CN110849929B - 监测具有悬空结构的传感器释放状态的方法 - Google Patents

监测具有悬空结构的传感器释放状态的方法 Download PDF

Info

Publication number
CN110849929B
CN110849929B CN201911201489.8A CN201911201489A CN110849929B CN 110849929 B CN110849929 B CN 110849929B CN 201911201489 A CN201911201489 A CN 201911201489A CN 110849929 B CN110849929 B CN 110849929B
Authority
CN
China
Prior art keywords
thermal
gas
release
thermal conductivity
thermosensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911201489.8A
Other languages
English (en)
Other versions
CN110849929A (zh
Inventor
刘超
傅剑宇
侯影
刘瑞文
陈大鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Internet Of Things Innovation Center Co ltd
Original Assignee
Wuxi Internet Of Things Innovation Center Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Internet Of Things Innovation Center Co ltd filed Critical Wuxi Internet Of Things Innovation Center Co ltd
Priority to CN201911201489.8A priority Critical patent/CN110849929B/zh
Publication of CN110849929A publication Critical patent/CN110849929A/zh
Application granted granted Critical
Publication of CN110849929B publication Critical patent/CN110849929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明提供一种监测具有悬空结构的传感器释放状态的方法,包括以下步骤:根据热学参数计算公式获得器件的理论热学参数值;采用电学等效测试法,测得器件的实际热学参数值;对比器件的理论热学参数值和实际热学参数值,并根据热学参数与释放工艺状态的映射模型,判断是否存在释放工艺缺陷以及缺陷类型。本发明提出的检测方法,不用破坏器件结构,且测试效率快、准确度高且适用于自动化测试。

