CN110838730B - 统一虚拟阻抗控制器、统一虚拟阻抗控制方法与并联系统 - Google Patents

统一虚拟阻抗控制器、统一虚拟阻抗控制方法与并联系统 Download PDF

Info

Publication number
CN110838730B
CN110838730B CN201911180809.6A CN201911180809A CN110838730B CN 110838730 B CN110838730 B CN 110838730B CN 201911180809 A CN201911180809 A CN 201911180809A CN 110838730 B CN110838730 B CN 110838730B
Authority
CN
China
Prior art keywords
virtual impedance
inverter
module
independent
parallel system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911180809.6A
Other languages
English (en)
Other versions
CN110838730A (zh
Inventor
林燎源
戴宇杰
朱铠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201911180809.6A priority Critical patent/CN110838730B/zh
Publication of CN110838730A publication Critical patent/CN110838730A/zh
Application granted granted Critical
Publication of CN110838730B publication Critical patent/CN110838730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种应用于逆变器并联系统的统一虚拟阻抗控制器、一种逆变器并联系统的统一虚拟阻抗控制方法,以及一种统一虚拟阻抗控制的逆变器并联系统,通过统一虚拟阻抗控制器,接收独立逆变器定时发出并机状态位信号、自身功率信息和功率权重信息,计算得到各逆变器的功率参考,生成自适应虚拟阻抗反馈给各逆变器,从而提高并联系统稳态功率分配精度。本发明中,对每台独立逆变器所需的虚拟阻抗在统一虚拟阻抗控制器中进行统一调节,简化并联逆变器投切、冗余轮流休眠、功率权重变化等情况下的虚拟阻抗控制逻辑,使并联系统的虚拟阻抗控制逻辑清晰,适应各种实际工况,能够准确地设计虚拟阻抗,提高稳态功率分配精度和供电可靠性。

Description

统一虚拟阻抗控制器、统一虚拟阻抗控制方法与并联系统
技术领域
本发明涉及逆变器并联系统技术领域,更具体地说,涉及一种应用于逆变器并联系统的统一虚拟阻抗控制器、一种逆变器并联系统的统一虚拟阻抗控制方法,以及一种统一虚拟阻抗控制的逆变器并联系统。
背景技术
逆变器并联控制技术是微电网、模块化不间断电源等可靠运行的核心技术之一。由于下垂控制能够实现多逆变器的自主并联运行,得到了广泛的研究和应用。然而,现有的逆变器并联系统中,由于各逆变器等效输出阻抗、输出连线阻抗的差异,即逆变器等效输出阻抗和连线阻抗的失配,使得传统下垂控制方法会造成功率分配误差,产生系统环流,影响系统的稳定运行。目前解决的主要方法之一是添加虚拟阻抗,一般通过输出电流构造电压降落,调节指令电压来引入虚拟阻抗。对于虚拟阻抗值的设计,若能通过通信获取逆变器功率参考值,则可以对虚拟阻抗进行精确调节,实现功率的精确分配。
现有技术中,对于逆变器并联运行的控制方式,公开号为CN102157956A的发明专利“基于虚拟阻抗的逆变器并联运行方法”提出针对并联的系统每台逆变器,引入一虚拟发电机,虚拟发电机通过虚拟阻抗接入逆变器所在点;对虚拟发电机使用下垂控制,利用每台逆变器的有功与无功功率信息分别调节虚拟发电机的频率和电压幅值,进而求得虚拟发电机的电压指令值。在此基础上进一步求得逆变器的输出电压指令值,控制逆变器的输出电压跟踪该指令值,从而实现对虚拟发电机的电压控制,最终实现有功和无功的解耦调节。
“基于虚拟阻抗的不间断电源并联系统均流控制.中国电机工程学报,2009,29(24)”针对逆变器输出功率分配不均和系统环流等问题引入虚拟阻抗,削弱负载到逆变器的阻抗差,提高逆变器无功分配精度。“Accurate reactive power sharing in anislanded microgrid using adaptive virtual impedances.IEEE TransactionsonPower Electronics,2015,30(3)”提出的虚拟阻抗由无功功率偏差经过积分运算得到,无功功率参考值来自微网能量管理系统,能够实现无功功率的准确分配。
上述虚拟阻抗的添加都是在每台逆变器中独立添加,当功率参考参与虚拟阻抗调节时,在逆变器投切、逆变器功率权重发生变化或者冗余逆变器轮休等情况下,各逆变器独自控制虚拟阻抗时逻辑较为复杂。
实际工作中并联系统存在以下情况:
1)逆变器投入、切出并联系统,并联台数发生变化;
2)并联逆变器承担的功率权重发生变化(如光伏发电和风力发电需考虑最大功率跟踪);
3)冗余并联系统中,对逆变器进行轮流休眠处理。若虚拟阻抗值都是在各逆变器中单独进行整定,由于功率参考信号需实时调整,容易出现控制逻辑混乱等问题,会降低供电可靠性。
发明内容
本发明的目的在于克服现有技术的不足,提供一种应用于逆变器并联系统的统一虚拟阻抗控制器、一种逆变器并联系统的统一虚拟阻抗控制方法,以及一种统一虚拟阻抗控制的逆变器并联系统,能够对并联系统中各逆变器所需的虚拟阻抗值在统一虚拟阻抗控制器中进行统一控制,使系统虚拟阻抗控制逻辑清晰,适应各种实际工况,提高稳态功率分配精度和供电可靠性。
本发明的技术方案如下:
一种应用于逆变器并联系统的统一虚拟阻抗控制器,包括前后依次连接的第一减法运算模块、第一乘法运算模块与第一偏差控制模块、前后依次连接的第二减法运算模块、第二乘法运算模块与第二偏差控制模块、加法运算模块,第一偏差控制模块、第二偏差控制模块分别与加法运算模块连接;
第一减法运算模块用于输入独立逆变器i的有功功率Pi与有功功率参考Pi *,并进行相减,输出有功功率误差信号;第一乘法运算模块用于通过独立逆变器i的并机状态位信号Bi与有功功率误差信号相乘;第一偏差控制模块用于对第一乘法运算模块输出的值进行偏差控制,得到有功功率虚拟阻抗Zpi
第二减法运算模块用于输入独立逆变器i的无功功率Qi与无功功率参考
Figure BDA0002291212220000031
并进行相减,输出无功功率误差信号;第二乘法运算模块用于通过独立逆变器i的并机状态位信号Bi与无功功率误差信号相乘;第二偏差控制模块用于对第二乘法运算模块输出的值进行偏差控制,得到无功功率虚拟阻抗Zqi
加法运算模块用于输入有功功率虚拟阻抗Zpi与无功功率虚拟阻抗Zqi,并进行相加,输出反馈至独立逆变器i的虚拟阻抗Zvi
其中,i=1,2,…,n,n为并联系统中独立逆变器的数量。
作为优选,第一偏差控制模块、第二偏差控制模块为PI控制器或积分器。
作为优选,还包括限幅模块,与加法运算模块连接,用于对加法运算模块输出的值进行限幅,得到虚拟阻抗Zvi
作为优选,有功功率参考Pi *具体如下:
Figure BDA0002291212220000032
其中,
Figure BDA0002291212220000033
PCi表示独立逆变器i的有功功率容量,Pbase表示所有独立逆变器i的公共有功功率基准;
无功功率参考
Figure BDA0002291212220000034
具体如下:
Figure BDA0002291212220000035
/>
其中,
Figure BDA0002291212220000036
QCi表示独立逆变器i的无功功率容量,Qbase表示所有独立逆变器i的公共无功功率基准。
作为优选,加法运算模块还输入预设的固定虚拟阻抗
Figure BDA0002291212220000037
用于削弱独立逆变器之间等效输出阻抗的差异。
一种逆变器并联系统的统一虚拟阻抗控制方法,独立逆变器i分别输出有功功率Pi、无功功率Qi、并机状态位信号Bi、有功功率权重Wpi、无功功率权重Wqi至统一虚拟阻抗控制器,经统一虚拟阻抗控制器生成对应独立逆变器i的虚拟阻抗Zvi,并反馈至独立逆变器i;
其中,i=1,2,…,n,n为并联系统中独立逆变器的数量,Bi=0表示独立逆变器i未接入并联系统,Bi=1表示独立逆变器i已接入并联系统;
Figure BDA0002291212220000041
其中,PCi表示独立逆变器i的有功功率容量,Pbase表示所有独立逆变器i的公共有功功率基准;
Figure BDA0002291212220000042
其中,QCi表示独立逆变器i的无功功率容量,Qbase表示所有独立逆变器i的公共无功功率基准。
作为优选,初次发送并机状态位信号Bi、有功功率权重Wpi、无功功率权重Wqi后,仅当值发生改变时,再向统一虚拟阻抗控制器进行发送。
作为优选,以固定周期向统一虚拟阻抗控制器发送并机状态位信号Bi、有功功率权重Wpi、无功功率权重Wqi
作为优选,虚拟阻抗Zvi为虚拟电阻,独立逆变器i接收虚拟阻抗Zvi后,将虚拟阻抗Zvi乘于输出电流ioi,生成模拟电阻压降。
一种统一虚拟阻抗控制的逆变器并联系统,包括若干负载、电气网络、若干独立逆变器、统一虚拟阻抗控制器,独立逆变器通过电气网络向负载供电,独立逆变器分别与统一虚拟阻抗控制器连接,基于逆变器并联系统的统一虚拟阻抗控制方法,通过一个统一虚拟阻抗控制器实现对所有独立逆变器的统一虚拟阻抗控制。
本发明的有益效果如下:
本发明所述的统一虚拟阻抗控制器,接收独立逆变器定时发出并机状态位信号、自身功率信息和功率权重信息,计算得到各逆变器的功率参考,生成自适应虚拟阻抗反馈给各逆变器,从而提高并联系统稳态功率分配精度。统一虚拟阻抗控制器的实施,可以简化并联逆变器投切、冗余轮流休眠、功率权重变化等情况下的虚拟阻抗控制逻辑,准确地设计虚拟阻抗。
本发明所述的逆变器并联系统的统一虚拟阻抗控制方法,各逆变器针对自身并机状态生成并机状态位信号,将自身输出的功率信息、功率权重信息和并机状态位信号发送至统一虚拟阻抗控制器。统一虚拟阻抗控制器计算得到各逆变器的功率参考,生成自适应虚拟阻抗反馈给各逆变器,从而提高并联系统稳态功率分配精度。
本发明所述的逆变器并联系统中,独立逆变器模块定时发出并机状态位信号、自身功率信息和功率权重信息至统一虚拟阻抗控制器。统一虚拟阻抗控制器计算得到各逆变器的功率参考,生成自适应虚拟阻抗反馈给各逆变器,从而提高并联系统稳态功率分配精度。本发明中,虚拟阻抗的确定全都在统一虚拟阻抗控制器中完成,从而提高并联系统供电可靠性。
附图说明
图1是统一虚拟阻抗控制器的原理图;
图2是逆变器并联系统的结构示意图;
图3是实施例的逆变器并联系统的整体控制框图;
图4是实施例的单相逆变器的电路原理图;
图5是采用传统下垂控制方法时两台独立逆变器输出的有功功率波形图;
图6是采用传统下垂控制方法时两台独立逆变器输出的无功功率波形图;
图7是实施本发明时两台独立逆变器输出的有功功率波形图;
图8是实施本发明时两台独立逆变器输出的无功功率波形图。
具体实施方式
以下结合附图及实施例对本发明进行进一步的详细说明。
本发明为了解决现有技术存在的不足,提供一种应用于逆变器并联系统的统一虚拟阻抗控制器、一种逆变器并联系统的统一虚拟阻抗控制方法,以及一种统一虚拟阻抗控制的逆变器并联系统。本发明通过统一虚拟阻抗控制器,对每台独立逆变器所需的虚拟阻抗在统一虚拟阻抗控制器中进行统一调节,使并联系统的虚拟阻抗控制逻辑清晰,适应各种实际工况,提高稳态功率分配精度和供电可靠性。
本发明所述的应用于逆变器并联系统的统一虚拟阻抗控制器,如图1所示,包括前后依次连接的第一减法运算模块、第一乘法运算模块与第一偏差控制模块、前后依次连接的第二减法运算模块、第二乘法运算模块与第二偏差控制模块、加法运算模块,第一偏差控制模块、第二偏差控制模块分别与加法运算模块连接;
第一减法运算模块用于输入独立逆变器i的有功功率Pi与有功功率参考Pi *,并进行相减,输出有功功率误差信号;第一乘法运算模块用于通过独立逆变器i的并机状态位信号Bi与有功功率误差信号相乘;第一偏差控制模块用于对第一乘法运算模块输出的值进行偏差控制,得到有功功率虚拟阻抗Zpi
第二减法运算模块用于输入独立逆变器i的无功功率Qi与无功功率参考
Figure BDA0002291212220000061
并进行相减,输出无功功率误差信号;第二乘法运算模块用于通过独立逆变器i的并机状态位信号Bi与无功功率误差信号相乘;第二偏差控制模块用于对第二乘法运算模块输出的值进行偏差控制,得到无功功率虚拟阻抗Zqi
加法运算模块用于输入有功功率虚拟阻抗Zpi与无功功率虚拟阻抗Zqi,并进行相加,输出反馈至独立逆变器i的虚拟阻抗Zvi
其中,i=1,2,…,n,n为并联系统中独立逆变器的数量;第一偏差控制模块、第二偏差控制模块为PI控制器或积分器。
在并联系统运行过程中,统一虚拟阻抗控制器的功能包括以下两个方面:
生成有功功率参考Pi *,有功功率参考Pi *具体如下:
Figure BDA0002291212220000062
其中,
Figure BDA0002291212220000063
PCi表示独立逆变器i的有功功率容量,Pbase表示所有独立逆变器i的公共有功功率基准;
生成无功功率参考
Figure BDA0002291212220000071
无功功率参考/>
Figure BDA0002291212220000072
具体如下:
Figure BDA0002291212220000073
其中,
Figure BDA0002291212220000074
QCi表示独立逆变器i的无功功率容量,Qbase表示所有独立逆变器i的公共无功功率基准。
进一步地,所述的统一虚拟阻抗控制器还包括限幅模块,与加法运算模块连接,用于对加法运算模块输出的值进行限幅,得到虚拟阻抗Zvi
为了削弱独立逆变器之间等效输出阻抗的差异,本实施例中,还添加预设的固定虚拟阻抗
Figure BDA0002291212220000075
即,加法运算模块还输入预设的固定虚拟阻抗/>
Figure BDA0002291212220000076
用于削弱独立逆变器之间等效输出阻抗的差异。
具体实施时,可通过单片机、ARM、DSP或可编程器件实现所述的统一虚拟阻抗控制器;必要时,也可以采用硬件电路进行搭建。
基于所述的统一虚拟阻抗控制器,本发明还提供一种逆变器并联系统的统一虚拟阻抗控制方法,独立逆变器i分别输出有功功率Pi、无功功率Qi、并机状态位信号Bi、有功功率权重Wpi、无功功率权重Wqi至统一虚拟阻抗控制器,经统一虚拟阻抗控制器生成对应独立逆变器i的虚拟阻抗Zvi,并反馈至独立逆变器i;
其中,i=1,2,…,n,n为并联系统中独立逆变器的数量,Bi=0表示独立逆变器i未接入并联系统,Bi=1表示独立逆变器i已接入并联系统;
Figure BDA0002291212220000077
其中,PCi表示独立逆变器i的有功功率容量,Pbase表示所有独立逆变器i的公共有功功率基准;
Figure BDA0002291212220000078
其中,QCi表示独立逆变器i的无功功率容量,Qbase表示所有独立逆变器i的公共无功功率基准。
由于并机状态位信号和功率权重值相对固定,仅需在值发生改变时发送即可。进而,本实施例中,初次发送并机状态位信号Bi、有功功率权重Wpi、无功功率权重Wqi后,仅当值发生改变时,再向统一虚拟阻抗控制器进行发送。
作为另一种实施方式,还可以以固定周期向统一虚拟阻抗控制器发送并机状态位信号Bi、有功功率权重Wpi、无功功率权重Wqi
本实施例中,虚拟阻抗Zvi为虚拟电阻,独立逆变器i接收虚拟阻抗Zvi后,将虚拟阻抗Zvi乘于输出电流ioi,生成模拟电阻压降。
基于所述的统一虚拟阻抗控制器与统一虚拟阻抗控制方法,本发明还提供一种统一虚拟阻抗控制的逆变器并联系统,如图2所示,包括若干负载、电气网络、若干独立逆变器、统一虚拟阻抗控制器,独立逆变器通过电气网络向负载供电,独立逆变器分别与统一虚拟阻抗控制器连接,基于逆变器并联系统的统一虚拟阻抗控制方法,通过一个统一虚拟阻抗控制器实现对所有独立逆变器的统一虚拟阻抗控制。
如图3所示,以包括两个独立逆变器的并联系统为例,本实施例中,每个独立逆变器中,通过采集各模块的输出电压和输出电流计算得到输出的平均有功功率Pi和无功功率Qi,经过下垂方程生成参考电压的幅值和频率,进而生成参考电压
Figure BDA0002291212220000081
如图4所示,独立逆变器采用全桥拓扑结构,L和C为输出滤波电感和电容,r为等效串联电阻,R为负载,v0为输出电容电压,iL为电感电流,io为输出电流,Vdc为输入直流电压。并联的逆变器采用典型的电容电压外环和电感电流内环双闭环控制,并引入输出电流前馈,生成PWM驱动信号驱动开关器件工作。
其中,
Figure BDA0002291212220000082
本实施例中,每个独立的逆变模块都含有锁相环独立检测交流母线电压情况,控制自身并机状态,生成并机状态位信号。各个独立逆变器将自身输出的功率信息、功率权重信息和并机状态位信号发送至统一虚拟阻抗控制器。统一虚拟阻抗控制器计算得到各个独立逆变器的功率参考,生成自适应虚拟阻抗Zvi并反馈给对应的独立逆变器,从而提高并联系统稳态功率分配精度。
本实施例中,反馈的虚拟阻抗Zvi为虚拟电阻,对应的独立逆变器接收统一虚拟阻抗控制器反馈的虚拟阻抗Zvi,乘于输出电流ioi以模拟电阻压降,对应的独立逆变器的参考电压
Figure BDA0002291212220000091
减去该模拟的电阻压降,得到新的参考电压vrefi,送入电压控制器,生成当前的独立逆变器开关器件的门级触发信号。
本实施例中,采取阻性阻抗条件下的下垂控制方程如下:
Vi=V*-kpviPi
ωi=ω*+kqωiQi
其中,Vi和ωi分别为下垂方程给出的电压幅值和角频率设置点,V*和ω*分别为独立逆变器额定输出电压幅值和和频率,kpvi和kqωi分别为电压幅值和角频率下垂系数。
仿真参数如表1所示,其中,虚拟电阻限幅值取为1.5Ω。
表1:仿真参数
Figure BDA0002291212220000092
采用PLECS软件进行仿真,搭建两台独立逆变器并联系统,其中,独立逆变器1和独立逆变器2的有功功率容量PC1、PC2为1kW,无功功率容量QC1、QC2为1kVar,可计算功率权重为Wp1=Wp2=1,Wq1=Wq2=1。独立逆变器1先运行,并机状态位信号B1=1。独立逆变器2开始时未接入并联系统,并机状态位信号B2=0,在0.3s接入并联系统。
如图5、图6所示,由采用传统下垂控制方法的仿真结果可以看出,独立逆变器2切入并联系统时,引起较大的无功功率过冲和振荡,稳态时两机有功功率存在明显偏差。
如图7、图8所示,采用本发明时,各独立逆变器与统一虚拟阻抗控制器的通信更新周期为10ms,由采用本发明的仿真结果可以看出,并联系统配备统一虚拟阻抗控制器时,独立逆变器2加入并联系统时的功率过冲和振荡得到一定程度的抑制,而且稳态时两台逆变器输出有功功率和无功功率实现了精确分配。
上述实施例仅是用来说明本发明,而并非用作对本发明的限定。只要是依据本发明的技术实质,对上述实施例进行变化、变型等都将落在本发明的权利要求的范围内。

Claims (8)

1.一种应用于逆变器并联系统的统一虚拟阻抗控制器,其特征在于,包括前后依次连接的第一减法运算模块、第一乘法运算模块与第一偏差控制模块、前后依次连接的第二减法运算模块、第二乘法运算模块与第二偏差控制模块、加法运算模块,第一偏差控制模块、第二偏差控制模块分别与加法运算模块连接;
第一减法运算模块用于输入独立逆变器i的有功功率Pi与有功功率参考Pi *,并进行相减,输出有功功率误差信号;第一乘法运算模块用于通过独立逆变器i的并机状态位信号Bi与有功功率误差信号相乘;第一偏差控制模块用于对第一乘法运算模块输出的值进行偏差控制,得到有功功率虚拟阻抗Zpi
第二减法运算模块用于输入独立逆变器i的无功功率Qi与无功功率参考
Figure FDA0004067773720000011
并进行相减,输出无功功率误差信号;第二乘法运算模块用于通过独立逆变器i的并机状态位信号Bi与无功功率误差信号相乘;第二偏差控制模块用于对第二乘法运算模块输出的值进行偏差控制,得到无功功率虚拟阻抗Zqi
加法运算模块用于输入有功功率虚拟阻抗Zpi与无功功率虚拟阻抗Zqi,并进行相加,输出反馈至独立逆变器i的虚拟阻抗Zvi
其中,i=1,2,…,n,n为并联系统中独立逆变器的数量;
有功功率参考Pi *具体如下:
Figure FDA0004067773720000012
其中,
Figure FDA0004067773720000013
PCi表示独立逆变器i的有功功率容量,Pbase表示所有独立逆变器i的公共有功功率基准;
无功功率参考
Figure FDA0004067773720000014
具体如下:
Figure FDA0004067773720000015
其中,
Figure FDA0004067773720000021
QCi表示独立逆变器i的无功功率容量,Qbase表示所有独立逆变器i的公共无功功率基准;
加法运算模块还输入预设的固定虚拟阻抗
Figure FDA0004067773720000022
用于削弱独立逆变器之间等效输出阻抗的差异。
2.根据权利要求1所述的应用于逆变器并联系统的统一虚拟阻抗控制器,其特征在于,第一偏差控制模块、第二偏差控制模块为PI控制器或积分器。
3.根据权利要求1所述的应用于逆变器并联系统的统一虚拟阻抗控制器,其特征在于,还包括限幅模块,与加法运算模块连接,用于对加法运算模块输出的值进行限幅,得到虚拟阻抗Zvi
4.一种逆变器并联系统的统一虚拟阻抗控制方法,其特征在于,独立逆变器i分别输出有功功率Pi、无功功率Qi、并机状态位信号Bi、有功功率权重Wpi、无功功率权重Wqi至权利要求1至3任一项所述的统一虚拟阻抗控制器,经统一虚拟阻抗控制器生成对应独立逆变器i的虚拟阻抗Zvi,并反馈至独立逆变器i;
其中,i=1,2,…,n,n为并联系统中独立逆变器的数量,Bi=0表示独立逆变器i未接入并联系统,Bi=1表示独立逆变器i已接入并联系统;
Figure FDA0004067773720000023
其中,PCi表示独立逆变器i的有功功率容量,Pbase表示所有独立逆变器i的公共有功功率基准;
Figure FDA0004067773720000024
其中,QCi表示独立逆变器i的无功功率容量,Qbase表示所有独立逆变器i的公共无功功率基准。
5.根据权利要求4所述的逆变器并联系统的统一虚拟阻抗控制方法,其特征在于,初次发送并机状态位信号Bi、有功功率权重Wpi、无功功率权重Wqi后,仅当值发生改变时,再向统一虚拟阻抗控制器进行发送。
6.根据权利要求4所述的逆变器并联系统的统一虚拟阻抗控制方法,其特征在于,以固定周期向统一虚拟阻抗控制器发送并机状态位信号Bi、有功功率权重Wpi、无功功率权重Wqi
7.根据权利要求5所述的逆变器并联系统的统一虚拟阻抗控制方法,其特征在于,虚拟阻抗Zvi为虚拟电阻,独立逆变器i接收虚拟阻抗Zvi后,将虚拟阻抗Zvi乘于输出电流ioi,生成模拟电阻压降。
8.一种统一虚拟阻抗控制的逆变器并联系统,其特征在于,包括若干负载、电气网络、若干独立逆变器、权利要求1至3任一项所述的统一虚拟阻抗控制器,独立逆变器通过电气网络向负载供电,独立逆变器分别与统一虚拟阻抗控制器连接,基于权利要求4至7任一项所述的方法,通过一个统一虚拟阻抗控制器实现对所有独立逆变器的统一虚拟阻抗控制。
CN201911180809.6A 2019-11-27 2019-11-27 统一虚拟阻抗控制器、统一虚拟阻抗控制方法与并联系统 Active CN110838730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911180809.6A CN110838730B (zh) 2019-11-27 2019-11-27 统一虚拟阻抗控制器、统一虚拟阻抗控制方法与并联系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911180809.6A CN110838730B (zh) 2019-11-27 2019-11-27 统一虚拟阻抗控制器、统一虚拟阻抗控制方法与并联系统

Publications (2)

Publication Number Publication Date
CN110838730A CN110838730A (zh) 2020-02-25
CN110838730B true CN110838730B (zh) 2023-03-31

Family

ID=69577457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911180809.6A Active CN110838730B (zh) 2019-11-27 2019-11-27 统一虚拟阻抗控制器、统一虚拟阻抗控制方法与并联系统

Country Status (1)

Country Link
CN (1) CN110838730B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786781A (zh) * 2017-03-03 2017-05-31 燕山大学 一种基于虚拟变压器的逆变器并联控制方法
CN107332284A (zh) * 2017-07-14 2017-11-07 广西大学 一种基于无功电流一致控制的微电网逆变器下垂控制方法
CN108683216A (zh) * 2018-04-24 2018-10-19 西安理工大学 非线性负载下并联逆变器谐波功率均分控制方法
CN109167371A (zh) * 2018-10-29 2019-01-08 四川大学 实现并联逆变器无功均分的虚拟感抗调节器及控制方法
EP3499672A1 (en) * 2017-12-15 2019-06-19 Delta Electronics (Shanghai) Co., Ltd. Method and device for controlling distribution of unbalanced and harmonic power among parallel inverters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786781A (zh) * 2017-03-03 2017-05-31 燕山大学 一种基于虚拟变压器的逆变器并联控制方法
CN107332284A (zh) * 2017-07-14 2017-11-07 广西大学 一种基于无功电流一致控制的微电网逆变器下垂控制方法
EP3499672A1 (en) * 2017-12-15 2019-06-19 Delta Electronics (Shanghai) Co., Ltd. Method and device for controlling distribution of unbalanced and harmonic power among parallel inverters
CN108683216A (zh) * 2018-04-24 2018-10-19 西安理工大学 非线性负载下并联逆变器谐波功率均分控制方法
CN109167371A (zh) * 2018-10-29 2019-01-08 四川大学 实现并联逆变器无功均分的虚拟感抗调节器及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘尧 ; 林超 ; 陈滔 ; 李建标 ; 陈子儒 ; .基于自适应虚拟阻抗的交流微电网无功功率―电压控制策略.电力系统自动化.2017,(第05期),全文. *

Also Published As

Publication number Publication date
CN110838730A (zh) 2020-02-25

Similar Documents

Publication Publication Date Title
CN100526892C (zh) 能量回馈型交直流通用电子负载模拟装置
US7859871B2 (en) Method for controlling inverters
Cherati et al. Design of a current mode PI controller for a single-phase PWM inverter
CN113054849B (zh) 一种基于Boost加LLC谐振变换器的并联均流控制方法和装置
CN107005049B (zh) 功率控制器和功率控制方法
Issa et al. Impedance interaction between islanded parallel voltage source inverters and the distribution network
Göthner et al. Virtual impedance design for power quality and harmonic sharing improvement in microgrids
CN108092306A (zh) 一种考虑不匹配线阻的低压微电网储能系统下垂控制方法
CN114421451A (zh) 基于soc均衡算法的vdcm并联协调控制方法
CN114741819A (zh) 基于离散状态空间的中压直流系统小信号稳定性分析方法
CN110838730B (zh) 统一虚拟阻抗控制器、统一虚拟阻抗控制方法与并联系统
Lin et al. Impedance-model-based stability analysis of DC microgrid
Obeidat et al. Applying two controller schemes to improve input tracking and noise reduction in DC-DC converters
Altahir et al. New control scheme for virtual synchronous generators of different capacities
Qin et al. Tertiary control based on non-parametric model prediction for dc microgrid cluster
CN110783948B (zh) 一种基于空载电压增益补偿的并联逆变器下垂控制方法
CN110247429B (zh) 一种考虑耦合的电压前馈控制光伏发电的分析方法
CN111756262A (zh) 一种基于功率交互的并联逆变器下垂控制方法
Zheng et al. Multi-VSG inverter oower sharing MPC-VSG Control for islanded microgrid
Zeng et al. Stability Analysis of Energy Routing System Considering Droop Control
Guerreiro et al. An approach to the design of stable distributed energy resources
CN107196288B (zh) 一种用于直流配电网的储能系统下垂控制方法
CN111130375B (zh) 精确调节虚拟阻抗的方法与单机逆变器、逆变器并联系统
Arrua DC Bus Stabilization and Dynamic Performance Improvement of a Multi-Converter System
Jain et al. Operation of Hybrid AC-DC Microgrid with Multiple ILCs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant