CN110850408A - 一种用于极坐标数据采集模式的浅埋目标三维成像方法 - Google Patents

一种用于极坐标数据采集模式的浅埋目标三维成像方法 Download PDF

Info

Publication number
CN110850408A
CN110850408A CN201911149876.1A CN201911149876A CN110850408A CN 110850408 A CN110850408 A CN 110850408A CN 201911149876 A CN201911149876 A CN 201911149876A CN 110850408 A CN110850408 A CN 110850408A
Authority
CN
China
Prior art keywords
dimensional
sampling
circle
formula
polar coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911149876.1A
Other languages
English (en)
Inventor
朱世平
陈德莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Aviation Sign Technology Co Ltd
Original Assignee
Wuxi Aviation Sign Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Aviation Sign Technology Co Ltd filed Critical Wuxi Aviation Sign Technology Co Ltd
Priority to CN201911149876.1A priority Critical patent/CN110850408A/zh
Publication of CN110850408A publication Critical patent/CN110850408A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Abstract

本发明公开了一种用于极坐标数据采集模式的浅埋目标三维成像方法,方法包括以下步骤:对每圈回波数据沿时间方向和角度方向做二维离散傅里叶变换,得到公式二;以最外圈角度采样点数NM为基准,将Srm(kθ,f)的内圈数据填零补齐得到公式三;将Sr(m,kθ,f)沿半径方向做Hankel变换得到公式四;将公式四对kθ做离散逆傅里叶变换,得到对应于回波数据的三维傅里叶谱的极坐标形式;根据圆柱坐标系下频散关系,利用基于Stolt插值原理,得到目标在圆柱坐标系下三维频谱形式;对三维频谱
Figure DDA0002283246950000011
沿kρ和kz方向做二维逆傅里叶变换得到目标三维成像结果的圆柱坐标表达形式;利用极坐标与直角坐标换算关系,得到三维成像结果g(x,y,z)。本发明可对极坐标采样的雷达三维回波数据进行成像,成像处理过程简洁,运算速度快。

