平板X射线源能够提高阳极电压以及具有空间分辨率。The purpose of the present invention is to provide a flat-panel X-ray source based on an X-ray micro-pixel unit, the flat-panel X-ray source can improve anode voltage and have spatial resolution.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种基于X射线微像素单元的平板X射线源,包括阴极基板、阳极基板及高压绝缘隔离体;所述阴极基板和所述阳极基板相对平行设置,所述高压绝缘隔离体设置于所述阴极基板和所述阳极基板之间以将两者隔离开,所述阴极基板包括阴极衬底、两条以上平行设置于阴极衬底上的底部阴极电极条、覆盖在底部阴极电极条上的绝缘层、制作于所述绝缘层中使所述底部阴极电极条局部裸露的刻蚀通孔、制作于所述绝缘层上的顶部阴极电极、设于所述顶部阴极电极上的生长源薄膜,所述生长源薄膜上生长有纳米线冷阴极,所述顶部阴极电极通过所述刻蚀通孔与所述底部阴极电极条连接,所述阳极基板包括阳极衬底、两条以上平行设置于阳极衬底上的阳极电极条和制作在所述阳极电极条上的圆形金属靶,每条所述阳极电极条与每条所述底部阴极电极条在空间上垂直相交且有一个交叉点,所述顶部阴极电极及生长源薄膜位于所述交叉点处,所述顶部阴极电极以阵列的形式排布于所述底部阴极电极条上,所述圆形金属靶位于所述交叉点处,所述圆形金属靶以阵列形式排布于所述阳极电极条上,所述生长源薄膜与所述圆形金属靶构成X射线微像素单元。A flat-panel X-ray source based on an X-ray micro-pixel unit, comprising a cathode substrate, an anode substrate and a high-voltage insulating spacer; the cathode substrate and the anode substrate are relatively parallel to each other, and the high-voltage insulating spacer is disposed on the cathode between the substrate and the anode substrate to separate the two, the cathode substrate includes a cathode substrate, two or more bottom cathode electrode strips arranged in parallel on the cathode substrate, and an insulating layer covering the bottom cathode electrode strips , etched through holes made in the insulating layer to partially expose the bottom cathode electrode strip, a top cathode electrode made on the insulating layer, a growth source film arranged on the top cathode electrode, the A nanowire cold cathode is grown on the growth source film, the top cathode electrode is connected to the bottom cathode electrode strip through the etched through hole, the anode substrate includes an anode substrate, and two or more lines are arranged in parallel on the anode substrate. Anode electrode strips and circular metal targets made on the anode electrode strips, each of the anode electrode strips and each of the bottom cathode electrode strips are vertically intersected in space and have an intersection, and the top The cathode electrode and the growth source film are located at the intersection, the top cathode electrode is arranged on the bottom cathode electrode strip in the form of an array, the circular metal target is located at the intersection, and the circular metal target is located at the intersection. The metal targets are arranged on the anode electrode strips in an array form, and the growth source film and the circular metal target constitute an X-ray micro-pixel unit.
将生长源薄膜设置在顶部阴极电极上,而将底部阴极电极条埋于绝缘层之下,可以避免底部阴极电极条直接裸露在外部,从而消除在高压下电极条边缘出现的放电问题。特别地,所述生长源薄膜可完全覆盖顶部阴极电极,顶部阴极电极的放电位置多出现在顶部阴极电极的边缘,用生长源薄膜覆盖住顶部阴极电极相当于对顶部阴极电极边缘起一个保护作用。Disposing the growth source film on the top cathode electrode and burying the bottom cathode electrode strip under the insulating layer can prevent the bottom cathode electrode strip from being directly exposed to the outside, thereby eliminating the discharge problem that occurs at the edge of the electrode strip under high voltage. In particular, the growth source film can completely cover the top cathode electrode, and the discharge position of the top cathode electrode mostly occurs at the edge of the top cathode electrode. Covering the top cathode electrode with the growth source film is equivalent to protecting the edge of the top cathode electrode. .
在阳极电极条上设置了圆形金属靶,所述生长源薄膜与所述圆形金属靶能够一一对应,构成X射线微像素单元,使得圆盘区域外其他线状区域不会有X射线产生,当阵列数目增加时,仍可以保持串状,从而使得平板X射线源具有空间分辨率。A circular metal target is arranged on the anode electrode strip, and the growth source film and the circular metal target can correspond one-to-one to form an X-ray micro-pixel unit, so that there will be no X-rays in other linear areas outside the disk area. The result is that as the number of arrays increases, the string shape can still be maintained, allowing the flat panel X-ray source to have spatial resolution.
阴极基板与阳极基板相对平行设置使得每条所述阳极电极条与每条所述底部阴极电极条在空间上垂直相交且有一个交叉点,多条所述阳极电极条与多条所述底部阴极电极条垂直相交,使得交叉点以阵列形式排布。设于顶部阴极电极上的生长源薄膜与所述圆形金属靶位于交叉点上,共同构成X射线微像素单元,从而实现基于X射线微像素单元的寻址功能。The cathode substrate and the anode substrate are arranged opposite and parallel to each other, so that each of the anode electrode strips and each of the bottom cathode electrode strips vertically intersect in space and have an intersection point, and a plurality of the anode electrode strips and a plurality of the bottom cathode electrode strips The electrode strips intersect vertically so that the intersections are arranged in an array. The growth source film disposed on the top cathode electrode and the circular metal target are located at the intersection, and together form an X-ray micro-pixel unit, thereby realizing the addressing function based on the X-ray micro-pixel unit.
操作时,所述阳极电极条与外部高压电源连接,所述底部阴极电极条接地,所述外部高压电源电压大于6KV。当所述阳极电极条中的一条或若干条与外部高压电源连接,所述底部阴极电极条中的一条或若干条接地,与外部高压电源连接的阳极电极条及接地的底部阴极电极条的交叉点处将会产生X射线;进一步地,所述外部高压电源电压范围为10kV到150kV。In operation, the anode electrode strip is connected to an external high voltage power supply, the bottom cathode electrode strip is grounded, and the voltage of the external high voltage power supply is greater than 6KV. When one or more of the anode electrode strips are connected to an external high voltage power supply, and one or more of the bottom cathode electrode strips are grounded, the intersection of the anode electrode strips connected to the external high voltage power supply and the grounded bottom cathode electrode strips X-rays will be generated at the point; further, the voltage range of the external high voltage power supply is 10kV to 150kV.
其余阳极电极条和底部阴极电极条可以选择不接外部高压电源和接地,也就是悬空。接入电路的阳极电极条和阴极电极条交叉位置会产生X射线发射,未接入电路的单元则不会产生X射线,因此,阳极电极条和阴极电极条接入电路中的条数直接影响平板X射线源中微单元工作的个数。The remaining anode electrode strips and the bottom cathode electrode strips can be chosen not to be connected to the external high-voltage power supply and ground, that is, to be suspended. The intersection of anode electrode strip and cathode electrode strip connected to the circuit will generate X-ray emission, and the unit not connected to the circuit will not generate X-ray. Therefore, the number of anode electrode strips and cathode electrode strips connected to the circuit directly affects The number of working micro-units in the flat-panel X-ray source.
进一步地,所述纳米线冷阴极为氧化锌纳米线、氧化铜纳米线、氧化钨纳米线、氧化钼纳米线、氧化铁纳米线、氧化钛纳米线或者氧化锡纳米线。Further, the nanowire cold cathodes are zinc oxide nanowires, copper oxide nanowires, tungsten oxide nanowires, molybdenum oxide nanowires, iron oxide nanowires, titanium oxide nanowires or tin oxide nanowires.
进一步地,所述生长源薄膜由锌、铜、钨、钼、铁、钛、锡中的任一种制备而成,其厚度范围在0.3μm-5μm。Further, the growth source film is prepared from any one of zinc, copper, tungsten, molybdenum, iron, titanium and tin, and its thickness ranges from 0.3 μm to 5 μm.
进一步地,所述生长源薄膜的形状为对称图形,所述生长源薄膜的直径或边长为5μm-500μm;所述相邻生长源薄膜之间的间距为直径或边长的0.1-10倍。所述生长源薄膜的形状为圆形、环形或多边形。Further, the shape of the growth source film is a symmetrical figure, and the diameter or side length of the growth source film is 5 μm-500 μm; the distance between the adjacent growth source films is 0.1-10 times the diameter or side length. . The shape of the growth source film is circular, annular or polygonal.
进一步地,所述阴极衬底由大面积的硅片、玻璃、石英玻璃或者陶瓷基片构成;所述底部阴极电极条和所述顶部阴极电极为Cr、Al、Ti、Cu、ITO、IZO、AZO、FTO、LTFO中的一种或多种组合制备而成,所述底部阴极电极条和所述顶部阴极电极的厚度范围在0.1μm-2μm;所述顶部阴极电极的形状为圆形或多边形。Further, the cathode substrate is composed of a large-area silicon wafer, glass, quartz glass or ceramic substrate; the bottom cathode electrode strip and the top cathode electrode are Cr, Al, Ti, Cu, ITO, IZO, The bottom cathode electrode strip and the top cathode electrode have a thickness ranging from 0.1 μm to 2 μm; the shape of the top cathode electrode is a circle or a polygon. .
进一步地,所述绝缘层由氧化硅、氮化硅或氧化铝的任意一种或其组合材料制成,该绝缘层厚度为1μm-5μm。所述绝缘层的数量为一层或多层,绝缘薄膜可以采用通用的薄膜制备方法,如电子束蒸发、磁控溅射以及化学气相沉积等方法制备。Further, the insulating layer is made of any one of silicon oxide, silicon nitride or aluminum oxide or a combination thereof, and the thickness of the insulating layer is 1 μm-5 μm. The number of the insulating layers is one or more layers, and the insulating thin films can be prepared by common thin film preparation methods, such as electron beam evaporation, magnetron sputtering, and chemical vapor deposition.
本发明利用绝缘层覆盖底部阴极电极条,可以避免底部阴极电极条与阳极电极条边缘在空间上的直接交叉,从而有效降低底部阴极电极条的边缘电场,减少放电现象发生的可能,实现阳极电压进一步提高的同时改善器件工作稳定性,延长器件使用寿命,拓宽其在医学成像、工业探伤及安全检查等领域的实际应用。The invention uses the insulating layer to cover the bottom cathode electrode strip, which can avoid the direct intersection of the bottom cathode electrode strip and the edge of the anode electrode strip in space, thereby effectively reducing the fringe electric field of the bottom cathode electrode strip, reducing the possibility of discharge phenomenon, and realizing the anode voltage While further improving, the working stability of the device is improved, the service life of the device is prolonged, and its practical application in the fields of medical imaging, industrial flaw detection and safety inspection is broadened.
进一步地,所述阳极衬底由大面积的硅片、玻璃、石英玻璃或者陶瓷基片构成;所述阳极电极条为ITO、IZO、AZO、FTO、LTFO中的一种或多种组合制备而成,所述阳极电极条的厚度范围在0.1μm-2μm;所述圆形金属靶由钨、钼、铑、银、铜、金、铬、铝、铌、钽、铼中的一种或两种以上组合制备而成,所述圆形金属靶的厚度为0.2μm-1000μm。阳极电极条只起导电连接的作用,产生X射线的部分是圆形金属靶。Further, the anode substrate is composed of a large-area silicon wafer, glass, quartz glass or ceramic substrate; the anode electrode strip is prepared by one or more combinations of ITO, IZO, AZO, FTO, and LTFO. The thickness of the anode electrode strip is in the range of 0.1 μm-2 μm; the circular metal target is made of one or two of tungsten, molybdenum, rhodium, silver, copper, gold, chromium, aluminum, niobium, tantalum, and rhenium. The thickness of the circular metal target is 0.2 μm-1000 μm. The anode electrode strip only serves as a conductive connection, and the part that generates the X-rays is a circular metal target.
