CN110841644A - 一种磁催化剂及其制备方法和应用 - Google Patents

一种磁催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN110841644A
CN110841644A CN201911177001.2A CN201911177001A CN110841644A CN 110841644 A CN110841644 A CN 110841644A CN 201911177001 A CN201911177001 A CN 201911177001A CN 110841644 A CN110841644 A CN 110841644A
Authority
CN
China
Prior art keywords
magnetic
magnetic catalyst
layer
conductive layer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911177001.2A
Other languages
English (en)
Inventor
李彬
孟世明
杨树斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201911177001.2A priority Critical patent/CN110841644A/zh
Publication of CN110841644A publication Critical patent/CN110841644A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种磁催化剂及其制备方法和应用,所述磁催化剂具有三明治结构,其中上下层均为磁性层,中间层为导电层,所述磁性层与所述导电层之间紧密贴合。其制备方法为共沉淀法或水热法等。本发明的磁催化剂利用三明治结构促进磁生电子和空穴的分离,有效分解水中有机污染物,同时具有良好的稳定性和生物安全性,是非常理想的水处理材料,可广泛应用于各种水处理领域;此外,该磁催化剂制备工艺重复性高、过程简单、耗时少,适于工业化生产。

Description

一种磁催化剂及其制备方法和应用
技术领域
本发明涉及水处理领域,更具体地,涉及一种磁催化剂及其制备方法和应用。
背景技术
水体中除含有无机污染物外,更含有大量的有机污染物,它们以毒性和使水中溶解氧减少的形式对生态系统产生影响,危害人体健康,有机污染物是水资源再利用的重要障碍。
目前,水处理的方式包括物理处理和化学处理。人类进行水处理的方式已经有相当多年历史,物理方法包括利用各种孔径大小不同的滤材,利用吸附或阻隔方式,将水中的杂质排除在外,吸附方式中较重要者为以活性炭进行吸附,阻隔方法则是将水通过滤材,让体积较大的杂质无法通过,进而获得较为干净的水。另外,物理方法也包括沉淀法,就是让比重较小的杂质浮于水面捞出,或是比重较大的杂质沉淀于下,进而取得。化学方法则是利用各种化学药品将水中杂质转化为对人体伤害较小的物质,或是将杂质集中,历史最久的化学处理方法应该可以算是用明矾加入水中,水中杂质集合后,体积变大,便可用过滤法,将杂质去除。
但现有的物理方法处理效果一般,而化学处理方法需要加入化学试剂,会造成不同程度的二次污染。因此本申请旨在提供一种磁催化剂,其可用于处理水中的有机污染物等。
发明内容
针对现有技术存在的问题,本发明提供一种磁催化剂及其制备方法和应用。
本发明第一目的为提供一种磁催化剂,具有三明治结构,其中上下层均为磁性层,中间层为导电层,所述磁性层与所述导电层之间紧密贴合。本发明磁催化剂的三层结构在竖直方向可以完全重叠,也可以部分重叠,只要保证有三层相互重叠的地方。
本发明的磁催化剂利用三明治结构促进磁生电子和空穴的分离,有效分解水中有机污染物,同时具有良好的稳定性和生物安全性,是非常理想的水处理材料,可广泛应用于各种水处理领域。
进一步地,所述磁催化剂的厚度为0.01-200微米,横向最大尺寸为0.1-1000微米。所述横向尺寸来自于导电层的大小。
进一步地,所述磁性层的厚度为0.001-100微米,优选为0.01-1微米;所述导电层的厚度为0.001-50微米,优选为0.001-0.1微米。
本发明中磁催化剂的厚度比较重要,尤其是磁性层的厚度,这决定了磁性材料与磁场的耦合程度,合适的厚度会增强磁生电子和空穴的分离效果,从而产生较好的催化效果。
本发明中所述导电层的组分包括但不限于氧化石墨烯、石墨烯、二维金属硫化物、二维金属碳化物、碳纳米片中的一种或多种;优选地,所述导电层为石墨烯。其中,二维金属硫化物包括但不限于硫化钼、硫化钨、硫化钽等,二维金属碳化物包括但不限于碳化钛、碳化钼,碳化钨等。
本发明中所述磁性层的组分包括但不限于铁、钴、镍单质,铁磁性金属铁钴镍的氧化物、氢氧化物、磷化物、硼化物,以及铁氧体中的一种或多种;优选地,所述磁性层为铁氧体。
本发明第二目的为提供上述磁催化剂的制备方法,可以为共沉淀法、水热法、溶剂热法、溶胶凝胶法、微乳液法或固相反应法。优选地,所述制备方法为共沉淀法或水热法。
本发明第三目的为提供上述磁催化剂在处理含有有机污染物的废水中的应用。
本发明中废水可为工业废水、农业废水、生活废水、医疗废水等。有机污染物是指以碳水化合物、蛋白质、氨基酸以及脂肪等形式存在的天然有机物质及某些其他可生物降解的人工合成有机物质为组成的污染物,例如挥发性卤代烃、挥发性有机物、多环芳烃等等。
进一步地,所述应用具体包括:向废水中加入所述磁催化剂,然后将含有所述磁催化剂的废水置于强度为0.01-3T、频率为10-500KHz的交变磁场中,进行辐照处理10秒-1小时,辐照结束后再放置10分钟-5天。经过上述处理,有机污染物的降解率达到90%以上。
本发明的磁催化剂利用三明治结构促进磁生电子和空穴的分离,有效分解水中有机污染物,同时具有良好的稳定性和生物安全性,是非常理想的水处理材料,可广泛应用于各种水处理领域;此外,该磁催化剂制备工艺重复性高、过程简单、耗时少,适于工业化生产。
附图说明
图1为本发明实施例1磁催化剂的结构示意图;
图2为本发明实施例1磁催化剂的形貌扫描电镜表征结果(SEM);
图3为本发明实施例1磁催化剂的形貌透射电镜表征结果(TEM);
图4为本发明实施例1磁催化剂处理甲基蓝的结果。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购买得到的常规产品。
实施例1
本实施例提供一种磁催化剂,其结构示意图如图1所示,具有三明治结构,其中上下层均为磁性层1,中间层为导电层2,磁性层1与导电层2之间紧密贴合。本实施例中导电层2为石墨烯,厚度为1纳米,磁性层1为钴铁氧体,上层厚度为100纳米,下层厚度为100纳米。本实施例中磁催化剂的横向最大尺寸为20微米。
本实施例中磁催化剂的制备方法为共沉淀法。
对所得磁催化剂进行表征,SEM图和TEM图分别如图2和3所示,从图中可以看出所得磁催化剂片层均匀致密平整,其厚度约为200纳米。
实施例2
本实施例提供一种磁催化剂,具有三明治结构,其中上下层均为磁性层,中间层为导电层,磁性层与导电层之间紧密贴合。本实施例中导电层为石墨烯,厚度为1纳米,磁性层为镍铁氧体,上层厚度为1微米,下层厚度为1微米。本实施例中磁催化剂的横向最大尺寸为100微米。
本实施例中磁催化剂的制备方法为水热法。
实施例3
本实施例提供一种磁催化剂,具有三明治结构,其中上下层均为磁性层,中间层为导电层,磁性层与导电层之间紧密贴合。本实施例中导电层为碳化钛,厚度为100纳米,磁性层为铁单质纳米层,上层厚度为10纳米,下层厚度为10纳米。本实施例中磁催化剂的横向最大尺寸为1微米。
本实施例中磁催化剂的制备方法为溶剂热法。
实施例4
本实施例提供一种磁催化剂,具有三明治结构,其中上下层均为磁性层,中间层为导电层,磁性层与导电层之间紧密贴合。本实施例中导电层为1T相硫化钼,厚度为10纳米,磁性层为四氧化三铁,上层厚度为10纳米,下层厚度为10纳米。本实施例中磁催化剂的横向最大尺寸为1000微米。
本实施例中磁催化剂的制备方法为微乳液法。
应用例
将实施例1所得磁催化剂进行水处理性能测试,处理对象为浓度20mg/mL的甲基蓝水溶液,处理方法为向10ml甲基蓝水溶液中加入10mg磁催化剂,然后将含有磁催化剂的水溶液置于强度为0.1T、频率为300KHz的交变磁场中,进行辐照处理5分钟,辐照结束后再放置12小时。
分别测定处理前后溶液的吸收值,采用紫外可见近红外分光光度计,测试样品吸光度,扫描范围200-800nm,结果如图4所示,可以看出甲基蓝降解率达到99.9%。
将实施例2~4所得磁催化剂分别进行水处理性能测试,测试方法同实施例1所得磁催化剂的测试方法,结果表明,实施例2~4所得磁催化剂也能处理有机污染物,有机污染物降解率为90~98%。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种磁催化剂,其特征在于,具有三明治结构,其中上下层均为磁性层,中间层为导电层,所述磁性层与所述导电层之间紧密贴合。
2.根据权利要求1所述的磁催化剂,其特征在于,所述磁催化剂的厚度为0.01-200微米,横向最大尺寸为0.1-1000微米。
3.根据权利要求2所述的磁催化剂,其特征在于,所述磁性层的厚度为0.001-100微米,所述导电层的厚度为0.001-50微米。
4.根据权利要求1~3任一项所述的磁催化剂,其特征在于,所述导电层的组分包括但不限于氧化石墨烯、石墨烯、二维金属硫化物、二维金属碳化物、碳纳米片中的一种或多种。
5.根据权利要求4所述的磁催化剂,其特征在于,所述导电层为石墨烯。
6.根据权利要求1~5任一项所述的磁催化剂,其特征在于,所述磁性层的组分包括但不限于铁、钴、镍单质,铁磁性金属的氧化物、氢氧化物、磷化物、硼化物,以及铁氧体中的一种或多种。
7.根据权利要求6所述的磁催化剂,其特征在于,所述磁性层为铁氧体。
8.权利要求1~7任一项所述磁催化剂的制备方法,其特征在于,所述制备方法为共沉淀法、水热法、溶剂热法、溶胶凝胶法、微乳液法或固相反应法,优选为共沉淀法或水热法。
9.权利要求1~7任一项所述磁催化剂在处理含有有机污染物的废水中的应用。
10.根据权利要求9所述的应用,其特征在于,具体包括:向废水中加入所述磁催化剂,然后将含有所述磁催化剂的废水置于强度为0.01-3T、频率为10-500KHz的交变磁场中,进行辐照处理10秒-1小时,辐照结束后再放置10分钟-5天。
CN201911177001.2A 2019-11-26 2019-11-26 一种磁催化剂及其制备方法和应用 Pending CN110841644A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911177001.2A CN110841644A (zh) 2019-11-26 2019-11-26 一种磁催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911177001.2A CN110841644A (zh) 2019-11-26 2019-11-26 一种磁催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110841644A true CN110841644A (zh) 2020-02-28

Family

ID=69604809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911177001.2A Pending CN110841644A (zh) 2019-11-26 2019-11-26 一种磁催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110841644A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964256A (zh) * 2016-05-12 2016-09-28 广东石油化工学院 一种核壳型四氧化三铁/氧化石墨烯复合型纳米催化剂的制备方法
CN106010458A (zh) * 2016-06-03 2016-10-12 大连理工大学 一种磁热-光热双驱能量转换与存储的聚合物纳米复合相变储能材料及其制备方法
US20180126368A1 (en) * 2016-11-07 2018-05-10 Council Of Scientific & Industrial Research Process for the production of graphene sheets with tunable functionalities from seaweed promoted by deep eutectic solvents
CN110342630A (zh) * 2019-06-06 2019-10-18 河海大学 一种用于预处理焦化废水的生态床

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964256A (zh) * 2016-05-12 2016-09-28 广东石油化工学院 一种核壳型四氧化三铁/氧化石墨烯复合型纳米催化剂的制备方法
CN106010458A (zh) * 2016-06-03 2016-10-12 大连理工大学 一种磁热-光热双驱能量转换与存储的聚合物纳米复合相变储能材料及其制备方法
US20180126368A1 (en) * 2016-11-07 2018-05-10 Council Of Scientific & Industrial Research Process for the production of graphene sheets with tunable functionalities from seaweed promoted by deep eutectic solvents
CN110342630A (zh) * 2019-06-06 2019-10-18 河海大学 一种用于预处理焦化废水的生态床

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GUANGSHUO WANG等: "Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery", 《CHEMICAL ENGINEERING JOURNAL》 *
YINGQING ZHAN等: "One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4 hybrid material and its microwave electromagnetic properties", 《MATERIALS LETTERS》 *
ZHEN-JIE GUAN等: "Sandwich-like cobalt/reduced graphene oxide/cobalt composite structure presenting synergetic electromagnetic loss effect", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
汤晓欢等: "催化湿式氧化复合催化剂对偶氮染料废水的降解", 《环境化学》 *
潘家祜: "《面向21世纪高等医药院校教材 生化药理学》", 31 August 2004, 复旦大学出版社 *

Similar Documents

Publication Publication Date Title
Vidu et al. Removal of heavy metals from wastewaters: A challenge from current treatment methods to nanotechnology applications
Saha et al. Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: a comparative study
Giraldo et al. Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization
Jasrotia et al. Photocatalytic degradation of environmental pollutant using nickel and cerium ions substituted Co 0.6 Zn 0.4 Fe 2 O 4 nanoferrites
Fan et al. Removal of arsenic from simulation wastewater using nano-iron/oyster shell composites
WO2010062586A2 (en) Liquid purification using magnetic nanoparticles
Li et al. Preparation of CoFe2O4–P4VP@ Ag NPs as effective and recyclable catalysts for the degradation of organic pollutants with NaBH4 in water
Ramadoss et al. Mesoporous ferromagnetic manganese ferrite nanoparticles for enhanced visible light mineralization of azoic dye into nontoxic by-products
WO2014033642A2 (es) Material útil en la remoción de contaminantes en matrices líquidas
Palanisamy et al. The utility of magnetic iron oxide nanoparticles stabilized by carrier oils in removal of heavy metals from waste water
Ali et al. Development of magnetic nanoparticles for fluoride and organic matter removal from drinking water
Linh et al. Magnetic nanoparticles: study of magnetic heating and adsorption/desorption for biomedical and environmental applications
Balkanloo et al. Graphene quantum dots: Synthesis, characterization, and application in wastewater treatment: A review
Luo et al. Preparation of 3-dimensional flower-like NiFe2O4 with enhanced adsorptive performance for water contaminants
Elmaci Microwave-assisted rapid synthesis of C@ Fe3O4 composite for removal of microplastics from drinking water
Habila et al. Facile Strategy for Fabricating an Organosilica-Modified Fe3O4 (OS/Fe3O4) Hetero-Nanocore and OS/Fe3O4@ SiO2 Core–Shell Structure for Wastewater Treatment with Promising Recyclable Efficiency
Qaiyum et al. Elegant synthesis of phyto-magnetic Fe3O4@ Syzygium cumini and its application for decontamination of Eriochrome Black T dye from aqueous solution and wastewater
CN110841644A (zh) 一种磁催化剂及其制备方法和应用
Mao et al. Hydrothermal fabrication of Fe3O4@ carbonaceous microspheres for efficient removal of oil and metal ions from the aqueous phase
Roy et al. Role of magnetic nanoparticles in providing safe and clean water to each individual
Dhiman et al. Co Doped Mg–Zn Spinel Nano-ferrites as a Sustainable Magnetic Nano-photo-catalyst with Reduced Recombination for Photo Degradation of Crystal Violet
Sanad et al. Study of the adsorptive removal of (Fe+ 2) and (Ni+ 2) from water by synthesized magnetite/corn cobs magnetic nanocomposite
Singh et al. Photocatalytic degradation of malachite green using PVDF membranes doped with Fe3O4 nanoparticles: role of porosity and surface roughness
Maddila et al. Magnetic nanocatalysts for wastewater treatment
Dhiman et al. Application of magnetic nano particles and their composites as adsorbents for waste water treatment: a brief review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200228

RJ01 Rejection of invention patent application after publication