Description

一种用于极坐标数据采集模式的浅埋目标三维成像方法
技术领域
本发明涉及利用雷达探测浅埋隐蔽目标的三维成像方法,具体是一种用于极坐标数据采集模式的浅埋目标三维成像方法。
背景技术
雷达三维穿透成像技术是指雷达发射电磁波穿透单层或多层介质对目标进行多角度照射并采集回波进行处理以获取目标三维特征的技术。三维穿透成像技术一般具有以下特点:一是探测目标位于天线辐射的近场区,这是由于电磁波在介质中传播会有较大的能量衰减,目标埋藏越深,回波越弱,越不易探测;二是目标一般是静止的;三是雷达扫描区域一般是二维平面,通常位于介质表面,或距介质表面一定高度的平面上。常见的雷达二维扫描采用矩形网格采样方式,通过为雷达收发机预设若干条测量线以覆盖整个待测区域,使用定位轮等定位装置记录天线测量点的位置信息,以获取目标的雷达三维回波数据。该方式实现简单,能够覆盖较大范围的测量区域,但同时也存在测量时间长、定位精度不高的问题。随着对隐蔽目标三维高分辨成像的需求不断增长,一些新颖的二维扫描方式随之出现,其中就包括了极坐标数据采集方式。雷达极坐标数据采集是利用高精度的定位系统,控制雷达收发机绕着一个圆心做平面的圆周扫描,在角度向和径向上分别以一定的采样间隔获取呈极坐标分布的三维雷达数据。根据奈奎斯特空间采样定理的要求,理想情况下极坐标采样中每个半径处要求的圆周采样点数并不相等,圆周采样点数随着采样半径的增大而增多。该采样方式具有定位精度高,扫描速度快的特点。
对于矩形网格采样的雷达三维数据,常用的成像算法包括两大类:一类是基于体散射模型的层析(Tomography)成像算法,例如基于波恩(Born)近似模型的层析成像、基于瑞利(Rayleigh)近似模型的层析成像和基于基尔霍夫(Kirchhoff)近似模型的层析成像,该类成像算法能有效重构目标的位置、形状、介电常数和电导率等参数,缺点是算法复杂,计算量大,无法重构复杂的目标场景等;另一类是基于点散射模型的偏移(Migration)成像算法,例如Kirchhoff偏移、有限差分偏移(Finite-difference migration)和频率波数域偏移(Frequency-wavenumber migration,F-K migration),该类算法是基于雷达波动方程的不同求解过程推导而来,其中Kirchhoff偏移和F-K偏移均为成熟的成像算法。
然而,上述的成像算法中,除了Kirchhoff偏移算法,其他几种算法只是适用于矩形网格采样方式,并不能直接处理极坐标采样得到的三维雷达数据,需要将极坐标采样数据通过复杂的三维插值算法生成矩形网格三维数据。而Kirchhoff偏移算法在处理三维极坐标采样数据时,也面临着计算效率低等问题。因此,本发明申请侧重于针对该类极坐标采样的雷达三维回波数据,提出一种高效精确的三维成像方法,该方法并不限定雷达采用何种宽带发射信号的波形
发明内容
为解决上述现有技术的缺陷,本发明提供一种用于极坐标数据采集模式的浅埋目标三维成像方法,本发明可对极坐标采样的雷达三维回波数据进行成像,该成像方法适用性广,处理的极坐标采样点集既可以是整圆,也可以是扇面,同时不要求每个圆周采样点数相同,成像处理过程简洁,运算速度快。
为实现上述技术目的,本发明采用如下技术方案:一种用于极坐标数据采集模式的浅埋目标三维成像方法,设雷达发射的宽带信号的频率范围为f:fmin≤f≤fmax,其中fmin为最小截止频率,fmax为最大截止频率,带宽B=fmax-fmin,中心频率
Figure BDA0002283246930000021
目标埋藏于相对介电常数为εr的均匀介质中,雷达电磁波信号在介质中传播的波速为
Figure BDA0002283246930000022
其中c=3×108m/s是真空中的波速;雷达接收回波信号的采样率Fs:Fs≥2fmax,采样的时间间隔Δt=1/Fs,采样点数为T;
已知极坐标采样点在空间上呈同心圆分布,其中同心圆的数量为M个,半径方向采样间隔为Δρ,最内圈半径为ρ1,则由内至外第m圈半径ρm=ρ1+(m-1)Δρ,m=1,2,...M;第m圈圆周扫描的采样点数为Nm,根据奈奎斯特采样定理,第m圈圆周扫描的角度间隔Δθm应满足公式一,即
Figure BDA0002283246930000024
因此,每圈的采样点数由内向外随采样半径增大而增多;各圈极坐标采样得到的雷达回波数据可表示为集合的形式:{srm(n,t)|0≤n≤Nm-1,1≤m≤M,0≤t≤T-1},其中n为离散角度变量,t是离散时间变量;
所述方法包括以下步骤:
(1)对每圈回波数据沿时间方向和角度方向做二维离散傅里叶变换,其结果记为Srm(kθ,f),得到公式二:
Figure BDA0002283246930000031
其中kθ为角频率,kθ=0,1,...,Nm-1,f为对应时间t的频率;
(2)以最外圈角度采样点数NM为基准,将Srm(kθ,f)的内圈数据填零补齐,得到公式三的三维数据矩阵Sr(m,kθ,f):
Figure BDA0002283246930000032
(3)将Sr(m,kθ,f)沿半径方向做Hankel变换,得到公式四:
Figure BDA0002283246930000033
其中
Figure BDA0002283246930000034
是阶数为kθ的贝塞尔函数,kρ为对应于半径ρ的波数;
(4)将所述公式四对kθ做离散逆傅里叶变换,得到对应于回波数据的三维傅里叶谱的极坐标形式:
Figure BDA0002283246930000035
(5)根据圆柱坐标系下频散关系:
Figure BDA0002283246930000036
利用基于Stolt插值原理,得到目标在圆柱坐标系下三维频谱形式:
Figure BDA0002283246930000037
(6)对三维频谱
Figure BDA0002283246930000038
沿kρ和kz方向做二维逆傅里叶变换,最终得到目标三维成像结果的圆柱坐标表达形式:
(7)利用极坐标与直角坐标换算关系
Figure BDA00022832469300000311
变换到直角坐标系下的三维成像结果g(x,y,z):
Figure BDA00022832469300000312
进一步地,所述公式二、所述公式五和所述公式八通过快速傅里叶变换FFT提高整个成像的运算速度。
进一步地,通过所述公式一至所述公式五,实现极坐标采样回波数据的三维频谱的圆柱坐标表示形式。
进一步地,所述极坐标采样点Nm在各圈分布数目不一致,所述极坐标采样点Nm是按照奈奎斯特空间采样条件确定的,所述极坐标采样点Nm由内圈往外逐渐增大。
综上所述,本发明取得了以下技术效果:
1、本发明可对极坐标采样的三维回波数据进行成像,这是已有的成像方法无法完成的;
2、本发明的成像方法适用性广,处理的极坐标采样点集既可以是整圆,也可以是其中的一部分扇面,同时不要求每个圆周采样点数相同。
3、本发明成像处理过程简单,运算速度快。
附图说明
图1是本发明实施例提供的成像方法流程图;
图2是GPR极坐标采样点分布图;
图3是仿真实验所采用的目标分布图;
图4是二维成像切片示意图;
图5是三维立体图。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。
实施例:
如图1所示,一种用于极坐标数据采集模式的浅埋目标三维成像方法,对在近场条件下获得的极坐标采样的雷达三维回波数据进行处理并实现三维高分辨成像的方法,是在近场条件下利用雷达收发机发射宽带信号穿透介质,对探测目标区域进行平面圆周扫描,并采集呈极坐标分布的三维回波数据,对该回波数据进行处理实现三维高分辨成像。
设雷达发射的宽带信号的频率范围为f:fmin≤f≤fmax,其中fmin为最小截止频率,fmax为最大截止频率,带宽B=fmax-fmin,中心频率
Figure BDA0002283246930000041
目标埋藏于相对介电常数为εr的均匀介质中,雷达电磁波信号在介质中传播的波速为
Figure BDA0002283246930000051
其中c=3×108m/s是真空中的波速,雷达接收回波信号的采样率Fs:Fs≥2fmax,采样的时间间隔Δt=1/Fs,采样点数为T。
如图2所示,已知极坐标采样点在空间上呈同心圆分布,其中同心圆的数量为M个,半径方向采样间隔为Δρ,最内圈半径为ρ1,则由内至外第m圈半径ρm=ρ1+(m-1)Δρ,m=1,2,...M;第m圈圆周扫描的采样点数为Nm,根据奈奎斯特采样定理,第m圈圆周扫描的角度间隔Δθm应满足公式一:
Figure BDA0002283246930000052
Figure BDA0002283246930000053
因此,每圈的采样点数由内向外随采样半径增大而增多;各圈极坐标采样得到的雷达回波数据可表示为集合的形式:{srm(n,t)|0≤n≤Nm-1,1≤m≤M,0≤t≤T-1},其中n为离散角度变量,t是离散时间变量;
所述方法包括以下步骤:
(1)对每圈回波数据沿时间方向和角度方向做二维离散傅里叶变换,其结果记为Srm(kθ,f),得到公式二:
其中kθ为角频率,kθ=0,1,...,Nm-1,f为对应时间t的频率。
(2)以最外圈角度采样点数Nm为基准,将Srm(kθ,f)的内圈数据填零补齐,得到如公式三的三维数据矩阵Sr(m,kθ,f):
Figure BDA0002283246930000055
其中,NM为最外圈的采样点数。
(3)将Sr(m,kθ,f)沿半径方向做Hankel变换,得到公式四:
Figure BDA0002283246930000056
其中
Figure BDA0002283246930000057
是阶数为kθ的贝塞尔函数,kρ为对应于半径ρ的波数。
(4)将所述公式四对kθ做离散逆傅里叶变换,得到对应于回波数据的三维傅里叶谱的极坐标形式:
Figure BDA0002283246930000061
(5)根据圆柱坐标系下频散关系,其中,所述圆柱坐标系下频散关系为:
Figure BDA0002283246930000062
然后利用基于Stolt插值原理得到目标在圆柱坐标系下三维频谱形式:
(6)对三维频谱沿kρ和kz方向做二维逆傅里叶变换,最终得到目标三维成像结果的圆柱坐标表达形式:
Figure BDA0002283246930000065
(7)利用极坐标与直角坐标换算关系
Figure BDA0002283246930000066
变换到直角坐标系下的三维成像结果g(x,y,z):
Figure BDA0002283246930000068
本实施例中,可以根据公式二、公式五和公式八通过快速傅里叶变换FFT提高整个成像的运算速度。
本实施例中,通过公式一至公式五,实现极坐标采样回波数据的三维频谱的圆柱坐标表示形式。
本实施例中,所述极坐标采样点Nm在各圈分布数目不一致,所述极坐标采样点Nm是按照奈奎斯特空间采样条件确定的,所述极坐标采样点Nm由内圈往外逐渐增大。
图2所示的GPR极坐标采样点分布图中,M=8,ρ1=0.1m,Δρ=0.05m,由内圈往外圆周采样点数分别为6、9、12、15、18、21、24、27。
本实施例中,提供基于MATLAB平台所进行的仿真实验,相关参数为:M=37,ρ1=0.04m,Δρ=0.04m,最外圈即第M圈的半径ρM=1.48m;发射信号为冲激脉冲,带宽B=500MHz,fmin=280MHz,fmax=780MHz;地下介质相对介电常数εr=4,v=1.5×108m/s。因此,根据公式一,确定每圈采样点数由内至外呈6:6:222等差数列分布。
图3是仿真实验所采用的目标分布图,共有66个点目标位于深度为0.15m的平面上。其中36个点位于半径为ρ=1.0m的圆周上,均匀分布,两点之间的角度相差10°;剩下的30个点,分成了六组,每组五个点沿着六个不同的轮辐均匀分布(六组轮辐的角度分别为30°,90°,150°,210°,270°和330°),每组轮辐上五个点的半径以0.20m到0.84m范围内,以间隔0.16m等距分布。假设每个点目标的后向散射系数均为1。
图4和图5是对仿真实验得到的雷达极坐标采样回波数据按上述成像方法进行处理所得到的成像结果,其中图4是从三维成像结果中提取的深度为0.15m的二维成像切片,图5是成像结果的-10dB等值面三维立体图。仿真得到的成像结果,与图3所示的目标分布图基本一致,这证明了上述成像方法是有效的。
以上所述仅是对本发明的较佳实施方式而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (4)

1.一种用于极坐标数据采集模式的浅埋目标三维成像方法,其特征在于,
设雷达发射的宽带信号的频率范围为f:fmin≤f≤fmax,其中fmin为最小截止频率,fmax为最大截止频率,带宽B=fmax-fmin,中心频率
Figure FDA0002283246920000011
目标埋藏于相对介电常数为εr的均匀介质中,雷达电磁波信号在介质中传播的波速为
Figure FDA0002283246920000012
其中c=3×108m/s是真空中的波速;雷达接收回波信号的采样率Fs:Fs≥2fmax,采样的时间间隔Δt=1/Fs,采样点数为T;
已知极坐标采样点在空间上呈同心圆分布,其中同心圆的数量为M个,半径方向采样间隔为Δρ,最内圈半径为ρ1,则由内至外第m圈半径ρm=ρ1+(m-1)Δρ,m=1,2,...M;第m圈圆周扫描的采样点数为Nm,根据奈奎斯特采样定理,第m圈圆周扫描的角度间隔Δθm应满足公式一,即
Figure FDA0002283246920000013
Figure FDA0002283246920000014
因此,每圈的采样点数由内向外随采样半径增大而增多;各圈极坐标采样得到的雷达回波数据可表示为集合的形式:{srm(n,t)|0≤n≤Nm-1,1≤m≤M,0≤t≤T-1},其中n为离散角度变量,t是离散时间变量;
所述方法包括以下步骤:
(1)对每圈回波数据沿时间方向和角度方向做二维离散傅里叶变换,其结果记为Srm(kθ,f),得到公式二:
Figure FDA0002283246920000015
其中kθ为角频率,kθ=0,1,...,Nm-1,f为对应时间t的频率;
(2)以最外圈角度采样点数NM为基准,将Srm(kθ,f)的内圈数据填零补齐,得到公式三的三维数据矩阵Sr(m,kθ,f):
Figure FDA0002283246920000016
(3)将Sr(m,kθ,f)沿半径方向做Hankel变换,得到公式四:
Figure FDA0002283246920000021
其中
Figure FDA0002283246920000022
是阶数为kθ的贝塞尔函数,kρ为对应于半径ρ的波数;
(4)将所述公式四对kθ做离散逆傅里叶变换,得到对应于回波数据的三维傅里叶谱的极坐标形式:
Figure FDA0002283246920000023
(5)根据圆柱坐标系下频散关系:
Figure FDA0002283246920000024
利用基于Stolt插值原理,得到目标在圆柱坐标系下三维频谱形式:
Figure FDA0002283246920000025
(6)对三维频谱
Figure FDA0002283246920000026
沿kρ和kz方向做二维逆傅里叶变换,最终得到目标三维成像结果的圆柱坐标表达形式:
Figure FDA0002283246920000027
(7)利用极坐标与直角坐标换算关系
Figure FDA0002283246920000028
变换到直角坐标系下的三维成像结果g(x,y,z):
Figure FDA00022832469200000210
2.根据权利要求1所述的方法,其特征在于,所述公式二、所述公式五和所述公式八通过快速傅里叶变换FFT提高整个成像的运算速度。
3.根据权利要求1所述的方法,其特征在于,通过所述公式一至所述公式五,实现极坐标采样回波数据的三维频谱的圆柱坐标表示形式。
4.根据权利要求1所述的方法,其特征在于,所述极坐标采样点Nm在各圈分布数目不一致,所述极坐标采样点Nm是按照奈奎斯特空间采样条件确定的,所述极坐标采样点Nm由内圈往外逐渐增大。
CN201911149876.1A 2019-11-21 2019-11-21 一种用于极坐标数据采集模式的浅埋目标三维成像方法 Pending CN110850408A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911149876.1A CN110850408A (zh) 2019-11-21 2019-11-21 一种用于极坐标数据采集模式的浅埋目标三维成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911149876.1A CN110850408A (zh) 2019-11-21 2019-11-21 一种用于极坐标数据采集模式的浅埋目标三维成像方法

Publications (1)

Publication Number Publication Date
CN110850408A true CN110850408A (zh) 2020-02-28

Family

ID=69603216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911149876.1A Pending CN110850408A (zh) 2019-11-21 2019-11-21 一种用于极坐标数据采集模式的浅埋目标三维成像方法

Country Status (1)

Country Link
CN (1) CN110850408A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112434708A (zh) * 2020-11-18 2021-03-02 西安理工大学 一种极坐标二维s变换图像局部谱识别方法
CN113533408A (zh) * 2021-07-21 2021-10-22 杭州电子科技大学 一种改善并行磁共振重建图像质量的变密度数据采样方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249954A (ja) * 1993-02-26 1994-09-09 Toshiba Corp レーダ信号処理装置
US6766062B1 (en) * 2000-02-16 2004-07-20 The Board Of Trustees Of The Leland Stanford Junior University - Office Of Technology Digital ridgelet transform via digital polar coordinate transform
CN101900812A (zh) * 2009-05-25 2010-12-01 中国科学院电子学研究所 一种圆迹合成孔径雷达的大场景极坐标格式三维成像方法
CN107229050A (zh) * 2017-05-11 2017-10-03 西北工业大学 一种基于极坐标格式的雷达成像优化方法
CN108872985A (zh) * 2018-04-10 2018-11-23 西北工业大学 一种近场圆周sar快速三维成像方法
CN109557541A (zh) * 2018-12-17 2019-04-02 中国人民解放军国防科技大学 一种全息穿透成像雷达极坐标数据处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249954A (ja) * 1993-02-26 1994-09-09 Toshiba Corp レーダ信号処理装置
US6766062B1 (en) * 2000-02-16 2004-07-20 The Board Of Trustees Of The Leland Stanford Junior University - Office Of Technology Digital ridgelet transform via digital polar coordinate transform
CN101900812A (zh) * 2009-05-25 2010-12-01 中国科学院电子学研究所 一种圆迹合成孔径雷达的大场景极坐标格式三维成像方法
CN107229050A (zh) * 2017-05-11 2017-10-03 西北工业大学 一种基于极坐标格式的雷达成像优化方法
CN108872985A (zh) * 2018-04-10 2018-11-23 西北工业大学 一种近场圆周sar快速三维成像方法
CN109557541A (zh) * 2018-12-17 2019-04-02 中国人民解放军国防科技大学 一种全息穿透成像雷达极坐标数据处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱世平: "探地雷达三维高分辨成像与树根参数估计", 《中国优秀博硕士学位论文全文数据库(博士) 信息科学辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112434708A (zh) * 2020-11-18 2021-03-02 西安理工大学 一种极坐标二维s变换图像局部谱识别方法
CN113533408A (zh) * 2021-07-21 2021-10-22 杭州电子科技大学 一种改善并行磁共振重建图像质量的变密度数据采样方法

Similar Documents

Publication Publication Date Title
CN109116320B (zh) 一种基于雷达回波信号的海浪特征参数提取方法
CN108872985B (zh) 一种近场圆周sar快速三维成像方法
CN104898119B (zh) 一种基于相关函数的动目标参数估计方法
CN109669182B (zh) 无源双基地sar动/静目标联合稀疏成像方法
CN106569191A (zh) 一种利用高分辨率成像获取目标rcs的方法
CN109212500A (zh) 一种基于稀疏重构的ka-stap杂噪协方差矩阵高精度估计方法
CN108387884B (zh) 基于知识辅助稀疏渐进最小方差的机载雷达杂波抑制方法
CN108983149B (zh) 一种旋转麦克风声源定位方法
Wacks et al. Passive synthetic aperture hitchhiker imaging of ground moving targets—Part 1: Image formation and velocity estimation
CN113281727B (zh) 一种基于水平线列阵的输出增强的波束形成方法及其系统
CN108196241B (zh) 一种基于Hough变换的高速动目标速度估计方法
CN110850408A (zh) 一种用于极坐标数据采集模式的浅埋目标三维成像方法
CN111006743A (zh) 一种基于平面雷达水位计的水位测量排除干扰的方法
CN105629220A (zh) 一种基于单水听器的深海水声被动测距方法
CN112083417A (zh) 基于波数域拼接的分布式雷达成像拓扑设计方法
CN111352107A (zh) 基于多通道数字和差的单脉冲跟踪与成像方法
CN110879391B (zh) 基于电磁仿真和弹载回波仿真的雷达图像数据集制作方法
CN112198487A (zh) 一种风电场杂波背景下的目标检测方法
CN109100711A (zh) 一种深海环境下单基地主动声纳低运算量三维定位方法
CN109061626A (zh) 一种步进频相参处理检测低信杂比动目标的方法
CN110297237B (zh) 考虑天线方向图的探地雷达绕射叠加成像方法及系统
CN113534140B (zh) 基于波场互相关的探地雷达三维成像方法
Yang et al. Improved FK migration based on interpolation method for GPR imaging
CN113359196B (zh) 基于子空间法和dbf的多目标生命体征探测方法
CN115201821A (zh) 基于强目标成像对消的小目标检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200228

RJ01 Rejection of invention patent application after publication