进一步地,所述阳极电极条通过金属阴罩掩膜和真空镀膜技术制备,或者通过光刻、刻蚀工艺、真空镀膜和剥离技术制备,或者直接通过丝网印刷或者喷墨打印制备。所述真空镀膜技术包括磁控溅射、电子束蒸发、真空热蒸发,所述光刻技术可以采用紫外光光刻。Further, the anode electrode strips are prepared by metal shadow mask and vacuum coating technology, or by photolithography, etching process, vacuum coating and lift-off technology, or directly by screen printing or inkjet printing. The vacuum coating technology includes magnetron sputtering, electron beam evaporation, and vacuum thermal evaporation, and the photolithography technology can use ultraviolet photolithography.
进一步地,所述高压绝缘隔离体由玻璃、石英、陶瓷或者绝缘塑料构成;该高压绝缘隔离体的高度为0.5mm-100mm。Further, the high voltage insulating spacer is made of glass, quartz, ceramics or insulating plastics; the height of the high voltage insulating spacer is 0.5mm-100mm.
本发明的另一目的在于提供一种制备基于X射线微像素单元的平板X射线源的方法,包括以下步骤:Another object of the present invention is to provide a method for preparing a flat-panel X-ray source based on an X-ray micro-pixel unit, comprising the following steps:
S1.制作阴极基板、阳极基板:S1. Make cathode substrate and anode substrate:
阴极基板的步骤为:The steps of cathode substrate are:
在阴极衬底上制作底部阴极电极条;在底部阴极电极条上覆盖绝缘层;刻蚀所述绝缘层,制作位于所述底部阴极电极条上的刻蚀通孔;在所述刻蚀通孔上制作与所述底部阴极电极条相连的顶部阴极电极;沉积生长源薄膜;将生长源薄膜热氧化,以生长纳米线冷阴极,得到阴极基板;making bottom cathode electrode strips on the cathode substrate; covering the bottom cathode electrode strips with an insulating layer; etching the insulating layer to make etched through holes on the bottom cathode electrode strips; forming a top cathode electrode connected to the bottom cathode electrode strip; depositing a growth source film; thermally oxidizing the growth source film to grow a nanowire cold cathode to obtain a cathode substrate;
阳极基板的制备步骤为:The preparation steps of the anode substrate are:
在阳极衬底上制作阳极电极条;在所述阳极电极条上制作圆形金属靶阵列,得到阳极基板;An anode electrode strip is made on an anode substrate; a circular metal target array is made on the anode electrode strip to obtain an anode substrate;
S2.组装,将经上述步骤制备好的阴极基板和阳极基板相对平行设置,阴极基板上的纳米线冷阴极朝向阳极基板上的圆形金属靶,所述生长源薄膜与所述圆形金属靶一一对应;采用高压绝缘隔离体将阴极基板和阳极基板两者隔离开并固定,且保证每条阳极电极条与每条底部阴极电极条均在空间上相互垂直并存在一个交叉点,所述顶部阴极电极及生长源薄膜和所述圆形金属靶均位于交叉点处,所述圆形金属靶与所述生长源薄膜构成X射线微像素单元。S2. Assembling, the cathode substrate and the anode substrate prepared by the above steps are relatively parallel arranged, the nanowire cold cathode on the cathode substrate faces the circular metal target on the anode substrate, the growth source film and the circular metal target are One-to-one correspondence; high-voltage insulating separators are used to isolate and fix the cathode substrate and the anode substrate, and ensure that each anode electrode strip and each bottom cathode electrode strip are spatially perpendicular to each other and have a cross point, the said The top cathode electrode and the growth source film and the circular metal target are all located at the intersection, and the circular metal target and the growth source film constitute an X-ray micro-pixel unit.
所述底部阴极电极条和顶部阴极电极通过金属阴罩掩膜和真空镀膜技术制备,或者通过光刻、刻蚀工艺、真空镀膜和剥离技术制备,或者直接通过丝网印刷或者喷墨打印制备。所述真空镀膜技术包括磁控溅射、电子束蒸发、真空热蒸发,所述光刻技术可以采用紫外光光刻。所述刻蚀通孔通过刻蚀工艺制备,可以采用湿法刻蚀,反应离子刻蚀等通用刻蚀方法。所述生长源薄膜可通过磁控溅射法、真空热蒸发法或者电子束蒸发法沉积于顶部阴极电极上。The bottom cathode electrode strip and the top cathode electrode are prepared by metal shadow mask and vacuum coating technology, or by photolithography, etching process, vacuum coating and lift-off technology, or directly by screen printing or inkjet printing. The vacuum coating technology includes magnetron sputtering, electron beam evaporation, and vacuum thermal evaporation, and the photolithography technology can use ultraviolet photolithography. The etched through holes are prepared by an etching process, and common etching methods such as wet etching and reactive ion etching can be used. The growth source film can be deposited on the top cathode electrode by magnetron sputtering, vacuum thermal evaporation or electron beam evaporation.
进一步地,所述热氧化法包括升温过程和保温过程,升温过程的升温速率为1℃/min-30℃/min;保温过程的保温温度为300℃-600℃,保温时间为1min-600min,保温结束后自然冷却至室温。Further, the thermal oxidation method includes a heating process and a heat preservation process, and the heating rate of the heating process is 1°C/min-30°C/min; After the heat preservation, it was naturally cooled to room temperature.