Description

监测具有悬空结构的传感器释放状态的方法
技术领域
本发明属于微电子可靠性分析领域,具体涉及一种监测具有悬空结构的传感器释放状态的方法,可用于传感器释放工艺状态的过程监控。
背景技术
释放工艺是一项用于制造悬空结构的关键工艺,包括体硅释放和表面牺牲层释放。由于工艺过程中的非理想因素,可能导致悬空结构出现欠释放缺陷和过释放缺陷,从而使得器件性能参数异常或者功能失效。目前,由于此类缺陷出现在器件结构内部,因此释放工艺缺陷检测大多借助光学设备,如:光学显微镜、扫描电子显微镜、原子力显微镜等。这种检测方式具有破坏性,且测试效率低不利于大规模自动化测试。因此研究释放工艺的快速、无损的检测方法具有重要意义。
发明内容
本发明的目的在于克服现有技术中存在的不足,提供一种监测具有悬空结构的传感器释放状态的方法,所述监测具有悬空结构的传感器释放状态的方法是一种快速无损的检测方法,不用破坏器件结构,且测试效率快、准确度高且适用于自动化测试。本发明采用的技术方案是:
一种监测具有悬空结构的传感器释放状态的方法,包括以下步骤:
根据热学参数计算公式获得器件的理论热学参数值;
采用电学等效测试法,测得器件的实际热学参数值;
对比器件的理论热学参数值和实际热学参数值,并根据热学参数与释放工艺状态的映射模型,判断是否存在释放工艺缺陷以及缺陷类型。
进一步地,器件热学参数包括:热容、固体热导和气体热导变化率。
更进一步地,对比器件的理论热学参数值和实际热学参数值,并根据热学参数与释放工艺状态的映射模型,若热容、固体热导和气体热导变化率均不变,则该器件为正常器件;若热容、固体热导和气体热导变化率均偏大,则该器件为欠释放器件;若热容偏大,而固体热导和气体热导变化率偏小,则该器件为过释放器件。
本发明的优点在于:
1)与现有技术相比,本发明提出的方法不用破坏器件结构,且测试效率快、准确度高且适用于自动化测试。
2)本发明提出的方法既可以对器件释放状态进行分辨识别,又可以获取器件的热学参数,为器件性能优化和工艺改进提供指导。
3)本发明提出的方法可以为释放工艺的过程监控提供一个工艺控制图形化(PCM)解决方案。
附图说明
图1a为本发明实施例中热红外传感器器件侧剖角度示意图。
图1b为本发明实施例中热红外传感器器件俯视角度示意图。
图2为本发明的分析方法流程图。
具体实施方式
下面结合具体附图和实施例对本发明作进一步说明。
本发明的实施例提出一种监测具有悬空结构的传感器释放状态的方法,本实施例以一个含有悬空结构的热红外传感器器件为例,其它的实施例中,该分析方法也可以适用于含有悬空结构的其它器件;
如图1a、图1b所示,热红外传感器器件包括衬底1、框架2、释放空腔3和悬空结构;框架2连接在衬底1上,框架2中设有释放空腔3;悬空结构包括悬空单元4、悬臂梁5和热敏元件6;悬空单元4通过悬臂梁5(本例中是两个)架设在框架2上,位于释放空腔3上方;在悬空单元4中设置热敏元件6;如果该器件正常功能中含有热敏元件,则该热敏元件6刚好满足器件要求;如果该器件正常功能中不含有热敏元件,可在悬空单元4中添加热敏元件以满足测试要求;
监测具有悬空结构的传感器释放状态的方法,包括以下步骤:
根据热学参数计算公式获得器件的理论热学参数值;
采用电学等效测试法,测得器件的实际热学参数值;
对比器件的理论热学参数值和实际热学参数值,并根据热学参数与释放工艺状态的映射模型,判断是否存在释放工艺缺陷以及缺陷类型。
器件热学参数包括:热容、固体热导和气体热导变化率;
热容H计算公式为:
Figure BDA0002295995940000021
其中,vi,、ρi,、γi分别表示悬空单元第i层材料的体积、密度和比热容;在一些实施例中悬空单元4可包括三层或四层材料;
固体热导Gcan的计算公式为:
Figure BDA0002295995940000022
其中,N为悬臂梁数量,kb为悬臂梁的热导率,Wb、db和Lb分别为悬臂梁的宽度、厚度和长度;
气体热导变化率γ为气体热导Ggas随气体压强P的变化率,表示为:
Figure BDA0002295995940000023
其中kair,0为在室温和大气压下的气体热导率,dλ为悬空单元与衬底之间的间隙,As为悬空单元的面积,T为悬空单元的温度;
热学参数的电学等效测试方法如下:
将器件的热敏元件与一个固定电阻R串联,再由电压源供电;控制电压源产生一个方波电压,高电平为U,低电平为0;热敏元件获得一个焦耳热功率Psh;通过热敏元件上的电压电流可测得该热功率;在该热功率作用下,悬空单元被加热,此时热敏元件电阻发生变化,从而使得热敏元件两端的电压发生变化,变化量为ΔV,根据热平衡方程,热敏元件电压变化量随时间的关系式为:
Figure BDA0002295995940000031
其中α为热敏元件的电压温度系数,τ为器件的热响应时间;
根据公式7,器件热响应时间τ为热敏元件电压变化量从0变化到最大值的63.2%所需要的时间;
当加热时间足够长时,器件达到热平衡状态,则总热导为:
Figure BDA0002295995940000032
真空状态下气体热导Ggas为0,因此可在真空状态下获得器件的固体热导Gcan;非真空状态下固态热导Gcan与真空状态下相同;
在非真空状态下,改变气体压强可测得器件的气体热导变化率γ;
根据H=τ×(Gcan+Ggas),并利用所获得的测量值,得到器件的热容;
释放工艺状态包括正常释放、欠释放和过释放;
热学参数与释放工艺状态的映射模型,可用一个表格表示:
热容 固体热导 气体热导变化率
正常器件 不变 不变 不变
欠释放器件 偏大 偏大 偏大
过释放器件 偏大 偏小 偏小
对比器件的理论热学参数值和实际热学参数值,并根据热学参数与释放工艺状态的映射模型,若热容、固体热导和气体热导变化率均不变,则该器件为正常器件;若热容、固体热导和气体热导变化率均偏大,则该器件为欠释放器件;若热容偏大,而固体热导和气体热导变化率偏小,则该器件为过释放器件。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (2)

1.一种监测具有悬空结构的传感器释放状态的方法,包括以下步骤:
根据热学参数计算公式获得器件的理论热学参数值;
采用电学等效测试法,测得器件的实际热学参数值;
对比器件的理论热学参数值和实际热学参数值,并根据热学参数与释放工艺状态的映射模型,判断是否存在释放工艺缺陷以及缺陷类型;
器件热学参数包括:热容、固体热导和气体热导变化率;
对比器件的理论热学参数值和实际热学参数值,并根据热学参数与释放工艺状态的映射模型,若热容、固体热导和气体热导变化率均不变,则该器件为正常器件;若热容、固体热导和气体热导变化率均偏大,则该器件为欠释放器件;若热容偏大,而固体热导和气体热导变化率偏小,则该器件为过释放器件;
器件包括衬底、框架、释放空腔和悬空结构;框架连接在衬底上,框架中设有释放空腔;悬空结构包括悬空单元、悬臂梁和热敏元件;悬空单元通过悬臂梁架设在框架上,位于释放空腔上方;在悬空单元中设置热敏元件;
热容H计算公式为:
Figure FDA0002543918290000011
其中,vi,、ρi,、γi分别表示悬空单元第i层材料的体积、密度和比热容;n为悬空单元层数;
固体热导Gcan的计算公式为:
Figure FDA0002543918290000012
其中,N为悬臂梁数量,kb为悬臂梁的热导率,Wb、db和Lb分别为悬臂梁的宽度、厚度和长度;
气体热导变化率γ为气体热导Ggas随气体压强P的变化率,表示为:
Figure FDA0002543918290000013
其中kair,0为在室温和大气压下的气体热导率,As为悬空单元的面积,T为悬空单元的温度。
2.如权利要求1所述的监测具有悬空结构的传感器释放状态的方法,其特征在于:
热学参数的电学等效测试方法如下:
在器件的悬空单元中设置热敏元件,将器件的热敏元件与一个固定电阻R串联,再由电压源供电;控制电压源产生一个方波电压,高电平为U,低电平为0;热敏元件获得一个焦耳热功率Psh;通过热敏元件上的电压电流测得该焦耳热功率;在该焦耳热功率作用下,悬空单元被加热,此时热敏元件电阻发生变化,从而使得热敏元件两端的电压发生变化,变化量为ΔV,根据热平衡方程,热敏元件电压变化量随时间的关系式为:
Figure FDA0002543918290000021
其中α为热敏元件的电压温度系数,τ为器件的热响应时间;
当加热时间足够长时,器件达到热平衡状态,则总热导为:
Figure FDA0002543918290000022
真空状态下气体热导Ggas为0,因此可在真空状态下获得器件的固体热导Gcan;非真空状态下固态热导Gcan与真空状态下相同;
在非真空状态下,改变气体压强可测得器件的气体热导变化率γ;
根据H=τ×(Gcan+Ggas),并利用所获得的测量值,得到器件的热容。
CN201911201489.8A 2019-11-29 2019-11-29 监测具有悬空结构的传感器释放状态的方法 Active CN110849929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911201489.8A CN110849929B (zh) 2019-11-29 2019-11-29 监测具有悬空结构的传感器释放状态的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911201489.8A CN110849929B (zh) 2019-11-29 2019-11-29 监测具有悬空结构的传感器释放状态的方法

Publications (2)

Publication Number Publication Date
CN110849929A CN110849929A (zh) 2020-02-28
CN110849929B true CN110849929B (zh) 2020-08-14

Family

ID=69606451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911201489.8A Active CN110849929B (zh) 2019-11-29 2019-11-29 监测具有悬空结构的传感器释放状态的方法

Country Status (1)

Country Link
CN (1) CN110849929B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430255B (zh) * 2020-03-31 2021-04-02 无锡物联网创新中心有限公司 一种刻蚀深度的检测方法
CN116972738B (zh) * 2023-07-31 2024-04-16 无锡物联网创新中心有限公司 Mems悬空薄膜结构悬空高度的检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101386401A (zh) * 2008-10-16 2009-03-18 上海集成电路研发中心有限公司 红外探测器像元应力的监控结构及监控方法
JP2011210884A (ja) * 2010-03-29 2011-10-20 Mitsubishi Electric Corp はんだ接合部の品質管理方法および品質管理装置
WO2014135141A1 (de) * 2013-03-06 2014-09-12 MTU Aero Engines AG Verfahren und vorrichtung zur qualitätsbeurteilung eines mittels eines generativen lasersinter- und/oder laserschmelzverfahrens hergestellten bauteils
CN105223488A (zh) * 2015-10-21 2016-01-06 工业和信息化部电子第五研究所 基于结构函数的半导体分立器件封装质量检测方法及系统
KR101682309B1 (ko) * 2015-07-29 2016-12-02 경상대학교산학협력단 고분자 중합을 통해 성형한 복합재료의 결함 평가 장치
CN110132428A (zh) * 2019-06-13 2019-08-16 无锡物联网创新中心有限公司 Mems传感器热学参数测试电路及测试方法
CN110346052A (zh) * 2019-06-13 2019-10-18 无锡物联网创新中心有限公司 Mems非制冷红外探测器热学参数测试电路及测试方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421947B1 (en) * 2017-06-30 2019-08-07 Sensirion AG Operation method for flow sensor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101386401A (zh) * 2008-10-16 2009-03-18 上海集成电路研发中心有限公司 红外探测器像元应力的监控结构及监控方法
JP2011210884A (ja) * 2010-03-29 2011-10-20 Mitsubishi Electric Corp はんだ接合部の品質管理方法および品質管理装置
WO2014135141A1 (de) * 2013-03-06 2014-09-12 MTU Aero Engines AG Verfahren und vorrichtung zur qualitätsbeurteilung eines mittels eines generativen lasersinter- und/oder laserschmelzverfahrens hergestellten bauteils
KR101682309B1 (ko) * 2015-07-29 2016-12-02 경상대학교산학협력단 고분자 중합을 통해 성형한 복합재료의 결함 평가 장치
CN105223488A (zh) * 2015-10-21 2016-01-06 工业和信息化部电子第五研究所 基于结构函数的半导体分立器件封装质量检测方法及系统
CN110132428A (zh) * 2019-06-13 2019-08-16 无锡物联网创新中心有限公司 Mems传感器热学参数测试电路及测试方法
CN110346052A (zh) * 2019-06-13 2019-10-18 无锡物联网创新中心有限公司 Mems非制冷红外探测器热学参数测试电路及测试方法

Also Published As

Publication number Publication date
CN110849929A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
CN110849929B (zh) 监测具有悬空结构的传感器释放状态的方法
WO2021143347A1 (zh) 一种薄膜传感器标定装置及方法
Xie et al. A low power cantilever-based metal oxide semiconductor gas sensor
CN102608153B (zh) 多晶硅-金属热电偶塞贝克系数的在线测试结构
CN108896840B (zh) 一种原位实时测量压电材料高温压电应变常数的装置及方法
Xie et al. A novel low power hexagonal gas sensor cell for multi-channel gas detection
CN202403836U (zh) 多晶硅-金属热电偶塞贝克系数的在线测试结构
JP6140500B2 (ja) ガスセンサ
Adzžicć et al. Design of dedicated instrumentation for temperature distribution measurements in solid oxide fuel cells
CN114295667A (zh) 一种微纳薄膜热导率的快速测量方法
Gardner et al. Thermal conductivity sensor with isolating membrane holes
CN104132963A (zh) 一种微应力条件下接触热阻检测装置
JP3369677B2 (ja) 温湿度センサ
CN113511626B (zh) 多参量气体传感微芯片及其制备方法、气体传感器
CN207867991U (zh) 热敏电阻、绝对湿度传感器
CN116972738B (zh) Mems悬空薄膜结构悬空高度的检测方法
Liu et al. A hot platinum thin film anemometer
CN206556787U (zh) 一种体温计标定系统
CN216718277U (zh) 一种用于建筑现场传热测定仪的检测装置
CN107063506A (zh) 一种体温计标定系统及其标定方法
RU215318U1 (ru) Тепловой датчик расхода газов калориметрического типа
CN113466488B (zh) 二维温度平衡模式mems风速风向传感器及其制备方法
CN217358640U (zh) 一种红外检测mems流量传感器
CN116203065A (zh) 一种微型热导气体传感器
Zhu et al. A self-packaged self-heated thermal wind sensor with high reliability and low power consumption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant