CN110833864A - 用于高效光催化分解水产氧的新型组合物及其应用 - Google Patents

用于高效光催化分解水产氧的新型组合物及其应用 Download PDF

Info

Publication number
CN110833864A
CN110833864A CN201910967327.9A CN201910967327A CN110833864A CN 110833864 A CN110833864 A CN 110833864A CN 201910967327 A CN201910967327 A CN 201910967327A CN 110833864 A CN110833864 A CN 110833864A
Authority
CN
China
Prior art keywords
groups
photocatalytic
oxygen
conjugated
novel composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910967327.9A
Other languages
English (en)
Inventor
黄飞
邢晔彤
胡志诚
曹镛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910967327.9A priority Critical patent/CN110833864A/zh
Publication of CN110833864A publication Critical patent/CN110833864A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3328Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkyne-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/354Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及用于高效光催化分解水产氧的新型组合物及其应用。本发明所述的光催化分解水的组合物包括苝酰亚胺类共轭小分子/聚合物光催化材料及金属纳米助催化剂。所述的共轭小分子/聚合物光催化材料具有良好的水溶性及和合适的能级,并且与金属纳米助催化剂能够较好结合在一起,发挥较好的催化性能。本发明所述材料及其组合物能够高效催化水分解产氧。与现有技术相比,本发明提供的材料及组合物能够极大地提高产氧效率。

Description

用于高效光催化分解水产氧的新型组合物及其应用
技术领域
本发明涉及光催化领域,具体涉及基于一类苝酰亚胺类共轭小分子/聚合物光催化材料以及金属及金属氧化物、硫化物、磷化物的组合物及其制备方法在有机光催化产氧中的应用。
背景技术
目前,世界能源需求在很大程度上依赖石油、煤炭和天然气等正在迅速枯竭的化石燃料,这不仅使得能源短缺问题越来越严重,同时也带来了环境污染、温室效应等一系列恶劣影响。在这种情况下,开发新型的清洁可持续能源成为了必要。利用太阳光照将水分解为氧气和氢气的光催化过程,可以持续生产和储存化学燃料并进行绿色能源循环,受到了广泛的关注。在水分解过程中,产氧反应是热力学吸能反应,需要巨大的活化能,反应动力学缓慢,需要同时转移4个电子和4个质子,因而被认为是一种更具挑战性的反应。因此,活性产氧光催化剂的研究在光解水研究中占有重要地位。
光催化材料应在较宽的光谱范围内具有较宽的吸收光谱,以吸收更多的阳光、提供足够深的HOMO能级以提供足够的产氧驱动力,并具有良好的光稳定性以维持长期的应用。此外,该系统中的每一组分应很好地结合在一起,以促进电荷转移和光催化产氧。然而,要达到上述所有条件具有很大的挑战性,设计良好的光催化材料并调节其与其他组分之间的相互作用是一个关键问题。
本专利着眼于解决目前产氧催化剂面临的难题,加入金属及其氧化物、硫化物、磷化物的纳米颗粒能有效促进空穴向水的传输,从而减少载流子复合,提高光催化制氢效率,提出采用苝酰亚胺类共轭小分子/聚合物,增强光催化材料与助催化剂的相互作用与电荷传输与分离,提高光催化产氧效率。
发明内容
本发明的目的在于设计并合成苝酰亚胺类共轭小分子/聚合物及金属及金属氧化物、硫化物、磷化物的组合物用于高效光催化产氧。
本发明技术方案如下。
用于高效光催化分解水产氧的新型组合物,包括苝酰亚胺类光催化材料以及金属纳米助催化剂;所述苝酰亚胺类光催化材料包括苝酰亚胺类共轭小分子光催化材料、苝酰亚胺类共轭聚合物光催化材料中的一种以上;所述苝酰亚胺类共轭小分子光催化材料和苝酰亚胺类共轭聚合物光催化材料,具有以下结构:
Figure BDA0002230915980000021
其中,n为小于100万的正整数;m>1;R1、R2为中性胺基团或四级季铵盐基团,所述四级季铵盐中阴离子为氟、氯、溴、碘或三氟甲磺酸根、四氟硼酸根离子;R3、R4、R5、R6为烷基链,其中至少一条烷基链末端为中性胺基团或四级季铵盐基团,四级季铵盐中阴离子为卤素离子或碘酸根、硝酸根、三氟甲磺酸根、四氟硼酸根、四咪唑硼酸根离子;所述卤素离子包括氟离子、氯离子、溴离子或碘离子;A为共轭单元结构;X1~X8为氢、氟、氯、溴、碘原子。
进一步地,所述R3、R4、R5、R6为具有1~40个碳原子的直链、支链或者环状烷基链,其中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基,甲基,乙基,甲氧基、硝基取代,氢原子被氟原子或上述官能团取代;R3、R4、R5、R6相同或不同。
进一步地,所述的A为共轭单元结构,具有如下结构的一种或一种以上:
Figure BDA0002230915980000031
进一步地,所述金属纳米助催化剂为尺寸为10nm~500nm的钴、镍金属及其氧化物、硫化物、磷化物纳米颗粒中的一种以上。
进一步地,所述金属纳米助催化剂与苝酰亚胺类光催化材料的质量比为(0.01~0.05):1。
一种用于新型组合物作为高效光催化分解水产氧催化剂的应用。
与现有技术相比,本发明具有以下优点:
(1)本发明设计了苝酰亚胺类共轭小分子/聚合物光催化材料,通过调节其侧链,能够极大地提高聚合物与金属及其氧化物、硫化物之间的相互作用,促进电荷分离和电子传输,能够极大地提高光催化产氧效率;
(2)本发明设计了苝酰亚胺类共轭小分子/聚合物,具有较深的最高占据分子轨道,可以产生较大的光催化产氧驱动力,提高产氧效率;
(3)本发明设计了苝酰亚胺类共轭小分子/聚合物,其侧链的阳离子基团可以增强光催化剂在水中的分散性有利与提高电荷分离效率和产氧效率。
附图说明
图1代表性所述的苝酰亚胺类共轭小分子/聚合物紫外-可见光-近红外吸收谱图;
图2代表所述的苝酰亚胺类共轭小分子/聚合物和金属纳米颗粒组合物光催化产氧效率图。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,其目的在于帮助更好的理解本发明的内容,具体包括合成、表征与器件制备,但这些具体实施方案不以任何方式限制本发明的保护范围。
实施例1
代表性合成路线如下:
Figure BDA0002230915980000041
(1)共轭小分子SM-1,SM-2按照文献[Advanced Materials,2014,26(21):3473-3477.]公开的方法合成。
(2)共轭小分子SM-3的合成
将小分子SM-2(0.4mmol)和于250mL水中并加入到500mL两口烧瓶中,通入氮气保护,加入溴化钾(14mmol),在70℃条件下反应48h。将溶液浓缩,装入透析袋(MWCO 500D)中,在水溶液中透析2天,用乙酸乙酯将小分子沉淀出来。将上述操作重复一次。将沉淀烘干,得到红色小分子SM-3,产率96%。
实施例2
代表性合成路线如下:
Figure BDA0002230915980000051
(1)单体M1按照文献[European Journal of Organic Chemistry,2015,3296–3302.]公开的方法合成。
(2)单体M2按照文献[高分子通报,2019,(02):52-62.]公开的方法合成。
(3)聚合物P1的合成:
将单体M1(0.2mmol)和单体M2(0.2mmol)加入到25mL两口圆底烧瓶中,然后加入5mL氯苯和1.5ml二异丙胺。将混合溶液脱气三次以除去氧气,加入7mgPd(PPh3)2Cl2、4mgCuI,再次将反应液脱气,然后加热至60℃,反应2h后用甲醇将聚合物沉淀出来,分别用甲醇、正己烷、氯仿抽提,然后将氯仿相浓缩并再次沉淀在甲醇中。收集固体并干燥,得到183mg深绿色聚合物P1,产率80%。
实施例3
代表性合成路线如下:
Figure BDA0002230915980000061
(1)单体M3按照文献[Solar RRL 2017,1,1700055.]公开的方法合成。
(2)单体M4按照文献[Journal of Polymer Science Part A:PolymerChemistry,2014,52(8):1200-1215.]公开的方法合成。
(3)聚合物P2的合成:
将单体M3(0.25mmol)和单体M4(0.25mmol)加入到25mL两口圆底烧瓶中,然后加入5mL甲苯和2ml三甲胺。将混合溶液脱气三次以除去氧气,加入2mgPd(PPh3)2Cl2、1mgCuI,再次将反应液脱气,然后加热至70℃,反应10h后用甲醇将聚合物沉淀出来,分别用甲醇、正己烷、氯仿抽提,然后将氯仿相浓缩并再次沉淀在甲醇中。收集固体并干燥,得到207mg深绿色聚合物P2,产率92%。
(4)聚合物P3的合成:
将聚合物P2(100mg)加入到100mL两口圆底烧瓶中,然后加入25mL甲苯,再加入1mL溴乙烷,加热到50℃,搅拌48h。在此过程中,每8h加入5mL甲醇,将溶液浓缩,用正己烷和乙酸乙酯沉淀。将沉淀溶解在甲醇中,再次用正己烷和乙酸乙酯沉淀。收集固体并干燥,得到109mg红色聚合物P3,产率91%。
实施例4
以实施例1所合成的共轭小分子SM-2作为光催化剂与四氧化三钴纳米颗粒组合,在光催化产氧中应用
将10mg共轭小分子SM-2加入到50毫升0.01M的硝酸银去离子水溶液中,搅拌溶解,加入0.3mg四氧化三钴纳米颗粒和100mg三氧化二镧纳米颗粒,超声10分钟分散均匀,随后进行光催化产氧。
实施例5
以实施例1所合成的共轭聚合物P1作为光催化剂与四氧化三钴纳米颗粒组合,在光催化产氧中应用
将10mg共轭聚合物P1加入到50毫升0.01M的硝酸银去离子水溶液中,超声10分钟分散均匀。加入0.5mg四氧化三钴纳米颗粒和100mg三氧化二镧纳米颗粒,超声10分钟分散均匀,随后进行光催化产氧。
对上述实施例1、2、3、4、5所述的苝酰亚胺类共轭小分子/聚合物和金属纳米颗粒组合物表征如下:图1为实施例1-3中苝酰亚胺类共轭小分子/聚合物SM-1、SM-2、SM-3、P-1、P-2、P-3的紫外-可见吸收(UV-vis)光谱图,由图1可知,所述的苝酰亚胺类共轭小分子/聚合物在可见光范围内均具有良好的吸收。
图2为实施例1-5所述的苝酰亚胺类共轭小分子/聚合物和金属纳米颗粒组合物的光催化水分解产氧效率。由图2可知,所述的组合物具有较高的产氧效率,其中SM-3具有最高的产氧效率。

Claims (6)

1.用于高效光催化分解水产氧的新型组合物,其特征在于,包括苝酰亚胺类光催化材料以及金属纳米助催化剂;所述苝酰亚胺类光催化材料包括苝酰亚胺类共轭小分子光催化材料、苝酰亚胺类共轭聚合物光催化材料中的一种以上;所述苝酰亚胺类共轭小分子光催化材料和苝酰亚胺类共轭聚合物光催化材料,具有以下结构:
Figure FDA0002230915970000011
其中,n为小于100万的正整数;m>1;R1、R2为中性胺基团或四级季铵盐基团,所述四级季铵盐中阴离子为氟、氯、溴、碘或三氟甲磺酸根、四氟硼酸根离子;R3、R4、R5、R6为烷基链,其中至少一条烷基链末端为中性胺基团或四级季铵盐基团,四级季铵盐中阴离子为卤素离子或碘酸根、硝酸根、三氟甲磺酸根、四氟硼酸根、四咪唑硼酸根离子;所述卤素离子包括氟离子、氯离子、溴离子或碘离子;A为共轭单元结构;X1~X8为氢、氟、氯、溴或碘原子。
2.根据权利要求1所述用于高效光催化分解水产氧的新型组合物,其特征在于,所述R3、R4、R5、R6为具有1~40个碳原子的直链、支链或者环状烷基链,其中一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基,甲基,乙基,甲氧基、硝基取代,氢原子被氟原子或上述官能团取代;R3、R4、R5、R6相同或不同。
3.根据权利要求1所述用于高效光催化分解水产氧的新型组合物,其特征在于,所述的A为共轭单元结构,具有如下结构的一种以上:
Figure FDA0002230915970000021
4.根据权利要求1所述用于高效光催化分解水产氧的新型组合物,其特征在于,所述金属纳米助催化剂为尺寸为10nm~500nm的钴、镍金属及其氧化物、硫化物、磷化物纳米颗粒中的一种以上。
5.权利要求1所述用于高效光催化分解水产氧的新型组合物,其特征在于,所述金属纳米助催化剂与苝酰亚胺类光催化材料的质量比为(0.01~0.05):1。
6.权利要求1所述用于新型组合物作为高效光催化分解水产氧催化剂的应用。
CN201910967327.9A 2019-10-12 2019-10-12 用于高效光催化分解水产氧的新型组合物及其应用 Pending CN110833864A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910967327.9A CN110833864A (zh) 2019-10-12 2019-10-12 用于高效光催化分解水产氧的新型组合物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910967327.9A CN110833864A (zh) 2019-10-12 2019-10-12 用于高效光催化分解水产氧的新型组合物及其应用

Publications (1)

Publication Number Publication Date
CN110833864A true CN110833864A (zh) 2020-02-25

Family

ID=69575228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910967327.9A Pending CN110833864A (zh) 2019-10-12 2019-10-12 用于高效光催化分解水产氧的新型组合物及其应用

Country Status (1)

Country Link
CN (1) CN110833864A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354558A (zh) * 2020-10-22 2021-02-12 盐城工学院 一种PDINH@TiO2光催化剂及其制备方法和应用
CN114875509A (zh) * 2022-04-02 2022-08-09 华南理工大学 基于有机给受体异质结的纳米纤维组合物及其静电纺丝制法与光催化应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092816A1 (en) * 2013-12-16 2015-06-25 Council Of Scientific And Industrial Research Functionalized zinc oxide nanoparticles for photocatalytic water splitting
CN105879915A (zh) * 2016-05-31 2016-08-24 山东科技大学 一种苝二酰亚胺功能化的四氧化三钴纳米粒子的制备方法
CN108929430A (zh) * 2018-06-30 2018-12-04 华南理工大学 基于苝二酰亚胺与苯炔共聚的n型共轭聚合物及其在有机光电器件中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092816A1 (en) * 2013-12-16 2015-06-25 Council Of Scientific And Industrial Research Functionalized zinc oxide nanoparticles for photocatalytic water splitting
CN105879915A (zh) * 2016-05-31 2016-08-24 山东科技大学 一种苝二酰亚胺功能化的四氧化三钴纳米粒子的制备方法
CN108929430A (zh) * 2018-06-30 2018-12-04 华南理工大学 基于苝二酰亚胺与苯炔共聚的n型共轭聚合物及其在有机光电器件中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BORIS RUSS等: "Power Factor Enhancement in Solution-Processed Organic n-Type Thermoelectrics Through Molecular Design", 《ADVANCED MATERIALS》 *
FEDERICO RONCONI等: "Modification of Nanocrystalline WO3 with a Dicationic Perylene Bisimide: Applications to Molecular Level Solar Water Splitting", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
JIA-XIN LI等: "Visible light-induced photochemical oxygen evolution from water by 3,4,9,10- perylenetetracarboxylic dianhydride nanorods as an n-type organic semiconductor", 《CATALYSIS SCIENCE & TECHNOLOGY》 *
JOEL T. KIRNER等: "Sensitization of Nanocrystalline Metal Oxides with a Phosphonate-Functionalized Perylene Diimide for Photoelectrochemical Water Oxidation with a CoOx Catalyst", 《ACS APPL. MATER. INTERFACES 》 *
胡志诚: "掺杂型电子传输材料在光伏器件中的应用", 《中国博士学位论文全文数据库 工程科技II辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354558A (zh) * 2020-10-22 2021-02-12 盐城工学院 一种PDINH@TiO2光催化剂及其制备方法和应用
CN114875509A (zh) * 2022-04-02 2022-08-09 华南理工大学 基于有机给受体异质结的纳米纤维组合物及其静电纺丝制法与光催化应用
CN114875509B (zh) * 2022-04-02 2023-08-18 华南理工大学 基于有机给受体异质结的纳米纤维组合物及其静电纺丝制法与光催化应用

Similar Documents

Publication Publication Date Title
Hayat et al. Visible-light enhanced photocatalytic performance of polypyrrole/g-C3N4 composites for water splitting to evolve H2 and pollutants degradation
Xing et al. Construction of the 1D covalent organic framework/2D g-C3N4 heterojunction with high apparent quantum efficiency at 500 nm
Lv et al. Construction of organic–inorganic cadmium sulfide/diethylenetriamine hybrids for efficient photocatalytic hydrogen production
CN110813376B (zh) 一种聚吡咯修饰的纳米溴氧化铋光催化材料及其制备方法和应用
Abu-Sari et al. A review on synthesis, modification method, and challenges of light-driven H2 evolution using g-C3N4-based photocatalyst
Gao et al. Activating and optimizing activity of CdS@ g-C3N4 heterojunction for photocatalytic hydrogen evolution through the synergistic effect of phosphorus doping and defects
Kim et al. Construction of 1D TiO2 nanotubes integrated ultrathin 2D ZnIn2S4 nanosheets heterostructure for highly efficient and selective photocatalytic CO2 reduction
CN110833864A (zh) 用于高效光催化分解水产氧的新型组合物及其应用
Uddin et al. In2O3/oxygen doped g-C3N4 towards photocatalytic BPA degradation: Balance of oxygen between metal oxides and doped g-C3N4
Song et al. Fabricating intramolecular donor-acceptor system via covalent bonding of carbazole to carbon nitride for excellent photocatalytic performance towards CO2 conversion
Li et al. Activation of graphitic carbon nitride by solvent-mediated supramolecular assembly for enhanced hydrogen evolution
Zhang et al. Construction of triazine-heptazine-based carbon nitride heterojunctions boosts the selective photocatalytic C− C bond cleavage of lignin models
Cheng et al. Bridging regulation in graphitic carbon nitride for band-structure modulation and directional charge transfer towards efficient H2 evolution under visible-light irradiation
Li et al. Alkali and donor–acceptor bridged three-dimensional interpenetrating polymer networks boost photocatalytic performance by efficient electron delocalization and charge transfer
Hassan et al. Designing of covalent organic framework/2D g-C3N4 heterostructure using a simple method for enhanced photocatalytic hydrogen production
Xiao et al. Optimization strategies of covalent organic frameworks and their derivatives for electrocatalytic applications
He et al. Design and application of g-C3N4-based materials for fuels photosynthesis from CO2 or H2O based on reaction pathway insights
Luo et al. Construction of Z-scheme ɑ-Fe2O3/graphene/Bi2O2S heterojunction for visible-light-driven photocatalytic CO2 conversion
CN113477278B (zh) 吡啶季铵盐与无机半导体杂化体系光催化还原co2应用
Li et al. Amide-functionalized covalent triazine framework for enhanced photocatalytic hydrogen evolution
Gupta et al. Highly efficient S‐g‐CN/Mo‐368 catalyst for synergistically NADH regeneration under solar light
Wang et al. Bismuth complexes with N/S coordination based metallopolymer as highly efficient photocatalyst for selective oxidation of styrene
Wu et al. Nitrogen vacancies and metal-free group intercalation on carbon nitride for super photocatalytic performance
Ding et al. An innovative strategy for construction of pH-responsive supramolecular hydrogel from graphene quantum dots clusters toward integration of detection and removal of uranium
Xing et al. A hierarchical rolling brush-like carbon nitride with bridge units for efficient mediated surface charge transfer to boost photocatalytic performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200225