进一步地,所述升温过程和所述保温过程通入Ar、H2、N2、O2中的一种或两种以上组合气体。氧化锌纳米线、氧化铜纳米线、氧化钨纳米线、氧化钼纳米线、氧化铁纳米线、氧化钛纳米线或者氧化锡纳米线的生长和氧气浓度有关,所以通入气体改变氧气浓度,可以控制纳米线的生长。Further, one or two or more combined gases of Ar, H 2 , N 2 , and O 2 are introduced into the temperature-raising process and the heat-retaining process. The growth of zinc oxide nanowires, copper oxide nanowires, tungsten oxide nanowires, molybdenum oxide nanowires, iron oxide nanowires, titanium oxide nanowires or tin oxide nanowires is related to the oxygen concentration. Control the growth of nanowires.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明的纳米冷阴极平板X射线源采用绝缘层覆盖法制作而成,通过绝缘层覆盖底部阴极电极条,避免了底部阴极电极条与阳极电极条在空间上的直接交叉,有效降低了底部阴极电极条的边缘电场,减少放电现象发生的可能,从而实现阳极电压的进一步提高,同时,可以改善器件工作稳定性,延长器件使用寿命。The nano-cold cathode flat X-ray source of the present invention is fabricated by an insulating layer covering method, and the bottom cathode electrode strip is covered by the insulating layer, thereby avoiding the direct intersection of the bottom cathode electrode strip and the anode electrode strip in space, and effectively reducing the bottom cathode electrode strip. The fringe electric field of the electrode strip reduces the possibility of the discharge phenomenon, thereby further improving the anode voltage, and at the same time, it can improve the working stability of the device and prolong the service life of the device.
在阳极电极条上设置了圆形金属靶,生长源薄膜与圆形金属靶能够实现真正意义上的一一对应,构成X射线微像素单元,使得圆盘区域外其他线状区域不会有X射线产生,当阵列数目增加时,仍可以保持彼此独立分布,从而使得平板X射线源具有空间分辨率,使其能够在医学成像、工业探伤及安全检查等领域应用,并且有利于图像的清晰度并有利于后期对图像进行分析与重建。A circular metal target is set on the anode electrode strip, and the growth source film and the circular metal target can achieve a true one-to-one correspondence to form an X-ray micro-pixel unit, so that there is no X-ray in other linear areas outside the disk area. The ray generation, when the number of arrays increases, can still be distributed independently of each other, so that the flat panel X-ray source has spatial resolution, which can be used in medical imaging, industrial flaw detection and security inspection and other fields, and is conducive to the clarity of the image And it is conducive to the analysis and reconstruction of the image in the later stage.
顶部阴极电极以阵列的形式排布于所述底部阴极电极条上,圆形金属靶以阵列形式排布于所述阳极电极条上,通过阳极电极和阴极电极在空间上垂直排布,实现逐点、逐行、分区发射X射线,从而实现寻址功能。The top cathode electrodes are arranged on the bottom cathode electrode strips in the form of an array, and the circular metal targets are arranged on the anode electrode strips in an array form. The X-rays are emitted point, line by line and partition to realize the addressing function.
附图说明Description of drawings
图1是本发明一种基于X射线微像素单元的平板X射线源的一种结构剖视图;1 is a structural cross-sectional view of a flat-panel X-ray source based on an X-ray micro-pixel unit of the present invention;
图2(a)-(g1)/(g2)为一种基于X射线微像素单元的平板X射线源阴极基板的制备工艺步骤图;Figure 2(a)-(g1)/(g2) is a process step diagram for preparing a cathode substrate of a flat X-ray source based on an X-ray micro-pixel unit;
图3是本发明一种基于X射线微像素单元的平板X射线源阴极基板结构示意图;3 is a schematic structural diagram of a cathode substrate of a flat X-ray source based on an X-ray micro-pixel unit according to the present invention;
图4(a)-(c)为一种基于X射线微像素单元的平板X射线源阳极基板的制备工艺步骤图;Figures 4(a)-(c) are diagrams showing the manufacturing process steps of a flat X-ray source anode substrate based on an X-ray micro-pixel unit;
图5是本发明一种基于X射线微像素单元的平板X射线源阳极基板结构示意图;5 is a schematic structural diagram of an anode substrate of a flat-panel X-ray source based on an X-ray micro-pixel unit according to the present invention;
图6是本发明一种基于X射线微像素单元的平板X射线源的整体结构示意图;6 is a schematic diagram of the overall structure of a flat-panel X-ray source based on an X-ray micro-pixel unit of the present invention;
图7是本发明一种基于X射线微像素单元的平板X射线源的另一种结构剖视图;7 is another structural cross-sectional view of a flat-panel X-ray source based on an X-ray micro-pixel unit of the present invention;
图8是对比例1纳米冷阴极平板X射线源的整体结构示意图;8 is a schematic diagram of the overall structure of a 1-nanometer cold cathode flat X-ray source in Comparative Example;
附图标记说明Description of reference numerals
阴极基板10、阳极基板20、高压绝缘隔离体30、阴极衬底11、底部阴极电极条12、绝缘层13、刻蚀通孔14、顶部阴极电极15、生长源薄膜16、纳米线冷阴极17、阳极衬底21、阳极电极条22、圆形金属靶23、对比例阴极基板110、对比例阳极基板120、对比例高压绝缘隔离体130、对比例阴极衬底111、对比例阴极电极条112、对比例生长源薄膜113、对比例纳米线冷阴极114、对比例阳极衬底121、对比例阳极金属靶电极条122。
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步的说明。The present invention will be further described below in conjunction with specific embodiments.
实施例1Example 1
如图1所示,其是本发明的一种基于X射线微像素单元的平板X射线源的一种结构示意图。As shown in FIG. 1 , it is a schematic structural diagram of a flat-panel X-ray source based on an X-ray micro-pixel unit of the present invention.
本发明的纳米冷阴极平板X射线源包括阴极基板10、阳极基板20、高压绝缘隔离体30。所述阴极基板10和阳极基板20平行相对设置,所述高压绝缘隔离体30设置于阴极基板10和阳极基板20之间,并将阴极基板10和阳极基板20隔离开并固定。所述阴极基板10和阳极基板20之间具有一定间距。The nano-cold cathode flat X-ray source of the present invention includes a
所述阴极基板10包括阴极衬底11、两条以上平行设置于阴极衬底11上的底部阴极电极条12、绝缘层13、刻蚀通孔14、顶部阴极电极15、生长源薄膜16以及纳米线冷阴极17。所述底部阴极电极条12相互平行设置于阴极衬底11朝向阳极基板20的一侧。所述绝缘层13设置于底部阴极电极条12上。所述刻蚀通孔14设置于绝缘层13中并使底部阴极电极12局部裸露。所述顶部阴极电极15设置于刻蚀通孔14上。所述生长源薄膜16生长于顶部阴极电极15上。所述生长源薄膜16上垂直于生长源薄膜16的方向生长有纳米线冷阴极17。The
所述阳极基板20包括阳极衬底21、两条以上平行设置于阳极衬底21上的阳极电极条22和制作在所述阳极电极条上的圆形金属靶23。The
上述基于X射线微像素单元的平板X射线源的制作方法,包括阴极基板制作、阳极基板制作和平板X射线源组合。具体步骤如下:The above-mentioned manufacturing method of a flat-panel X-ray source based on an X-ray micro-pixel unit includes the manufacture of cathode substrate, the manufacture of anode substrate, and the combination of the flat panel X-ray source. Specific steps are as follows:
S1.制作阴极基板10和阳极基板20。S1. Fabrication of the
制作阴极基板10。如图2(a)-(g1)/(g2)和图3所示,其具体制作步骤如下:The
(1)清洁并吹干阴极衬底11;所述阴极衬底11为大面积玻璃。(1) Clean and dry the
(2)在阴极衬底11上制作阴极电极条12;所述底部阴极电极条12为ITO。所述底部阴极电极条12的厚度为1μm,其形状为长方形。所述底部阴极电极条12通过真空镀膜技术制备,光刻及刻蚀工艺制备。所述真空镀膜技术为磁控溅射,所述光刻技术为紫外光光刻,所述刻蚀工艺为湿法刻蚀工艺。(2) A
(3)在底部阴极电极条12上沉积绝缘层13。所述作为绝缘层13的绝缘薄膜由氧化硅绝缘薄膜组成,所述绝缘层13采用通用的化学气相沉积制备,该绝缘层厚度为3μm。(3) An insulating
(4)在绝缘层13上定域刻蚀绝缘层得到用以连接顶部阴极电极和相应底部阴极电极条的刻蚀通孔14。所述刻蚀通孔14可以通过反应离子刻蚀工艺制得。(4) Locally etch the insulating layer on the insulating
(5)在刻蚀通孔13上方制备顶部阴极电极15。顶部阴极电极15通过绝缘层13中的刻蚀通孔14和对应的底部阴极电极条12相连接。所述顶部阴极电极15为ITO,所述顶部阴极电极15的厚度为1μm,其形状为圆形。所述顶部阴极电极15通过真空镀膜技术制备,光刻及刻蚀工艺制备。所述真空镀膜技术为磁控溅射,所述光刻技术为紫外光光刻,所述刻蚀工艺为湿法刻蚀工艺。(5) The
(6)在顶部阴极电极15上光刻定位纳米线冷阴极17生长区域,然后沉积生长源薄膜16;所述生长源薄膜16为锌,其厚度为2.5μm;所述生长源薄膜16通过电子束蒸发法沉积于顶部阴极电极15上所述的生长源薄膜的形状为圆形,其直径为250μm,所述相邻生长源薄膜16之间的间距为1250μm。(6) Positioning the
(7)通过热氧化法在生长源薄膜16上生长纳米线冷阴极17,得到阴极基板10。所述热氧化法生长过程在箱式炉中进行,热氧化法过程的升温速率为15℃/min,升温过程可以通入Ar。热氧化过程的保温温度范围在450℃,保温时间范围在300min,保温过程可以通入Ar。最后自然冷却至室温即可。所得到的纳米线为氧化锌纳米线。(7) A
制作阳极基板20。如图4(a)-(c)和图5所示,其是本发明的纳米冷阴极平板X射线源的阳极基板的制作流程图。具体制作步骤如下:The
(1)清洁并吹干阳极衬底21;所述阳极衬底21为大面积石英玻璃。(1) Clean and dry the
(2)在阳极衬底21上制作阳极电极条22;所述阳极电极条22为ITO,所述阳极电极条22的厚度范围为1μm,其形状为长方形。所述阳极电极条22沉积于阳极衬底21朝向阴极基板10的一侧。所述阳极电极条22通过真空镀膜技术制备,光刻及刻蚀工艺制备。所述真空镀膜技术为磁控溅射,所述光刻技术为紫外光光刻,所述刻蚀工艺为湿法刻蚀工艺。(2) An
所述圆形金属靶23为钼,所述圆形金属靶23的厚度范围为500μm,其形状为圆形。所述圆形金属靶23沉积于阳极电极条22朝向阴极基板10的一侧。所述圆形金属靶23通过真空镀膜技术制备,光刻及刻蚀工艺制备。所述真空镀膜技术为磁控溅射,所述光刻技术为紫外光光刻,所述刻蚀工艺为湿法刻蚀工艺。The
S2.组装纳米冷阴极平板X射线源,如图6所示。S2. Assemble the nano-cold cathode flat X-ray source, as shown in FIG. 6 .
(1)将阴极基板10和阳极基板20相对平行设置,阴极基板10的纳米线冷阴极17朝向阳极基板20的阳极电极条22;(1) The
(2)保证底部阴极电极条12与阳极电极条22在空间上相互垂直且有交叉点;(2) Ensure that the bottom
(3)保证顶部阴极电极15及设于顶部阴极电极上的生长源薄膜16位于交叉点处。(3) Ensure that the
(4)保证圆形金属靶位于所述交叉点处且与生长源薄膜16一一对应。(4) Ensure that the circular metal target is located at the intersection and corresponds to the
(5)高压绝缘隔离体30设置于阴极基板10和阳极基板20边缘处,将两者隔离开并固定。所述的高压绝缘隔离体30为陶瓷构成,其高度为5mm。(5) The high-
如图6所示,本专利中的结构是通过阳极电极和阴极电极的垂直排布实现寻址功能,没有在阴极基板上设置裸露在外的栅极电极,同时将底部阴极电极条埋于绝缘层之下,可有效减少器件放电问题。As shown in Fig. 6, the structure in this patent realizes the addressing function through the vertical arrangement of the anode electrode and the cathode electrode, there is no exposed gate electrode on the cathode substrate, and the bottom cathode electrode strip is buried in the insulating layer at the same time Under this condition, the device discharge problem can be effectively reduced.
实施例2Example 2
纳米冷阴极平板X射线源的结构与实施例1基本相同,不同之处在于,如图7所示,所述生长源薄膜16可完全覆盖顶部阴极电极15,以防止顶部阴极电极15边缘高压放电。The structure of the nano-cold cathode flat X-ray source is basically the same as that of Example 1, the difference is that, as shown in FIG. 7 , the
实施例3Example 3
基于X射线微像素单元的平板X射线源的制作方法与实施例1基本相同,不同之处在于,The manufacturing method of the flat-panel X-ray source based on the X-ray micro-pixel unit is basically the same as that of Embodiment 1, except that,
制作阴极基板10。The
(1)所述阴极衬底11为大面积硅片。(1) The
(2)所述底部阴极电极条12为Cr。所述底部阴极电极条12的厚度为0.1μm,(2) The bottom
(3)所述作为绝缘层13的绝缘薄膜由氮化硅绝缘薄膜组成;该绝缘层厚度为1μm;(3) The insulating film as the insulating
(4)所述顶部阴极电极15为Cr,所述顶部阴极电极15的厚度为0.1μm;(4) The
(5)在顶部阴极电极15上光刻定位纳米线冷阴极17生长区域,然后沉积生长源薄膜16;所述生长源薄膜16为铜,其厚度为0.3μm;所述生长源薄膜的直径为5μm,所述相邻生长源薄膜16之间的间距为50μm。(5) Positioning the growth area of the
(6)所述热氧化法生长过程在箱式炉中进行,热氧化法过程的升温速率为1℃/min,升温过程可以通入Ar。热氧化过程的保温温度范围在600℃,保温时间范围在600min。(6) The growth process of the thermal oxidation method is carried out in a box furnace, the heating rate of the thermal oxidation method is 1° C./min, and Ar can be introduced into the heating process. The holding temperature range of the thermal oxidation process is 600 °C, and the holding time range is 600 min.
制作阳极基板20。The
(1)所述阳极衬底21为大面积陶瓷基片。(1) The
(2)所述阳极电极条22为AZO,所述阳极电极条22的厚度范围为0.1μm。(2) The
所述圆形金属靶23为钨,所述圆形金属靶23的厚度范围为0.2μm。The
S3、组装纳米冷阴极平板X射线源。S3, assembling a nano-cold cathode flat X-ray source.
(1)所述的高压绝缘隔离体30为绝缘塑料构成,其高度为0.5mm。(1) The high-
实施例4Example 4
基于X射线微像素单元的平板X射线源的制作方法与实施例1基本相同,不同之处在于,The manufacturing method of the flat-panel X-ray source based on the X-ray micro-pixel unit is basically the same as that of Embodiment 1, except that,
制作阴极基板10。The
(1)所述阴极衬底11为大面积玻璃。(1) The
(2)所述底部阴极电极条12为Ti。所述底部阴极电极条12的厚度为2μm,(2) The bottom
(3)所述作为绝缘层13的绝缘薄膜由氧化铝绝缘薄膜组成;该绝缘层厚度为5μm;(3) The insulating film as the insulating
(4)所述顶部阴极电极15为Ti,所述顶部阴极电极15的厚度为2μm;(4) The
(5)所述生长源薄膜16为钛,其厚度为5μm;所述生长源薄膜的直径为500μm,所述相邻生长源薄膜16之间的间距为50μm。(5) The
(6)所述热氧化法生长过程在箱式炉中进行,热氧化法过程的升温速率为30℃/min,升温过程可以通入Ar。热氧化过程的保温温度范围在300℃,保温时间范围在20min。(6) The growth process of the thermal oxidation method is carried out in a box furnace, the heating rate of the thermal oxidation method is 30° C./min, and Ar can be introduced into the heating process. The holding temperature range of the thermal oxidation process is 300°C, and the holding time range is 20 min.
制作阳极基板20。The
(1)所述阳极衬底21为大面积硅片。(1) The
(2)所述阳极电极条22为LTFO,所述阳极电极条22的厚度范围为2μm。(2) The
所述圆形金属靶23为钨,所述圆形金属靶23的厚度范围为1000μm。The
S3、组装纳米冷阴极平板X射线源。S3, assembling a nano-cold cathode flat X-ray source.
(1)所述的高压绝缘隔离体30为绝缘塑料构成,其高度为100mm。(1) The high-
对比例1Comparative Example 1
如图8所示,本对比例与实施例1的区别在于本对比例的对比例阴极基板110仅包括对比例阴极衬底111、对比例阴极电极条112以及对比例生长源薄膜113,所述对比例阳极基板120仅包括对比例阳极衬底121以及对比例阳极金属靶电极条122。具体结构如下:As shown in FIG. 8 , the difference between this comparative example and Example 1 is that the comparative example cathode substrate 110 of this comparative example only includes the comparative
纳米冷阴极平板X射线源包括对比例阴极基板110、对比例阳极基板120、对比例高压绝缘隔离体130。所述对比例阴极基板110和对比例阳极基板120平行相对设置,所述对比例高压绝缘隔离体130设置于对比例阴极基板110和对比例阳极基板120之间,并将对比例阴极基板110和对比例阳极基板120隔开固定。所述对比例阴极基板110和对比例阳极基板120之间具有一定间距。The nano-cold cathode flat X-ray source includes a comparative cathode substrate 110 , a comparative anode substrate 120 , and a comparative high-voltage
对比例阴极基板110包括对比例阴极衬底111、两条以上平行设置于对比例阴极衬底111上的对比例阴极电极条112以及多个相互独立设于阴极电极条上的对比例生长源薄膜113。所述对比例阴极电极条112相互平行设置于对比例阴极衬底111朝向对比例阳极基板120的一侧。所述多个对比例生长源薄膜113以阵列形式排布于对比例阴极电极条112上。所述对比例生长源薄膜113上垂直于对比例生长源薄膜113的方向生长有对比例纳米线冷阴极114。所述对比例阴极衬底111可以为大面积玻璃。所述对比例阴极电极条112是ITO。所述对比例阴极电极条112的厚度为1μm,其形状为长方形。所述对比例阴极电极条112通过金属阴罩掩膜和真空镀膜技术制备。所述对比例生长源薄膜113由锌制备而成,所述对比例生长源薄膜113的厚度为1.2μm。所述对比例生长源薄膜113可通过电子束蒸发法沉积于对比例阴极电极条112上。所述的对比例生长源薄膜113的形状为圆形,其直径为250μm,所述相邻对比例生长源薄膜113之间的间距为直径的5倍。通过前述对比例生长源薄膜113生长得到的对比例纳米线冷阴极114为氧化锌纳米线。The comparative example cathode substrate 110 includes a comparative
所述对比例阳极基板120包括对比例阳极衬底121以及两条以上平行设置于对比例阳极衬底121上的对比例阳极金属靶电极条122。所述对比例阳极金属靶电极条122设于对比例阳极衬底121朝向对比例阴极基板110的一侧。所述每条对比例阳极金属靶电极条122与阴极衬底上的每一条阴极电极条在空间上垂直相交且有一个交叉点,所述对比例生长源薄膜113位于交叉点处。The comparative example anode substrate 120 includes a comparative
所述对比例阳极衬底121可以为大面积玻璃。所述对比例阳极金属靶电极条122为钼金属导电薄膜,所述对比例阳极金属靶电极条122的厚度范围为1μm,其形状为长方形。所述对比例阳极金属靶电极条122沉积于对比例阳极衬底121朝向对比例阴极基板110的一侧。所述沉积方法电子束蒸发法。The comparative
所述的对比例高压绝缘隔离体130为玻璃构成,其高度为50mm。The high-
器件放电的测试:Device discharge test:
通过任意选定一条阳极电极条/阳极金属靶电极条加高压电压,所施加35kV电压,同时任意选定一条阴极电极条接地,其余阴极电极条接高电平,则所选定的阳极电极条/阳极金属靶电极条与阴极电极条相交位点将会产生X射线,从而可实现逐点发射X射线。By arbitrarily selecting an anode electrode strip/anode metal target electrode strip and applying a high voltage voltage, the applied voltage is 35kV. / The intersection of the anode metal target electrode strip and the cathode electrode strip will generate X-rays, so that X-rays can be emitted point by point.
器件放电问题通过稳定工作下的最高阳极电压值来反映,阳极电压高就说明放电少。The discharge problem of the device is reflected by the highest anode voltage value under stable operation. A high anode voltage means less discharge.
由上述数据可得到,实施例1~4的阳极电压值远高于对比例1的阳极电压值,理由是对比例1中由于其裸露在外部的阴极电极,会极易导致高压工作中的电极边缘放电问题,从而损坏器件,导致阳极电压不够,无法实现对高密度组织及金属材料的透射成像,同时整条阳极金属靶电极条除了圆盘区域会发光以外,其他引线区域也会发光,会对原有像素产生干扰,导致平板X射线源不具有空间分辨率,无法构成真正意义上的X射线微像素单元阵列。From the above data, it can be seen that the anode voltage values of Examples 1 to 4 are much higher than the anode voltage value of Comparative Example 1. The reason is that in Comparative Example 1, due to the exposed cathode electrode, it will easily lead to the electrode in high voltage operation. The problem of edge discharge, which damages the device, leads to insufficient anode voltage, and cannot achieve transmission imaging of high-density tissue and metal materials. The interference to the original pixels causes the flat-panel X-ray source to have no spatial resolution and cannot form a true X-ray micro-pixel unit array.
本申请通过阳极电极和阴极电极的空间垂直排布实现寻址,同时顶部阴极电极15的放电位置多出现在顶部阴极电极15的边缘,用生长源薄膜16覆盖住顶部阴极电极15相当于对顶部阴极电极15边缘起一个保护作用,减少器件放电问题。在阳极电极条上设置了圆形金属靶,使得圆盘区域外其他线状区域不会有X射线产生,像素与像素间彼此独立发光,当阵列数目增加时,仍可以保持像素与像素之间彼此独立,从而使得平板X射线源具有空间分辨率。In this application, addressing is realized by the spatial vertical arrangement of the anode electrode and the cathode electrode. At the same time, the discharge position of the
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the embodiments of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911102584.2A CN110854007A (en) | 2019-11-12 | 2019-11-12 | Flat-panel X-ray source based on X-ray micro-pixel unit and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911102584.2A CN110854007A (en) | 2019-11-12 | 2019-11-12 | Flat-panel X-ray source based on X-ray micro-pixel unit and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110854007A true CN110854007A (en) | 2020-02-28 |
Family
ID=69601387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911102584.2A Pending CN110854007A (en) | 2019-11-12 | 2019-11-12 | Flat-panel X-ray source based on X-ray micro-pixel unit and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110854007A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112002628A (en) * | 2020-08-28 | 2020-11-27 | 云南电网有限责任公司电力科学研究院 | X-ray tube cathode unit and method of making the same |
CN113690120A (en) * | 2021-07-05 | 2021-11-23 | 中山大学 | A patterned transmission anode flat plate X-ray source device and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1622265A (en) * | 2004-12-16 | 2005-06-01 | 中原工学院 | Carbon nano tube field emission panel display with focusing electrode structure and fabrication process thereof |
CN1956130A (en) * | 2006-10-17 | 2007-05-02 | 中原工学院 | Flat panel display with cylindrical cathode array structure and its manufacturing process |
CN102074440A (en) * | 2010-12-15 | 2011-05-25 | 清华大学 | Field-emission cathode device and field-emission display |
CN102243974A (en) * | 2011-05-25 | 2011-11-16 | 中山大学 | Field emission display structure for realizing pixel unit addressing by utilizing two groups of gate electrodes |
CN203563254U (en) * | 2013-09-18 | 2014-04-23 | 同方威视技术股份有限公司 | X-ray device and CT equipment with the X-ray device |
US20150311023A1 (en) * | 2014-04-25 | 2015-10-29 | Uchicago Argonne, Llc | Method to fabricate portable electron source based on nitrogen incorporated ultrananocrystalline diamond (n-uncd) |
CN105470077A (en) * | 2015-11-26 | 2016-04-06 | 山东航天电子技术研究所 | CNT field emission-based wide light beam quasi parallel single-energy X-ray generation device |
CN107818899A (en) * | 2017-11-02 | 2018-03-20 | 中山大学 | The coplanar focusing nanometer cold-cathode electron source array and preparation method of column addressable |
CN109256310A (en) * | 2018-10-10 | 2019-01-22 | 中山大学 | Addressable nanometer of cold cathode X-ray plane source of one kind and preparation method thereof |
-
2019
- 2019-11-12 CN CN201911102584.2A patent/CN110854007A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1622265A (en) * | 2004-12-16 | 2005-06-01 | 中原工学院 | Carbon nano tube field emission panel display with focusing electrode structure and fabrication process thereof |
CN1956130A (en) * | 2006-10-17 | 2007-05-02 | 中原工学院 | Flat panel display with cylindrical cathode array structure and its manufacturing process |
CN102074440A (en) * | 2010-12-15 | 2011-05-25 | 清华大学 | Field-emission cathode device and field-emission display |
CN102243974A (en) * | 2011-05-25 | 2011-11-16 | 中山大学 | Field emission display structure for realizing pixel unit addressing by utilizing two groups of gate electrodes |
CN203563254U (en) * | 2013-09-18 | 2014-04-23 | 同方威视技术股份有限公司 | X-ray device and CT equipment with the X-ray device |
US20150311023A1 (en) * | 2014-04-25 | 2015-10-29 | Uchicago Argonne, Llc | Method to fabricate portable electron source based on nitrogen incorporated ultrananocrystalline diamond (n-uncd) |
CN105470077A (en) * | 2015-11-26 | 2016-04-06 | 山东航天电子技术研究所 | CNT field emission-based wide light beam quasi parallel single-energy X-ray generation device |
CN107818899A (en) * | 2017-11-02 | 2018-03-20 | 中山大学 | The coplanar focusing nanometer cold-cathode electron source array and preparation method of column addressable |
CN109256310A (en) * | 2018-10-10 | 2019-01-22 | 中山大学 | Addressable nanometer of cold cathode X-ray plane source of one kind and preparation method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112002628A (en) * | 2020-08-28 | 2020-11-27 | 云南电网有限责任公司电力科学研究院 | X-ray tube cathode unit and method of making the same |
CN112002628B (en) * | 2020-08-28 | 2023-06-23 | 云南电网有限责任公司电力科学研究院 | X-ray tube cathode unit and method for manufacturing the same |
CN113690120A (en) * | 2021-07-05 | 2021-11-23 | 中山大学 | A patterned transmission anode flat plate X-ray source device and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4880568B2 (en) | Surface conduction electron-emitting device and electron source using the electron-emitting device | |
US20040256975A1 (en) | Electrode and associated devices and methods | |
CN109768051B (en) | A TFT-driven addressable cold cathode flat X-ray source device and preparation method | |
CN106298409A (en) | Use X-ray plane source and the preparation method of temperature sensitive nanometer line cold-cathode | |
CN110854007A (en) | Flat-panel X-ray source based on X-ray micro-pixel unit and preparation method thereof | |
CN110600350B (en) | A kind of nanometer cold cathode electron source with double ring gate structure and its manufacturing method | |
CN106158551B (en) | Nanowire cold cathode electron source array with self-aligning focusing structure and manufacturing method thereof | |
CN111063597B (en) | A grid-anode interdigitated grid-controlled flat-panel X-ray source and preparation method thereof | |
CN109256310A (en) | Addressable nanometer of cold cathode X-ray plane source of one kind and preparation method thereof | |
CN111081505B (en) | A nano-cold cathode electron source with coplanar double gate focusing structure and its manufacturing method | |
US7348720B2 (en) | Electron emission device and electron emission display including the same | |
KR100680090B1 (en) | Image display | |
JP2697538B2 (en) | Cold cathode | |
JP2002260524A (en) | Cold cathode electron source, imaging device and display device configured using the same | |
CN114496686B (en) | An addressable nanometer cold cathode electron source array and its manufacturing method | |
JP2800629B2 (en) | Electron-emitting device | |
KR100803207B1 (en) | Surface electron emission device and display device having same | |
JP2002521802A5 (en) | ||
CN118039431A (en) | Nano cold cathode electron source with internal grid structure, manufacturing method and electron source array | |
JP2000348601A (en) | Electron emitting source and manufacture thereof, and display device using electron emitting source | |
CN100521055C (en) | Electron emission device and method for manufacturing the same | |
KR20070012134A (en) | Electron-emitting device having focusing electrode and manufacturing method thereof | |
KR100556746B1 (en) | Field emission devices | |
JPH0787074B2 (en) | Electron-emitting device and manufacturing method thereof | |
CN102262995B (en) | Planar grid surface conduction field emission cathode structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200228 |