CN110832928A - 传输适配和无授权接入 - Google Patents

传输适配和无授权接入 Download PDF

Info

Publication number
CN110832928A
CN110832928A CN201880042277.7A CN201880042277A CN110832928A CN 110832928 A CN110832928 A CN 110832928A CN 201880042277 A CN201880042277 A CN 201880042277A CN 110832928 A CN110832928 A CN 110832928A
Authority
CN
China
Prior art keywords
wtru
transmission
time
resources
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880042277.7A
Other languages
English (en)
Other versions
CN110832928B (zh
Inventor
珍妮特·A·斯特恩-波科维茨
李文一
J·帕特里克·土赫
阿尔帕斯兰·德米尔
桑杰·戈亚尔
米哈埃拉·C·贝卢里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
IDAC Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDAC Holdings Inc filed Critical IDAC Holdings Inc
Priority to CN202311160712.5A priority Critical patent/CN117354947A/zh
Priority to CN202311164007.2A priority patent/CN117354948A/zh
Publication of CN110832928A publication Critical patent/CN110832928A/zh
Application granted granted Critical
Publication of CN110832928B publication Critical patent/CN110832928B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

无线发射接收单元(WTRU)可以接收可以用于传输的候选资源集合。WTRU可以在信道上周期性地执行CCA(例如,在信道上进行传送之前)。当确定所述信道是空闲的时,WTRU可以从候选资源中确定用于传输的资源。可以基于所述时间段中剩余的时间来确定所述资源。例如,当该时间段中剩余的时间较短时,所述WTRU可以确定在包括更多频率资源的资源上进行传送。所述WTRU可以基于频率资源的数量来确定多输入多输出(MIMO)方案。所述WTRU可以在所述资源上发送传输,该传输可以包括解调参考信号(DM‑RS)。该DM‑RS可以指示从传输到该传输的接收机所使用的所述资源。

Description

传输适配和无授权接入
相关申请的交叉引用
本申请要求2017年5月3日提交的美国临时专利申请No.62/500,533的优先权,该专利申请通过引用而被整体结合到本文中。
背景技术
移动通信持续发展。第五代可称为5G。移动通信的先前(传统)代可以是例如第四代(4G)长期演进(LTE)。移动无线通信实施各种无线电接入技术(RAT),例如新无线电(NR)。NR的用例可以包括例如极端移动宽带(eMBB)、超高可靠性和低延时通信(URLLC)以及大规模机器类型通信(mMTC)。
发明内容
公开了用于例如在未许可频带中的传输适配和无授权接入的系统、方法和手段。可以为传输适配(例如,时间段和/或时间单元)提供灵活的传输边界。可以提供无授权接入资源池。可以在基于波束的系统中提供未许可操作,例如,通过使用资源池和/或空闲信道评估(CCA)来提供。
无线发射接收单元(WTRU)可以接收关于可被用于传输的候选资源的指示和/或集合。WTRU可以周期性地在信道上执行CCA(例如,在信道上进行传输之前),以确定该信道是否空闲以用于传输。当确定所述信道是空闲的时,WTRU可以从所述候选资源中确定用于传输的资源(例如,其中该资源可以指一个或多个时间和/或频率资源)。可以基于在所述时间段中剩余的时间来确定所述资源。例如,当该时间段中剩余的时间较短时,WTRU可以确定在包括更多频率资源的资源上进行传送。WTRU可以基于用于传输的频率资源的数量来确定多输入多输出(MIMO)方案。WTRU可以使用所确定的资源发送传输,该传输可以包括解调参考信号(DM-RS)。该DM-RS可以向传输的接收机指示用于所述传输的资源。
附图说明
图1A是在其中可实施一个或多个公开的实施方式的示例通信系统的系统图。
图1B是可在图1A所示的通信系统内使用的示例无线发射/接收单元(WTRU)的系统图。
图1C是可在图1A所示的通信系统内使用的示例无线电接入网络(RAN)和示例核心网络(CN)的系统图。
图1D是可在图1A所示的通信系统内使用的另一示例RAN和另一示例CN的系统图。
图2是与资源池层级相关联的示例。
图3是与资源池层级选择和使用相关联的示例。
图4是与资源池层级选择和使用相关联的示例。
图5是与资源池层级选择和使用相关联的示例。
图6是与资源池层级选择和使用相关联的示例。
具体实施方式
现在将参考不同的附图来对说明性的实施方式进行详细描述。虽然本说明书提供了关于可能的实施方式的详细示例,但是应该注意的是,这些细节的目的是作为示例,其并未对本申请的范围构成限制。
图1A是示出了可在其中实施一个或多个所公开的实施方式的示例通信系统100的图示。该通信系统100可以是将诸如语音、数据、视频、消息发送、广播等的内容提供给多个无线用户的多接入系统。该通信系统100可以通过系统资源(包括无线带宽)的共享使得多个无线用户能够访问这些内容。例如,该通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾独特字DFT-扩展OFDM(ZT UW DTS-s OFDM)、独特字OFDM(UW-OFDM)、资源块滤波OFDM、滤波器组多载波(FBMC)等等。
如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c、102d、RAN 104/113、CN106/115、公共交换电话网络(PSTN)108、因特网110和其他网络112,但应理解的是所公开的实施方式涵盖任意数量的WTRU、基站、网络和/或网络元件。WTRU102a、102b、102c、102d中的每一个可以是被配置成在无线环境中运行和/或通信的任何类型的设备。作为示例,WTRU 102a、102b、102c、102d中的任一者可以被称为“站”和/或“STA”,其可以被配置成传送和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订户单元、基于订户的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、便携式电脑、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴式显示器(HMD)、车辆、无人机、医疗设备和应用(例如远程手术)、工业设备和应用(例如,在工业和/或自动处理链环境中操作的机器人和/或其他无线设备)、消费电子设备,在商业和/或工业无线网络上运行的设备等等。WTRU 102a、102b、102c、和102d中的任一者可以可互换地称为UE。
通信系统100还可以包括基站114a和/或基站114b。基站114a、114b中的每一个可以是被配置成与WTRU 102a、102b、102c、102d中的至少一者无线对接,以便于接入一个或多个通信网络(例如,CN 106/115、因特网110和/或网络112)。作为示例,基站114a、114b可以是基站收发信站(BTS)、节点B、e节点B、家用节点B、家用e节点B、gNB、NR节点B、站点控制器、接入点(AP)、无线路由器等。尽管基站114a、114b每个均被描述为单个元件,但应当理解的是基站114a、114b可以包括任何数量的互联基站和/或网络元件。
基站114a可以是RAN 104/113的一部分,其还可以包括诸如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等的其他基站和/或网络元件(未示出)。基站114a和/或基站114b可以被配置成在一个或多个载波频率上传送和/或接收无线信号,其可以被称为小区(未示出)。这些频率可在许可频谱、未经许可频谱、或许可频谱和未经许可频谱的组合中。小区可以将无线服务的覆盖范围提供给可相对固定或可随时间而改变的特定地理区域。小区还可以被划分成小区扇区。例如,与基站114a相关联的小区可以被划分成三个扇区。由此,在一种实施方式中,基站114a可以包括三个收发信机,例如针对所述小区的每个扇区都有一个收发信机。在一种实施方式中,基站114a可以使用多输入多输出(MIMO)技术,并且可以使用针对小区的每个扇区的多个收发信机。例如,波束成形可以用于在期望的空间方向上传送和/或接收信号。
基站114a、114b可以通过空中接口116与WTRU 102a、102b、102c、102d中的一者或多者通信,该空中接口116可以是任何合适的无线通信链路(例如,射频(RF)、微波、厘米波、微米波、红外(IR)、紫外(UV)、可见光等)。空中接口116可以使用任何合适的无线电接入技术(RAT)来建立。
更特别地,如上所述,通信系统100可以是多接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,在RAN 104/113中的基站114a和WTRU 102a、102b、102c可以实施诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA)之类的无线电技术,其可以使用宽带CDMA(WCDMA)来建立空中接口115/116/117。WCDMA可以包括诸如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)的通信协议。HSPA可以包括高速下行链路(DL)分组接入(HSDPA)和/或高速UL分组接入(HSUPA)。
在一种实施方式中,基站114a和WTRU 102a、102b、102c可以实施诸如演进型UMTS陆地无线电接入(E-UTRA)之类的无线电技术,其可以使用长期演进(LTE)和/或高级LTE(LTE-A)和/或专业版高级LTE(LTE-A Pro)来建立空中接口116。
在一种实施方式中,基站114a和WTRU 102a、102b、102c可以实施诸如NR无线电接入的无线电技术,其可以使用新无线电(NR)来建立空中接口116。
在一种实施方式中,基站114a和WTRU 102a、102b、102c可以实施多种无线电接入技术。例如,基站114a和WTRU 102a、102b、102c可以例如使用双连接(DC)原理来实施LTE无线电接入和NR无线电接入。因此,WTRU 102a、102b、102c所使用的空中接口可以由多种类型的无线电接入技术和/或发送到/自多种类型的基站(例如,eNB和gNB)的传输来表征。
在其他实施方式中,基站114a和WTRU 102a、102b、102c可以实施诸如IEEE 802.11(例如,无线保真(WiFi)、IEEE 802.16(例如,全球微波互联接入(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、增强型数据速率GSM演进(EDGE)、GSM EDGE(GERAN)之类的无线电技术。
图1A中的基站114b可以是例如无线路由器、家用节点B、家用e节点B或者接入点,并且可以使用任何合适的RAT,以用于促进在诸如商业区、家庭、车辆、校园、工业设施、空中走廊(例如,供无人机使用)、道路之类的局部区域的无线连接。在一种实施方式中,基站114b和WTRU 102c、102d可以实施诸如IEEE 802.11之类的无线电技术以建立无线局域网(WLAN)。在一种实施方式中,基站114b和WTRU 102c、102d可以实施诸如IEEE 802.15的无线电技术以建立无线个域网(WPAN)。在又一种实施方式中,基站114b和WTRU 102c、102d可以使用基于蜂窝的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等)以建立微微小区(picocell)或毫微微小区(femtocell)。如图1A所示,基站114b可以具有至因特网110的直接连接。由此,基站114b可不需要经由CN 106/115来接入因特网110。
RAN 104/113可以与CN 106/115通信,该CN 106/115可以是被配置成将语音、数据、应用和/或通过网际协议的语音(VoIP)服务提供到WTRU 102a、102b、102c、102d中的一者或多者的任何类型的网络。数据可以具有不同的服务质量(QoS)要求,例如不同的吞吐量要求、延迟要求、容错要求、可靠性要求、数据吞吐量要求,移动性要求等。CN 106/115可以提供呼叫控制、账单服务、基于移动位置的服务、预付费呼叫、网际互联、视频分配等,和/或执行高级安全性功能,例如用户验证。尽管图1A中未示出,但应理解的是RAN 104/113和/或CN 106/115可以直接或间接地与其他RAN进行通信,这些其他RAN使用与RAN 104/113相同的RAT或者不同的RAT。例如,除了连接到可以采用NR无线电技术的RAN 104/113,CN 106/115也可以与使用GSM、UMTS、CDMA2000、WiMAX、E-UTRA、或者WiFi无线电技术的另一RAN(未示出)通信。
CN 106/115也可以用作WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供普通老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用公共通信协议的互联计算机网络及设备的全球系统,该公共通信协议例如是传输控制协议(TCP)/网际协议(IP)因特网协议套件中的TCP、用户数据报协议(UDP)和/或IP。网络112可以包括由其他服务提供方拥有和/或运营的无线和/或有线通信网络。例如,网络112可以包括连接到一个或多个RAN的另一CN,该一个或多个RAN可以使用与RAN 104/113相同的RAT或者不同的RAT。
通信系统100中的WTRU 102a、102b、102c、102d中的一些或者全部可以包括多模式能力(即WTRU 102a、102b、102c、102d可以包括用于通过不同的无线链路与不同的无线网络进行通信的多个收发信机)。例如,图1A中显示的WTRU 102c可以被配置成与可使用基于蜂窝的无线电技术的基站114a进行通信,并且与可使用IEEE 802无线电技术的基站114b进行通信。
图1B是示例WTRU 102的系统图。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收元件122、扬声器/麦克风124、键盘126、显示屏/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136和其他外围设备138等。应该理解的是,在保持与实施方式一致的情况下,WTRU 102可以包括上述元件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心相关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、任何其它类型的集成电路(IC)、状态机等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理、和/或使得WTRU 102能够运行在无线环境中的其他任何功能。处理器118可以耦合到收发信机120,该收发信机120可以耦合到发射/接收元件122。尽管图1B中将处理器118和收发信机120描述为独立的组件,但是应当理解的是处理器118和收发信机120可以被一起集成到电子封装或者芯片中。
发射/接收元件122可以被配置成通过空中接口116将信号传送到基站(例如,基站114a),或者从基站(例如,基站114a)接收信号。例如,在一种实施方式中,发射/接收元件122可以是被配置成传送和/或接收RF信号的天线。例如,在一种实施方式中,发射/接收元件122可以是被配置成传送和/或接收例如IR、UV或者可见光信号的发射器/检测器。在又一种实施方式中,发射/接收元件122可以被配置成传送和/或接收RF信号和光信号两者。应当理解,发射/接收元件122可以被配置成传送和/或接收无线信号的任意组合。
此外,尽管发射/接收元件122在图1B中被描述为单个元件,但是WTRU 102可以包括任何数量的发射/接收元件122。更具体地,WTRU 102可以使用MIMO技术。由此,在一种实施方式中,WTRU 102可以包括两个或更多个发射/接收元件122(例如,多个天线)以用于通过空中接口116传送和/或接收无线信号。
收发信机120可以被配置成对将由发射/接收元件122传送的信号进行调制,并且被配置成对由发射/接收元件122接收的信号进行解调。如上所述,WTRU 102可以具有多模式能力。由此,收发信机120可以包括多个收发信机以使得WTRU 102能够经由多个RAT进行通信,例如NR和IEEE 802.11。
WTRU 102的处理器118可以被耦合到扬声器/麦克风124、键盘126和/或显示屏/触摸板128(例如,液晶显示(LCD)显示单元或者有机发光二极管(OLED)显示单元),并且可以从上述装置接收用户输入数据。处理器118还可以向扬声器/麦克风124、键盘126、和/或显示屏/触摸板128输出用户数据。此外,处理器118可以访问来自任何类型的合适的存储器中的信息,以及在任何类型的合适的存储器中存储数据,所述存储器例如可以是不可移除存储器130和/或可移除存储器132。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或者任何其他类型的存储器存储设备。可移除存储器132可以包括订户标识模块(SIM)卡、记忆棒、安全数字(SD)存储卡等。在其他实施方式中,处理器118可以访问来自物理上未位于WTRU 102上(例如位于服务器或者家用计算机(未示出)上)的存储器的信息,以及在上述存储器中存储数据。
处理器118可以从电源134接收电能,并且可以被配置成将该电能分配给WTRU 102中的其他组件和/或对在WTRU 102中的其他组件的电能进行控制。电源134可以是任何用于给WTRU 102供电的设备。例如,电源134可以包括一个或多个干电池(例如,镍镉(NiCd)、镍锌(NiZn)、镍氢(NiMH)、锂离子(Li-ion)等)、太阳能电池、燃料电池等。
处理器118还可以耦合到GPS芯片组136,该GPS芯片组136可以被配置成提供关于WTRU 102的当前位置的位置信息(例如,经度和纬度)。作为来自GPS芯片组136的信息的补充或者替代,WTRU 102可以通过空中接口116从基站(例如,基站114a、114b)接收位置信息,和/或基于从两个或更多个相邻基站接收到的信号的定时来确定其位置。应当理解,在与实施方式保持一致的同时,WTRU 102可以通过任何合适的位置确定方法来获取位置信息。
处理器118还可以耦合到其他外围设备138,该外围设备138可以包括提供附加特征、功能和/或无线或有线连接的一个或多个软件和/或硬件模块。例如,外围设备138可以包括加速度计、电子指南针(e-compass)、卫星收发信机、数字相机(用于照片和/或视频)、通用串行总线(USB)端口、震动设备、电视收发信机、免持耳机、
Figure BDA0002333108290000091
模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器、虚拟现实和/或增强现实(VR/AR)设备,活动追踪器等等。外围设备138可以包括一个或多个传感器,传感器可以是以下中的一者或多者:陀螺仪、加速计、霍尔效应传感器、磁力计、方位传感器、接近传感器、温度传感器、时间传感器、地理位置传感器、高度计、光传感器、触摸传感器、磁力计、气压计、手势传感器、生物传感器、和/或湿度传感器。
WTRU 102可以包括全双工无线电,对于该全双工无线电,一些或全部信号(例如,与用于UL(例如,用于传输)和下行链路(例如用于接收)两者的特定子帧相关联)的传输和接收可以是并发和/或同时的。全双工无线电可以包括干扰管理单元,以通过硬件(例如扼流器)或经由处理器(例如,单独的处理器(未示出)或者经由处理器118)的信号处理来减少和/或基本上消除自干扰。在一种实施方式中,WRTU 102可以包括一些或全部信号的传输和接收(例如,与用于UL(例如,用于传输)或下行链路(例如,用于接收)的特定子帧相关联)的半双工无线电。
图1C是示出了根据一种实施方式的RAN 104及CN 106的系统图。如上所述,RAN104可使用E-UTRA无线电技术通过空中接口116与WTRU 102a、102b和102c通信。RAN 104还可以与CN 106进行通信。
RAN 104可包括e节点B160a、160b、160c,但应当理解的是在与实施方式保持一致的同时,RAN 104可以包括任意数量的e节点B。e节点B160a、160b、160c每一者均可包括一个或多个用于通过空中接口116与WTRU 102a、102b、102c通信的收发信机。在一种实施方式中,e节点B160a、160b、160c可以实施MIMO技术。因此,e节点B160a例如可以使用多个天线来向WTRU 102a传送无线信号和/或从它接收无线信号。
e节点B160a、160b、160c的每一个可与特定的小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、调度在UL和/或DL中的用户等。如图1C所示,e节点B160a、160b、160c可通过X2接口互相通信。
图1C中示出的CN 106可以包括移动管理实体(MME)162、服务网关(SGW)164和分组数据网络(PDN)网关(或者PGW)166。尽管前述每一个元件被描述为CN 106的一部分,但应理解这些元件的任何一个可以由除CN运营方之外的实体所拥有和/或操作。
MME 162可通过S1接口与RAN 104中的e节点B162a、162b、162c的每一个相连接,并且可作为控制节点。例如,MME 162可负责认证WTRU 102a、102b、102c的用户、承载激活/去激活、在WTRU 102a、102b、102c初始附着期间选取特定的服务网关等。MME 162可提供用于在RAN 104和采用诸如GSM和/或WCDMA这样的其他无线电技术的其他RAN(未示出)之间切换的控制平面功能。
SGW 164可通过S1接口与RAN 104中的e节点B160a、160b、160c的每一个相连接。SGW 164通常可路由和转发去往/来自WTRU 102a、102b、102c的用户数据分组。SGW 164还可以执行其他功能,例如在e节点B间切换期间锚定用户平面、当DL数据对WTRU 102a、102b、102c可用时触发寻呼、管理和存储WTRU 102a、102b、102c的上下文等。
SGW 164可与PGW 166相连接,其可向WTRU 102a、102b、102c提供到诸如因特网110这样的分组交换网络的接入,以便于WTRU 102a、102b、102c和IP使能设备之间的通信。
CN 106可便于与其他网络的通信。例如,CN 106可向WTRU 102a、102b、102c提供到诸如PSTN 108这样的电路交换网络的接入,以便于WTRU 102a、102b、102c和传统陆线通信设备之间的通信。例如,CN 106可包括作为CN 106和PSTN 108之间的接口的IP网关(例如IP多媒体子系统(IMS)服务器)或与之通信。此外,CN 106可向WTRU 102a、102b、102c提供到其他网络112的接入,其他网络112可包括由其他服务提供商拥有和/或运营的其他有线或无线网络。
尽管WTRU在图1A-1D中被描述为无线终端,但是可以预期的是,在某些代表性的实施方式中,这样的终端可(例如,临时地或永久地)使用与通信网络的有线通信接口。
在代表性实施方式中,其他网络112可以是WLAN。
基础设施基本服务集(BSS)模式中的WLAN可以具有用于BSS的接入点(AP)以及与该AP相关联的一个或多个站(STA)。AP可以具有对分布式系统(DS)或其他类型的有线/无线网络的接入或接口,该网络将业务传入和/或传出BSS。源于BSS外部到STA的业务可通过AP到达,并可被递送到STA。源于STA发往BSS之外的目的地的业务可以被发送到AP以递送到各个目的地。BSS内的STA之间的业务可以通过AP发送,例如,其中源STA可以将业务发送到AP并且AP可以将业务递送到目的地STA。BSS内的STA之间的业务可以被视为和/或被称为对等业务。对等业务可以使用直接链路建立(DLS)在源STA和目的STA之间(例如,直接在它们之间)发送。在某些代表性实施方式中,DLS可以使用802.11e DLS或802.11z隧道DLS(TDLS)。使用独立BSS(IBSS)模式的WLAN可不具有AP,并且IBSS内或使用IBSS的STA(例如,所有STA)可以彼此直接通信。IBSS通信模式有时可以被称为“ad-hoc”通信模式。
当使用802.11ac基础设施操作模式或类似的操作模式时,AP可以在固定信道(例如主信道)上传送信标。主信道可以是固定宽度(例如,20MHz宽带宽)或经由信令动态设置宽度。主信道可以是BSS的操作信道并且可以由STA用来建立与AP的连接。在某些代表性实施方式中,可以例如在802.11系统中实施具有冲突避免的载波侦听多路接入(CSMA/CA)。对于CSMA/CA,包括AP的STA(例如,每个STA)可以感测主信道。如果主信道被特定STA感测/检测到和/或被确定为繁忙,则该特定STA可退后(back off)。一个STA(例如,仅一个站)可以在给定的BSS中的任何给定时间传送。
高吞吐量(HT)STA可以使用40MHz宽的信道进行通信,例如,通过将主20MHz信道与相邻或不相邻的20MHz信道组合以形成40MHz宽信道。
甚高吞吐量(VHT)STA可支持20MHz、40MHz、80MHz和/或160MHz宽信道。40MHz和/或80MHz信道可以通过组合连续的20MHz信道来形成。可以通过组合8个连续的20MHz信道或通过组合两个不连续的80MHz信道(其可以被称为80+80配置)来形成160MHz信道。对于80+80配置,在信道编码之后,数据可以通过可将数据划分为两个流的分段解析器。逆快速傅立叶变换(IFFT)处理和时域处理可以分别在每个流上完成。这些流可以被映射到两个80MHz信道上,并且数据可以由传送STA来传送。在接收STA的接收机处,用于80+80配置的上述操作可以逆向,并且可以将组合数据发送到介质接入控制(MAC)。
子1GHz操作模式由802.11af和802.11ah支持。802.11af和802.11ah中的信道操作带宽和载波相对于802.11n和802.11ac中所使用的有所减少。802.11af支持在电视白空间(TVWS)频谱中的5MHz、10MHz、和20MHz带宽,以及802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。根据代表性实施方式,802.11ah可以支持诸如宏覆盖区域中的MTC设备的计量计类型控制/机器类型通信。MTC设备可以具有某些能力,例如,有限的能力包括支持(例如,仅支持)某些和/或有限的带宽。MTC设备可包括具有高于阈值的电池寿命的电池(例如,以保持非常长的电池寿命)。
可支持多个信道和信道带宽(诸如802.11n、802.11ac、802.11af、和802.11ah)的WLAN系统包括可被指定为主信道的信道。主信道可以具有等于BSS中所有STA支持的最大公共操作带宽的带宽。主信道的带宽可以由在支持最小带宽操作模式的BSS中操作的所有STA中的STA来设置和/或限制。在802.11ah的示例中,即使BBS中的AP和其他STA支持2MHz、4MHz、8MHz、16MHz、和/或其它信道带宽操作模式,对于支持(例如,仅支持)1MHz模式的STA(例如,MTC类型设备),主信道可以是1MHz宽。载波感测和/或网络分配矢量(NAV)设置可取决于主信道的状态。如果主信道例如由于STA(其仅支持1MHz工作模式)繁忙向AP传送,则即使大部分频带保持闲置且可用,也可认为整个可用频带繁忙。
在美国,可由802.11ah使用的可用频段从902MHz到928MHz。在韩国,可用频段从917.5MHz到923.5MHz。在日本,可用频段从916.5MHz到927.5MHz。根据国家代码,802.11ah可用的总带宽为6MHz至26MHz。
图1D是示出了根据实施方式的RAN 113和CN 115的系统图。如上所述,RAN 113可以采用NR无线电技术通过空中接口116与WTRU 102a、102b、102c通信。RAN 113也可以与CN115通信。
RAN 113可以包括gNB 180a、180b、180c,但是应该理解的是RAN 113可以包括任意数量的gNB,同时保持与实施方式一致。每个gNB 180a、180b、180c可以包括一个或多个收发信机以用于与WTRU 102a、102b、102c通过空中接口116进行通信。在一种实施方式中,gNB180a、180b、180c可以实施MIMO技术。例如,gNB 180a、108b可以利用波束成形来向gNB180a、180b、180c传送信号和/或从gNB 180a、180b、180c接收信号。因此,gNB 180a例如可以使用多个天线来传送无线信号到WTRU 102a和/或接收来自WTRU 102a的无线信号。在一种实施方式中,gNB 180a、180b、180c可以实施载波聚合技术。例如,gNB 180a可以向WTRU102a传送多个分量载波(未示出)。这些分量载波的子集可以在未经许可的频谱上,而其余的分量载波可以在经许可的频谱上。在一种实施方式中,gNB 180a、180b、180c可以实施协调多点(CoMP)技术。例如,WTRU 102a可以从gNB 180a和gNB 180b(和/或gNB 180c)接收协调传输。
WTRU 102a、102b、102c可以使用与可扩展数字配置相关联的传输与gNB 180a、180b、180c通信。例如,对于不同的传输、不同的小区、和/或无线传输频谱的不同部分,OFDM符号间隔和/或OFDM子载波间隔可以变化。WTRU 102a、102b、102c可以使用各种或可伸缩长度的子帧或传输时间间隔(TTI)(例如,含有不同数量的OFDM符号和/或持续改变绝对时间的长度)与gNB 180a、180b、180c通信。
gNB 180a、180b、180c可以被配置为以独立配置和/或非独立配置与WTRU 102a、102b、102c通信。在独立配置中,WTRU102a、102b、102c可以与gNB180a、180b、180c进行通信,而无需也接入其他RAN(例如,诸如e节点B160a、160b、160c)。在独立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一个或多个作为移动锚点。在独立配置中,WTRU 102a、102b、102c可以使用未经许可频带中的信号与gNB 180a、180b、180c进行通信。在非独立配置中,WTRU 102a、102b、102c可以与gNB 180a、180b、180c通信/连接到gNB180a、180b、180c,同时还与另一RAN(例如,e节点B160a、160b、160c)通信/连接。例如,WTRU102a、102b、102c可以实施DC原则以与一个或多个gNB 180a、180b、180c和一个或多个e节点B160a、160b、160c基本上同时通信。在非独立配置中,e节点B160a、160b、160c可以充当WTRU102a、102b、102c的移动性锚,以及gNB 180a、180b、180c可以为服务WTRU 102a、102b、102c提供额外的覆盖和/或吞吐量。
gNB 180a、180b、180c中的每一个可以与特定小区(未示出)相关联,并且可以被配置为处理无线电资源管理决策、切换决策、UL和/或DL中用户的调度、网络切片支持、双重连接性、NR与E-UTRA之间的互通、用户平面数据向用户平面功能(UPF)184a、184b的路由,控制平面信息向接入和移动管理功能(AMF)182a、182b的路由等。如图1D所示,gNB 180a、180b、180c可以通过Xn接口彼此通信。
在图1D中所示的CN 115可以包括至少一个AMF 182a、182b,至少一个UPF 184a、184b,至少一个会话管理功能(SMF)183a、183b,以及可能的数据网络(DN)185a、185b。虽然前述的每个元件都被描述为CN 115的一部分,但是应当理解的是,任何这些元件可以由除了CN运营商之外的实体拥有和/运营。
AMF 182a、182b可以经由N2接口连接到RAN 113中的一个或多个gNB 180a、180b、180c,并且可以充当控制节点。例如,AMF 182a、182b可以负责认证WTRU 102a、102b、102c的用户,支持网络切片(例如,处理具有不同要求的不同PDU会话),选择特定SMF 183a、183b,管理注册区域,NAS信令的终止,移动性管理等。网络切片可以由AMF 182a、182b使用,以基于WTRU 102a、102b、102c正利用的服务类型为WTRU 102a、102b、102c定制CN支持。例如,可以为不同的使用情况建立不同的网络切片,例如依赖于超可靠低延迟(URLLC)接入的服务、依赖于增强型海量移动宽带(eMBB)接入的服务、用于机器类型通信(MTC)接入的服务,和/或类似的服务。该AMF 162可以提供为在RAN 113和使用其他无线电技术(例如,LTE、LTE-A、LTE-A Pro,和/或例如WiFi的非3GPP接入技术)的其他RAN(未示出)之间的切换提供控制平面功能。
SMF 183a、183b可以经由N11接口连接到在CN 115中的AMF 182a、182b。SMF 183a、183b还可以经由N4接口连接到在CN 115中的UPF 184a、184b。SMF 183a、183b可以选择和控制UPF 184a、184b,并配置通过UPF 184a、184b的业务的路由。SMF 183a、183b可以执行其他功能,例如管理和分配UE IP地址、管理PDU会话、控制策略实施和QoS、提供下行链路数据通知等。PDU会话类型可以是基于IP的、基于非IP的、基于以太网的等等。
UPF 184a、184b可以经由N3接口连接到RAN 113中的一个或多个gNB 180a、180b、180c,其可以向WTRU 102a、102b、102c提供到分组交换网络(例如因特网110)的接入,以促进WTRU 102a、102b、102c与IP使能设备之间的通信。UPF 184a、184b可以执行其他功能,例如路由和转发分组、执行用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲下行链路分组、提供移动性锚定等。
CN 115可以促进与其他网络的通信。例如,CN 115可以包括,或者可与之通信的IP网关(例如,IP多媒体子系统(IMS)服务器),其用作CN 115和PSTN 108之间的接口。另外,CN115可以向WTRU 102a、102b、102c提供对其他网络112的接入,其他网络112可以包括由其他服务提供商拥有和/或运营的其他有线和/或无线网络。在一种实施方式中,WTRU 102a、102b、102c可以经由到UPF 184a、184b的N3接口以及UPF 184a、184b与本地数据网络(DN)185a、185b之间的N6接口通过UPF184a、184b连接到DN 185a、185b。
参考图1A-1D以及图1A-1D的相应描述,对于以下中的一者或多者这里描述的一种或多种或所有功能可以由一个或多个模拟设备(未示出)执行:WTRU 102a-d、基站114a-b、e节点B160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF183a-b、DN 185a-b,和/或本文描述的任何其他设备。模拟设备可以是被配置为模拟本文描述的一个或多个或所有功能的一个或多个设备。例如,模拟设备可以用于测试其他设备和/或仿真网络和/或WTRU功能。
模拟设备可以被设计为实施实验室环境中和/或运营商网络环境中的其他设备的一个或多个测试。例如,一个或多个模拟设备可在完全或部分地实施和/或部署为有线和/或无线通信网络的一部分的同时执行一个或多个或所有功能,以测试通信网络内的其他设备。一个或多个模拟设备可以在作为有线和/或无线通信网络的一部分临时实施/部署的同时执行一个或多个或所有功能。模拟设备可以为了测试的目的直接耦合到另一个设备和/或可以使用空中无线通信执行测试。
一个或多个模拟设备可以执行包括所有功能的一个或多个功能,而不是作为有线和/或无线通信网络的一部分来实施/部署。例如,模拟设备可以在测试实验室和/或非部署(例如,测试)有线和或无线通信网络中的测试场景被利用以实施一个或多个组件的测试。一个或多个模拟设备可以是测试设备。模拟设备可以使用经由RF电路(例如,其可以包括一个或多个天线)的直接RF耦合和/或无线通信来传送和/或接收数据。
无线通信可以支持具有不同需求的应用。例如,一些应用可以是低延时的,而其他应用可以是延迟容忍的。一些应用可以是高可靠性的,而其它应用可以是不太关键的。应用可以包括例如增强移动宽带(eMBB)、机器类型通信(MTC)、大规模MTC(mMTC)以及超可靠和低延迟通信(URLLC)。应用可用于广泛的行业,例如汽车、卫生、农业、公用事业和后勤行业。
可以使用许可频谱和/或非许可频谱来部署无线通信。未许可频谱可以用于例如非蜂窝服务和应用,诸如Wi-Fi和/或蜂窝服务(例如,宽带数据服务)。未许可频谱可以由可能彼此干扰的多个用户共享,这可能对未许可频谱的使用造成约束。
未许可频带中的小区、传输接收点(TRP)或载波的操作或使用可以是例如独立的,或者由许可频带中的小区、TRP或载波的操作或使用来辅助。辅助部署场景可以被称为许可辅助接入(LAA)。许可小区、TRP或载波可以是主小区或锚小区、TRP或载波。
例如,可以考虑蜂窝系统操作与未许可技术(例如,Wi-Fi)和蜂窝运营商在未许可频谱中的共存,以最小化干扰并提供频谱用户之间的公平性。可以使用诸如先听后说(LBT)或空闲信道评估(CCA)的机制(例如,用于公平共存)。在示例中,诸如接入点(AP)、e节点B(eNB)、g节点B(gNB)、TRP、用户设备(WTRU)等的系统节点可以监听信道(例如,具有某一中心频率和带宽的频带),例如,以在该信道或其一部分上传输之前确定另一用户是否可能正在使用该信道。监听和/或确定另一用户的使用可以例如包括测量或基于测量(例如,能量检测)。
LBT、CCA和LBT/CCA在此可被互换使用。例如,当(例如,能量的)测量结果可能处于或高于阈值时,可以确定信道是繁忙、被占用的或在使用中的。例如,当(例如,能量的)测量结果可能处于或低于阈值时,可以确定信道是闲置的、自由的、空闲的或未使用的。
闲置、自由、未被占用和不繁忙可被互换地使用。不空闲、不自由、不闲置、被占用和繁忙可被互换地使用。信道和操作信道可被互换地使用。CCA失败可以意味着例如信道可能(例如,正)繁忙。CCA通过可以意味着例如信道可以是空闲的。
信道上的潜在发射机(例如,具有潜在UL传输的WTRU和/或具有潜在DL传输的eNB)可以在传输之前评估和/或监视(例如,接收)信道(例如,测量和/或确定该信道上的信号存在或干扰),例如,确定该信道是否可能被另一个对象(例如,另一个系统、用户或信号)使用(例如,繁忙和/或被占用)。
潜在的发射机可以(例如,作为LBT/CCA的一部分)将来自信道的接收信号和/或干扰与标准(例如,一个或多个阈值水平)进行比较,以例如(例如,基于该比较)确定信道是否空闲。例如,当潜在的发射机确定该信道可能是空闲时,潜在的发射机可以在该信道上进行发送。例如,当潜在发射机确定信道可能不空闲时,该潜在发射机可以不在该信道上进行发送,推迟潜在传输,和/或丢弃该潜在传输。
基于帧的设备(FBE)可以指发送/接收定时可以是固定的和/或结构化的设备。基于负载的设备(LBE)可以不根据特定帧结构(例如,在固定或定义的时间)执行LBT/CCA。例如,当LBE可以具有要发送的数据时,LBE可以执行LBT/CCA。
设备可以指可以在许可的和/或非许可的信道上进行发送和/或接收的节点或设备(例如,WTRU、eNB、gNB、TRP、STA或AP)。
eNB可以用于指代或表示gNB、TRP、STA、小区和/或AP中的一个或多个,其中eNB、gNB、TRP、STA、小区和AP可以互换使用。
在示例中,设备可以例如在操作信道上的传输或传输突发之前执行LBT/CCA检查(例如,以检测信道上的能量)。
用于信道评估的LBT/CCA时间段可以是固定时间和/或可以具有最小时间。
信道占用时间(COT)可以是总时间,在该总时间期间,设备可以在给定信道上进行传输,例如,而无需重新评估该信道的可用性。
最大COT(MCOT)可以是设备可以利用操作信道进行给定传输或传输突发的总时间。
MCOT值可被配置或允许(例如,通过调节)。MCOT可以是例如4ms或10ms。
设备的MCOT可以小于最大允许值,该值例如可由该设备的制造商设置。
闲置时段可以是设备可能不在信道上进行发送的时间(例如,连续的时间段)。
闲置时段可以具有设备可以使用的最小值(例如,相对于COT,诸如COT的5%),例如,用于当前固定帧周期的最小值。
例如,当设备发现(例如,在LBT/CCA期间或者作为其结果)一个或多个操作信道空闲时,设备可以在一个或多个空闲信道上进行发送(例如,立即进行发送)。
例如,当设备发现(例如,在LBT/CCA期间或者作为其结果)操作信道被占用时,设备可以不在信道中进行发送。设备可以执行后续的LBT/CCA,其可以发现所述信道空闲。
例如,当设备发现(例如,在LBT/CCA期间或者作为其结果)操作信道被占用时,设备可以(例如,在下一个固定帧周期期间)不在信道上进行发送。
在发现信道未空闲的LBT/CCA之后执行的LBT/CCA可能例如涉及例如在检查所述信道是否空闲之前的等待或退避时间。
可以在可能已经发现信道不空闲的LBT/CCA之后执行的LBT/CCA可能例如涉及更长的时段,在该时段期间确定所述信道是否可能是空闲的并且随后进行发送。
WTRU可以执行CCA,例如,以确定信道是否空闲。例如,当WTRU确定信道不是空闲的时,WTRU可以添加附加的退避或等待时间,例如附加的争用窗口时间量。WTRU可以(例如,在确定信道空闲时)在实际传输之前再次检查,例如,这可发生在当实际传输可能不是在信道被确定为空闲之后立即开始时。
在示例中,例如,当WTRU在实际传输之前可能不在检查窗口(例如,25us)内时,WTRU可以执行CCA(例如,在实际传输之前执行至少检查窗口时间量)。例如,当信道被确定为空闲时(例如,对于至少一部分检查窗口时间量,其是空闲的),WTRU可以(例如,仅在该情况下)进行传送。
CCA可以是例如完整CCA或短CCA。例如,完整CCA可以包括添加一个或多个退避时间,例如,当信道被确定为繁忙时进行添加。短CCA可以是例如在传输开始之前或者在预期或计划的传输之前在检查窗口中的快速检查(例如,能量检测检查)。
例如,当WTRU可以执行用于第一子帧(SF)或符号的CCA时,WTRU可以执行完整的CCA(例如,以确定信道是否空闲)。例如,当在完整CCA的结束和传输的开始之间存在间隙时,WTRU可以在传输之前执行短CCA(例如,重新检查信道是否保持空闲)。
信道上的、小区中的、至小区的、至TRP或另一节点的资源上的传输、资源的接入、使用可以是例如基于授权的、基于分配的、或者基于调度者的。
在示例中,WTRU可以(例如,仅)响应于或根据接收到的资源授权或分配而在资源集合上进行传送。资源可以是例如时间和/或频率资源。
可以(例如,显式地)在例如DL控制信息(DCI)中提供授权或分配。授权或分配可以被配置(例如,通过较高层信令而被配置)并且可以由WTRU使用,例如当WTRU可以具有要传送的数据时由WTRU使用。
信道上的、小区中的、至小区的、至TRP或另一节点的资源上的传输、资源的接入、使用可以是免授权的或无授权的。免授权和无授权可以互换使用。资源可以是例如时间和/或频率资源。
WTRU可以在一资源集合上进行传输,例如,这可发生在WTRU可能具有要进行的传输时。WTRU可以例如从一个或多个配置的资源集合中确定或选择其可以在其上进行传送的资源。该资源集合可以由eNB配置。
资源可由多个WTRU共享和/或使用。资源可以被称为基于争用的资源。多个WTRU的传输可能冲突,例如,这可发生在WTRU可能同时选择相同资源和/或在相同资源上传输时。
可以引入机制以降低冲突的可能性。在示例中,资源选择可以(例如,全部或部分地)随机地确定。资源选择可以是WTRU-ID的函数。不同的WTRU群组可被配置具有不同的资源集合。
机制可以使无授权传输的接收方能够识别发送方。在示例中,传输可以包括标识符或部分标识符。
WTRU可以执行(例如在LTE LAA UL场景中)CCA以用于传输,该传输可以例如在时间段的开始边界上或者在可能在时间段内的时间单元的边界上开始。
时间段的示例可以包括例如子帧(SF)、帧、时隙、微型时隙、时隙或微型时隙的集合、TTI、短TTI、多符号TTI、符号、TTI集合、符号集合、同步突发、同步块、同步突发或同步块的集合等。时间段可以包括一个或多个时间单元。时间单元的示例可以包括例如符号、时隙、微型时隙、TTI、短TTI、多符号TTI、符号集合、同步突发、同步块等。例如,WTRU可以在信道上、在被包括在一时间段内的一个或多个时间单元处执行CCA(例如可以周期性地执行CCA),直到所述信道被确定为空闲。
在示例中,WTRU可以执行CCA以用于例如在子帧(SF)边界上或在SF内的所指示的符号边界上开始的传输。WTRU可以接收例如针对SF(例如,完全或部分SF)或连续子帧集合的授权。WTRU可以例如在授权的SF上传输之前执行CCA。例如,当WTRU确定CCA失败(例如信道可能忙繁或不闲置)时,WTRU可以(例如对于可以被授权的SF集合)为下一个(或稍后的)被授权的SF执行CCA。例如,当WTRU可以确定信道对于授权SF集合中的SF是空闲的时,WTRU可以在SF和授权集合中的剩余SF上进行传送。例如,当传输可以是连续的时,可以在不执行用于后续SF的CCA的情况下执行传输。WTRU可以为了在中断之后在集合中的SF上进行的传输执行CCA,例如这可发生在传输中可能存在中断时。
为了在特定时间段边界(例如SF或特定符号边界)上的传输执行CCA的WTRU可能不利于相对于另一设备(例如WiFi设备)接入信道,该另一设备可能不受限于用于CCA或传输的特定边界。
基于接收到授权、调度或资源分配而进行传输的WTRU对于接入信道可能是不利的,例如,相对于可能不被限制为等待授权、调度或分配的另一设备(例如WiFi设备),其可能在接入信道方面是不利的。
公开了用于例如在未许可频带中的传输适配和/或无授权接入的系统、方法和手段。可以为传输适配提供灵活的传输边界。可以提供无授权接入资源池。可以在基于波束的系统中提供未许可操作,例如通过使用资源池和/或CCA进行提供。
可以提供灵活的传输边界,例如,用于传输适配。CCA和传输可以不限于时间段(例如,子帧)或时间单元。CCA可以重复(例如,在下一个或其他时间单元处),例如,这可发生在CCA在时间段(例如,子帧)中的一个时间单元(例如,符号)中失败时。
可以提供频率资源适配。
例如,可以基于在时间段中用于传输的剩余时间来适配频率资源。可以从配置的候选集中选择频率资源集合。例如,如果该时间段中的剩余时间(例如,一个或多个时间单元)较短,则WTRU可以选择包括更多频率资源的传输资源。
MIMO方案可以例如基于所使用的频率资源集合而被适配。如本文所描述的MIMO可以指MIMO或大规模MIMO。
DM-RS可以用于指示所使用的频率资源集合。时隙对比于微型时隙的使用可以基于用于发送和适配DM-RS位置的可用时间,例如,基于时隙、微型时隙和/或开始时间。DM-RS可被置于传输的结束时间(例如,在一个或两个最后的符号中)。序列可以标识所使用的资源集合。例如,可以用于识别所述资源集合的序列可以被用信号通知(例如,由eNB用信号通知)给WTRU。
例如,可以基于在时间段中用于传输的剩余时间来调整数字配置(子载波间隔)。
在超过最大功率的示例中,例如,频率可以被限制或缩放,当完整时间量可用于传输时,可以存在到下一个或其他稍后时间段的偏移。例如,可以调整TBS,和/或可以选择调制阶数(例如,从候选集合中选择),以避免超过最大功率。DM-RS可以指示使用了哪个TBS和/或调制阶数。
波束扫描操作(例如,要扫描的波束的数量)可被调整,例如,可以基于子载波间隔/符号持续时间和/或在时间段中用于传输的剩余时间来调整。
可以提供数据大小适配。例如,可以基于可用传输时间来调整要传输的数据量。在示例中,例如,可以基于可用于发送的时间来适配TBS,可以使用码块分段,和/或可以改变要发送的码块的数量。例如,可以使用多个微型时隙来实现分段传输块的传输。
可以例如为延迟的控制信道和/或短PUCCH提供控制信道适配。在示例中(例如,针对延迟的控制信道),内容可以被修改,例如以包括用于更多DL传输的A/N。在示例中(例如,对于短PUCCH),可以通过在时间或频率上重复来改善覆盖和/或可以丢弃CQI(例如,如果它不适合)。PUCCH类型(例如,基于DM-RS或基于序列的PUCCH类型)可以例如基于可用于传输的时间来确定。
可以提供传输时间适配。
在开始配置的示例中,WTRU可以被配置有一开始时间或点的集合。WTRU可以执行用于第一起始点的CCA。WTRU可以尝试下一个或更晚的起始点,例如当第一起始点的CCA失败时进行尝试。
在短传输时间的示例中,可用于传输的时间可以是传输何时开始的函数,例如,这可发生在结束可以是固定的或配置的时。
在固定或配置的传输时间的示例中,传输时间可以基于WTRU何时开始传送。WTRU可以传送B个完整TB,其中B可以是可以适合在分配的或授权的时间段中可用的时间的完整TB的数量,例如,其相对于WTRU何时开始传输。在(例如,替换的)示例中,第一或最后TB可以是短的,例如,这可基于WTRU何时开始,而其他TB可以是全尺寸。
可以提供开始和结束时间指示。在示例中,WTRU可以传送参考信号(RS)或控制信道,例如以指示传输的开始和/或结束。RS或控制信道可以使用相同的频率资源,例如,不管可以使用的频率资源的子集如何。在示例(例如,替代示例)中,RS位置可以取决于可以使用的频率资源的子集。
可以提供CCA频率适配。在示例中,CCA可以针对频带(例如,最大频带)或频率集合来执行,该频率集合可以包括WTRU可以使用的所有候选频率集合。CCA可以在多个子带上执行,例如,以实现适配子带集选择。WTRU可以穿孔(例如,可以不使用/测量)一个或多个子带,例如,这可发生在执行CCA时(例如,以允许其他WTRU使用该子带)。
可以提供WTRU CCA能力。WTRU可以具有或报告例如关于WTRU可以执行连续CCA的时间粒度的能力,该能力可以是所使用的子载波间隔的函数。
可以提供无授权接入资源池。
资源池可以例如被配置有时间和/或频率上的调度或模式以及重复(例如,周期性)。池可以包括频率的候选集。时间资源可以与参考点相关,该参考点可以是波束特定的(例如,同步突发或块)。
可提供池指派和WTRU标识。WTRU和资源池可以被指派给群组。WTRU可以接收无授权掩码或RNTI,例如以加扰其传输的CRC。
可以提供资源池层级。WTRU可以被配置成具有资源池层级,该资源池层级具有不同的资源可用性(例如不同的重复)。例如,当WTRU不能使用第一层级的资源进行传送时(例如,由于信道繁忙了N次),WTRU可以使用第二层级的资源(具有更多或更频繁的资源)进行传送。资源池可以具有和/或用于不同类型或具有不同优先级的传输(例如,URLLC相比于eMBB,传输相比于重传)。
可以切换到基于授权的传输。例如,可以由在许可或未许可信道上的SR或PRACH做出切换请求。例如,可以在不能获得信道(例如,针对一个或多个层级)阈值次数之后做出请求。
可以在基于波束的系统中提供未许可操作,例如使用资源池和/或执行CCA来提供。
可以在基于波束的系统中提供资源池。在示例中,资源池可以与波束或BPL相关联。资源池可以例如基于用于测量质量的DL信号(例如,波束发现信号或RS)来配置。资源池可以与相关联波束的同步突发或同步块处于相同的时间资源中。例如,当无授权接入失败(例如,CCA失败或者未接收到ACK)阈值次数(例如,N次)时,可以尝试与另一波束相关联的另一池。
CCA可以在基于波束的系统中执行。在示例中,用于与波束相关联的资源池的CCA的接收波束可以是例如可以用于波束确定的接收波束、具有最高RSRP的波束、或者可以与发射波束相关联的接收波束。WTRU可以执行用于一个或多个(例如,所有)接收波束的CCA。WTRU可以使用最高检测能量或平均检测能量。WTRU可以(例如在传送之前)再次为接收波束执行CCA,该接收波束可以对应于发射波束。
可以提供和/或使用灵活的传输边界。
WTRU可以在可位于时间段内的时间单元的开始处执行用于传输的CCA(例如,可以周期性地执行CCA)。在示例中,WTRU可以(例如当CCA失败时)在稍后的时间再次尝试,例如与时间单元相关联的稍后的时间,其可以在所述时间段内。WTRU可以继续在所述时间段所包括的时间单元上执行CCA,直到信道被确定为空闲(例如当CCA通过时)。WTRU可以(例如当CCA通过时)在稍后的时间单元开始传输。
WTRU传输可以例如在时间段结束之前或结束时结束。WTRU传输可以继续进入下一个时间段。
在示例中,时间段可以是SF,并且时间单元可以是符号。WTRU可以确定信道是否可以空闲用于传输,例如,在第一SF内的第一符号的开始处进行确定。WTRU可以(例如当信道不是空闲的时)在第一SF中的第二符号(例如下一个符号)的开始处确定信道是否可以空闲以便进行传输。WTRU可以(例如,当信道空闲时)例如从第一SF中的第二符号开始进行传送。WTRU可以在第一SF的第二符号中开始传送传输块(TB)。传输TB的最后一个符号可以是第一SF中的符号,例如第一SF中的最后一个符号或倒数第二个符号。TB的传输的最后一个符号可以是第二SF(例如,后面的SF、下一个相邻SF、以及其他示例)中的符号。
在示例中,时间单元可以是sTTI。sTTI可以包括一符号集合。
WTRU可以例如基于传输的起始点或时间和/或终点或时间来确定传输的持续时间。起始点或时间可由WTRU例如基于CCA的结果来确定。起始点或时间可以由WTRU从例如可以被配置和/或允许的起始点或时间集合中选择。终点或时间可以是固定的、配置的或已知的。例如,可以由WTRU从可以被配置和/或允许的终点或时间集合中选择终点或时间。WTRU可以例如从可以被配置和/或允许的持续时间集合中确定传输的持续时间。
WTRU可以(例如,基于传输的起始点或时间、终点或时间、或持续时间(例如,确定的持续时间))确定例如:(i)要传送的数据量,诸如TB大小(TBS),(ii)要用于传送的一个或多个频率资源,和/或(iii)例如要用于传送的诸如RE、RB或PB的频率资源的集合或模式等等。
可以提供频率资源适配。WTRU和/或eNB或gNB可以例如基于传输的起始点或时间和/或终点或时间来确定所述传输的频率资源。
在示例中,WTRU可以在较大的频率资源集合上进行传送,例如,这可发生在传送的时间较少时。WTRU可以为传输确定例如开始时间、结束时间和/或持续时间。WTRU可以例如基于传输的开始时间、结束时间和/或持续时间来确定资源数量和/或资源集合。
WTRU可以使用固定数量的时间和/或频率资源来传送传输块。WTRU可以例如基于从传输时机(occasion)中该WTRU已经获取信道的时刻起的剩余的时间量来选择数字配置。在示例中,例如,当WTRU在第一时刻中获取信道时,WTRU可以选择第一子载波间隔和/或第一符号持续时间,其中对于该第一时刻,可能剩余T1时间来传送TB。例如,当WTRU在第一时刻中不能获取信道并且(例如,替代地)在第二时刻中获取信道时,WTRU可以选择第二子载波间隔和/或第二符号持续时间,其对于该第二时刻,例如可能剩余T2时间来传送所述TB。例如,当T2小于T1时,WTRU可以(例如,对于T2剩余时间)选择较大的子载波间隔和/或较小的符号持续时间用于其传输。WTRU可以被配置有可用于未许可信道或在未许可信道内使用的适用的和/或有效的子载波间隔值和/或符号持续时间值集合。例如,可以经由广播传输(例如,在系统信息传输中)或者经由可以用于无授权传输的配置来提供配置。配置可以是例如群组特定的或WTRU特定的,并且可以经由群组特定的或WTRU特定的信令来提供和/或接收。
例如,所使用的符号的数量可以是相同的,而与开始时间和/或持续时间无关。可以基于开始时间和/或持续时间来确定子载波间隔。在示例中,可以针对不同的开始时间和/或持续时间使用(例如,相同的)物理信道结构(例如,参考信号结构和数据RE位置)。
CP长度对于(例如,所有)子载波间隔候选可以是相同的。例如,可以(例如,可替换地)基于子载波间隔来确定(例如,最大)CP长度。例如,当由于信道条件导致的CP长度可能比最大CP长度长时,WTRU、eNB或gNB可丢弃传输。
资源可以是时间和/或频率资源。资源可以是资源块(RB)或物理资源块(PRB)。资源可以是例如频率上连续的(例如,连续的子载波)。资源可以在频率上分布,例如,在频带或子频带上分布。
可以配置RB、PRB和/或频率的集合(例如,候选集合)(例如,WTRU可以从其确定用于传输的子集)。在示例中,WTRU可以接收一个或多个资源集合(例如候选集合)(例如资源模式),WTRU可以从所述资源集合中选择用于传输的集合或子集(例如候选)。WTRU可以例如基于传输可用的时间从候选集合中确定用于传输的候选。
WTRU可以将传输块(TB)的调制符号映射到可以与从候选集合中确定的候选相对应的时间-频率资源(例如资源元素(RE))。例如,当所选候选中的RE数量大于TB的调制符号的数量时,WTRU可以应用多个调制符号(例如,少量符号)的重复。
在示例中,频带(例如,5GHz)中的未许可传输可涉及该频带内的整个传输子带(例如,5MHz或20MHz子带)上的交织传输。候选资源集合可以是WTRU可以从中选择的交织模式。频率资源的扩展(例如,具有更多频率资源的集合)可以对应于更密集的交织模式。
使用更密集的交织会导致WTRU具有比当前TB所需的更多(例如更多)的可用于传输的RE。WTRU可以在剩余的可用RE中传送附加的TB(例如,其具有较小的TBS)。
例如,可以基于(例如,确定的)频率资源候选和/或开始时间和持续时间来确定可以用于传输的MIMO传输方案。例如,当可以确定第一频率资源候选时,可以使用第一MIMO传输方案(例如,空间频率块编码(SFBC))。例如,当可以确定第二频率资源候选时,可以使用第二MIMO传输方案(例如,预编码器循环)。第一频率资源候选可以具有比第二频率资源候选更少数量的频率资源。
MIMO传输方案可以例如基于频率资源候选中的RB或PRB的数量来确定。例如,当频率资源候选中的RB或PRB的数量大于阈值时,可以使用第一MIMO传输方案,而例如当不是这样时,可以使用第二MIMO传输方案。
例如,可以基于(例如,确定的)频率资源候选和/或开始时间和持续时间来确定传输秩(例如,层的数量)。例如,当可以确定第一频率资源候选时,可以使用第一传输秩,而例如当可以确定第二频率资源候选时,可以使用第二传输秩。
接收机可以确定在传输中使用的频率资源。WTRU可以在其传输中传送参考信号(RS),例如解调参考信号(DM-RS)。WTRU可以在传输的PRB中(例如,在传输的RE的子集中)传送RS,这可以使得eNB能够确定用于传输的资源集合(例如,候选集合)。eNB可以使用RS传输,例如,以确定WTRU用于传输的候选频率或频率集合。
微型时隙可以是包括比时隙少的符号的时间单元。在示例中,时隙可以包括7个符号,而微型时隙可以包括2、3或4个符号。
WTRU可以在时间单元(例如子帧、时隙或微型时隙)中的一位置上传送RS,其中例如该位置可以是固定的、已知的或配置的。WTRU可以在可由该WTRU确定的时间单元中的位置上传送RS。RS可以具有一位置或者可以在该位置中被发送,该位置可以是例如标称、默认或常规位置。WTRU可以在可能不是例如标称、默认或常规位置的位置传送RS。例如,基于一个或多个标准,例如,当RS传输可以在或者不在标称、默认或常规位置中传输时,可以将RS传输视为灵活的RS传输。标准可以是例如WTRU何时可以获取对信道的接入的函数。
WTRU可以(例如被配置成)使用微型时隙,例如这可发生在它可以(例如首次)获得对信道的接入时。例如,当WTRU可以使用用于(例如,第一)传输的微型时隙时,WTRU可以使用灵活RS(例如,DM-RS)传输。
eNB可以使用与微型时隙相关联的RS(例如DM-RS)来确定WTRU可以在其中发送的候选资源集合(例如频率资源)。RS可以(例如,也可以)由eNB使用,例如,以确定传输的开始时间。
例如,基于WTRU可以获取对信道的接入的时间,WTRU可以使用时隙(例如常规时隙)或微型时隙。在示例中,例如当WTRU可以从子帧的开始诸如两个符号(例如,OFDM或DFT扩展OFDM(DFT-s-OFDM)符号)的多个符号内获得对信道的接入时,WTRU可以决定使用时隙(例如,常规时隙)来进行传输。子帧可以包括例如两个时隙。WTRU可以例如使用至少一个(例如第一)时隙,并且可以例如在WTRU可以获得对信道的接入之后出现的时隙的符号中进行传送。WTRU可以在其标称的、常规的或默认的位置传送RS,例如这可发生在当该位置可以(例如,被)包括在传输的符号(例如,时隙的第4符号)中时。
在(例如,另一个)示例中,例如当WTRU在从子帧开始的多个符号(例如,4个符号)之后可以获得对信道的接入时,或者当WTRU在RS的标称、常规或默认位置之后可以获得对信道的接入时,WTRU可以使用微型时隙用于其第一次传输。WTRU可以在例如根据可以被接收、确定和/或指示的微型时隙配置而在微型时隙的一个或多个符号中传送RS。
eNB可以例如基于传输的开始和/或终点或时间来确定可以使用的候选集合。eNB可以盲检测起始点和/或终点。eNB可以从WTRU接收指示,例如以帮助WTRU确定传输的起始点和/或终点。
DM-RS可在传输的结束时间(例如,在一个或两个最后的符号中)传送。例如,用于DM-RS传输的频率资源可以是相同的,而不管可以为该传输确定的频率资源候选。在示例中,传输的标称带宽可用于DM-RS传输。标称带宽可以是例如可用于参考开始时间和/或持续时间(例如,时间段)的频率资源候选。
一个或多个序列可用于DM-RS。例如,可以基于频率资源候选的数量来确定所使用的序列的数量。(例如,每个)序列可以对应于频率资源候选。
例如,当eNB、gNB或WTRU可以例如基于传输的开始和持续时间来确定频率资源候选时,与频率资源候选相对应的序列可以用于传输。
接收机可(例如,盲目地)检测在传输结束时传送的DM-RS的序列,例如以确定所使用的频率资源候选。
例如,当确定的频率资源可能比标称频率资源更宽时,可以使用频率中的一个或多个(例如,附加的)DM-RS。
例如,当持续时间可能比参考持续时间(例如,时间段)长时,可使用时间中的一个或多个(例如,附加的)DM-RS。
DM-RS可(例如,替换地)在传输的结束时间被传送,其可被对齐而不管频率资源候选。例如,基于频率资源候选,用于DM-RS的频率资源可以是不同的。在示例中,DM-RS可以在频率资源中发送。DM-RS序列和/或序列长度可以例如基于所确定的频率资源的数量来确定。接收机可以(例如,盲目地)检测DM-RS序列,例如,以确定用于传输的频率资源候选。
可以提供最大功率约束。例如,当使用附加频率资源时,WTRU可能超过最大功率(例如,配置的最大输出功率)。WTRU可以采取一个或多个动作,例如以避免例如通过超过最大功率或最大EIRP而违反功率约束。
WTRU可以(例如,当确定要使用的频率资源集合时)例如限制候选,例如以避免超过最大功率或EIRP。WTRU可以(例如,可替换地)缩放要传送的一个或多个信道的功率,例如以避免超过最大功率或EIRP。
eNB可以(例如,针对盲解码频率资源)使用最新的功率余量报告,例如,以确定在传输中最可能使用的集合。
WTRU可以确定用于传输的频率资源集合。例如,当WTRU可能使用可能导致WTRU超过最大功率的频率资源集合(例如,用于短传输)时,WTRU可以如同信道被确定为繁忙一样进行操作,并且在稍后(例如,下一个)时间段开始时检查信道可用性。
在示例中,WTRU可以在第一时间单元(例如在一个时间段中)执行CCA,其中对于该第一时间单元而已,传输时间可以是Tbase。例如,当WTRU可以确定信道是空闲的时,WTRU可以使用第一频率资源集合用于传输。例如,当WTRU可以确定信道繁忙时,WTRU可以在第二时间单元(例如,在该时间段)再次尝试,在该第二时间单元中传输时间可以是Tshort,其中Tshort<Tbase。例如,当WTRU可以确定信道是空闲的时,WTRU可以使用第二频率资源集合用于传输(例如,第二资源集合可以包括比第一资源集合更多的资源)。
例如,当WTRU确定在第二频率资源集合上的传输可能(例如,将)违反功率约束(例如,最大功率或EIRP)时,WTRU可以跳过第二时间单元的传输(例如,开始于第二时间单元的传输)。WTRU可以例如在一个时间段中在稍后(例如下一个)时间单元再次尝试(例如CCA和信道空闲时的传输),或者在稍后(例如下一个)时间段再次尝试。WTRU(例如,通过转到稍后的时间段)可以导致WTRU具有更多的传输时间并且使用更少的频率资源,该频率资源可能不超过最大功率。
WTRU可以确定在第二频率资源集合上的传输可能违反传输功率约束。WTRU可以(例如,可替换地)搜索(例如,在一个或多个候选中搜索)和/或确定例如可以使WTRU满足传输功率约束的更小的TBS和/或更低的调制阶数。WTRU可以使用TBS和调制阶数来进行传送。TBS可以是例如原始TBS或确定的较小TBS。调制阶数可以是例如原始调制阶数或较低的调制阶数。可以预定义或配置一个或多个候选TBS和调制阶数。例如,可以使用在频率资源中发送的DM-RS来指示可以使用哪个TBS和/或调制阶数。
时间单元可以是例如调度的、配置的或分配的时间单元。例如,时间段可以是调度的、配置的或分配的时间段。
WTRU可以(例如,可替换地)索取(claim)信道(例如,达Tshort的持续时间),直到稍后(例如,下一个)时间段的开始,和/或直到其可以传输更长的时间段和/或使用更少的频率资源。WTRU可以例如在第一或第二频率资源集合中传送参考信号或其他信号,例如以索取信道。WTRU可以在下一个时间段中(例如在下一个时间段的开始)进行传送。
可以提供波束扫描适配。WTRU可以(例如,当在未许可信道或频带中进行传送时)执行UL发射波束扫描操作和/或重传,例如以启用UL接收波束扫描操作。重传可以包括例如(例如相同数据的)重复。重传可以包括例如在相同发射波束上或在相同方向上的多个传输。多个传输可以相同(例如,相同的数据)或不同。WTRU和/或gNB可具有对可同时使用的波束数量的限制。WTRU可以在多个符号上重复传输。在示例中,WTRU可以在符号上传送TB,并且可以在多个符号(例如,时隙的多个符号)上重复该传输。例如,重复可以使能或可以用于Tx和/或接收波束扫描。可以是重复传输集合的一部分的传输的符号数量可以是恒定的。在示例中,对于重复传输集合中的一个或多个(例如,所有)传输,符号的数量可以是相同的数量。
WTRU可以例如基于传输时机中剩余的时间量或者基于WTRU可能已经获取信道的时间来选择子载波间隔。WTRU可以被配置成具有可应用于信道中的传输的子载波间隔值集合。
全部传输带宽可能具有限制(例如,由于最大功率约束)。WTRU可以减少符号时间(例如,增加子载波间隔)直到实现最大带宽。WTRU可以修改其可以重复传输的速率。在示例中,WTRU可以(例如,对于第一子载波间隔)将完整的TB映射到符号,并且可以在相邻符号上重复该传输(例如,同时改变其UL传输波束)。WTRU可以(例如对于第二子载波间隔)将完整的TB映射到一个或多个符号(例如两个)的集合,并且可以在相邻符号集合上重复该符号集合。这可以减少WTRU可以扫描传输的波束的数量。WTRU可以调整(例如每个)单独波束的波束宽度,以使得WTRU能够例如在足够的总波束宽度上扫描,其中WTRU可以为所述单独波束传送数据重复。适配可以基于传输时机中可用重复的总数。
可以提供数据大小适配。在示例中,可以适配传输块大小(TBS)。TBS对于一个或多个(例如,所有)候选资源集合可以是相同的。资源的(例如,每个)候选集合可以(例如,可替换地)与TBS相关联。WTRU可以例如使用相关联的TBS在资源集合(例如,从候选确定的集合)上传送。
WTRU和/或eNB可以例如基于传输的起始点或开始时间、传输的终点或结束时间和/或传输的持续时间来确定传输的数据量(例如TBS)。例如,可以基于用于传输的候选资源集合(例如,频率资源)来确定数据量(例如,TBS),例如可以通过使用用于传输的资源集合中的PRB数量来确定数据量(例如,TBS)。
WTRU可能没有足够的时间在传输之前建立或重建TB,例如,这可发生在当大小可能根据WTRU何时开始传输而改变时。
WTRU可以准备具有对应于一个或多个可能的开始时间、持续时间和/或频率资源集合的大小的传输块的集合。WTRU可以使用准备好的TB,该TB可以与(例如自主)确定的开始时间、持续时间和/或频率资源集合对齐。
例如,当预先准备多个TB可能不是最优解决方案时,可以使用码块分段。例如,可以基于可用于传输的时间来确定要发送的码块的数量。
在示例中,WTRU可以例如基于传输的起始点或开始时间、传输的终点或结束时间、和/或传输的持续时间来确定要传送的码块的数量。码块的数量可以由WTRU例如从候选集合或配置的集合中确定和/或选择。
接收机(例如,eNB)可例如基于传输的起始点或时间、传输的终点或结束时间和/或传输的持续时间来确定所传输的码块的数量。
WTRU可能不能在传输时机(例如时隙)中传送TB的所有码块(CB)。WTRU可以(例如,当CB或CB组(CBG)重传可能时)保持TB的(例如,所有)(例如,已传送和未传送)的CB并可以等待gNB以提供HARQ反馈(例如,CBG级HARQ反馈)或CBG级UL授权,例如以传送剩余的CB。
在(例如,可选的)示例中,WTRU可以调整TB传输以适应多个(例如,两个)相邻的微型时隙(例如,多个时隙或微型时隙上的TB分段)。第一微型时隙大小可被调整为例如包括第一CB集合,该CB可从WTRU获取信道的时间开始被传送直到传输边界。第二微型时隙大小可以适于使得能够(例如,在预定带宽上)传输剩余的CB集合。第二微型时隙可在第一微型时隙的传输之后(例如,当不能超过MCOT时)立即被发送。WTRU可以(例如,在完成诸如用于第一TB的第二微型时隙的传输时)传输后续TB,该后续TB可以在默认的、预配置的或预定的时隙大小上(例如,当不能超过MCOT时)传输。在(例如,替换的)示例中,WTRU用于其信道占用的剩余部分的时隙大小可以是例如可在所述第一和/或第二微型时隙传输中使用的时隙大小的函数。
在(例如,替换的)示例中,WTRU可以被配置成使用微型时隙,这可发生在例如当它(例如,第一次)接入信道时,并且可以退避到使用时隙(例如,常规时隙)用于随后的背靠背传输。WTRU可以例如基于传输的起始点(例如当信道被评估为可用时)决定使用微型时隙或时隙。WTRU可以例如基于传输的起始点来确定微型时隙的大小(例如2、3、4个符号)。
在(例如,备选的)示例中,WTRU可以将要传输的TB划分为多个(例如,两个)码字。WTRU可以例如基于传输的起始点和/或传输的持续时间来决定传送多个码字、较短的码字或较长的码字。
WTRU可以(例如,在基于授权的传输中)被授权有UL资源以在第二时隙中传送另一个TB。WTRU可以(例如在这种情况下)抢占传输第二TB,例如以便例如使用微型时隙来完成第一TB的传输。抢占可以导致第二TB传输涉及分段成多个(例如,两个)微型时隙和/或抢占第三TB传输等等。
WTRU可以在(例如每个)时隙中包括DM-RS和/或另一参考信号,而不考虑时隙大小,例如,这可发生在当一个或多个TB可以跨多个微型时隙而被分段时。在(例如,替换的)示例中,WTRU可以在(例如,仅)一个或多个时隙中包括一个或多个(例如,所有)参考信号,例如,用于具有一个或多个分段的TB的传输。参考信号的包含可以是静态或半静态配置的(例如,结合无授权传输配置),可以由WTRU确定,和/或可以被指示给gNB。
可以提供控制信道适配。UL控制信道(例如,PUCCH)的类型或大小可以取决于可用于传输的时间量,例如单独的PUCCH或与PUSCH传输组合的PUCCH的可用于传输的时间量。PUCCH可以在时间和/或频率上被重复,例如,以改善PUCCH的覆盖。
可以从可被配置的候选资源集合中选择和/或确定用于PUCCH的传输和/或重复的资源。例如,可以基于可用于传输的时间来选择和/或确定资源集合。
PUCCH类型可以(例如,可替换地)例如取决于可用于传输的时间量。在示例中,第一PUCCH类型(例如,基于DM-RS的PUCCH)可以用于第一候选资源集合,并且第二PUCCH类型(例如,基于序列的PUCCH)可以用于第二候选资源集合。第一候选资源集合可以具有比第二候选资源集合更长的持续时间。可以应用以下中的一个或多个。第一PUCCH类型(例如,基于DM-RS的PUCCH)可以提供较高的复用容量,而性能可能比第二PUCCH类型(例如,基于序列的PUCCH)差。第二PUCCH类型可以提供更好的性能,但提供较低的复用容量。用于第一PUCCH类型和第二PUCCH类型的候选资源集合在频率上可以不重叠。
PUCCH传输的内容可以例如基于PUCCH传输的被延迟的开始(例如,由于信道被确定为繁忙)而改变。在示例中,例如,当传输可以以第一时间单元或时间段开始时,可以传输第一内容。例如,当传输可能被延迟到第二时间单元或时间段时(例如,由于信道被确定为在第一时间单元或时间段内繁忙),可以使用第二内容。
在示例中,第二内容可以比第一内容包括针对更多的DL传输的ACK/NACK(A/N)信息。第二内容可以包括针对更多DL传输的A/N信息,例如,这可发生在当由延迟的PUCCH覆盖的时间窗口可以覆盖针对更多DL传输的A/N时。
在示例中,第一内容可以包括用于第一、第二和第三DL传输的A/N。第二内容可以包括用于第一、第二、第三和第四DL传输的A/N。第四A/N信息可以被包括,例如,这可发生在当相对于用于DL传输的HARQ定时从第一时间单元或时间段到第二时间单元或时间段的延迟可以保证添加用于另一可能的DL传输的A/N信息时。
在(例如,另一个)示例中,第一内容可以包括A/N和CQI。第二内容可以包括例如A/N而没有CQI。例如,可以基于可用于传输的时间来丢弃CQI。CQI可被丢弃,例如,这可发生在当在PUCCH中没有空间来发送CQI时,例如当PUCCH被缩短时。PUCCH可以例如基于可用于传输的时间而缩短,该时间可以是所述信道何时可以被确定为空闲以用于传输的函数。
可以配置传输时间起始点。WTRU可以被配置有传输起始点集合,该传输起始点例如可以对应于时间单元或时间段。时间单元可以在一个或多个时间段内。在示例中,WTRU可以被配置有一符号集合,该符号可以在WTRU可以在其中传送或开始传输的子帧内。
可以配置一时间段(例如,子帧)内的一时间单元(例如,符号)集合,其中WTRU可以在其处开始传输。配置可以由较高层(例如,RRC)信令提供。可以在DCI中提供配置。DCI可以包括用于传输的UL授权。DCI可以是公共DCI,例如,其可以是针对一个或多个WTRU或由一个或多个WTRU使用的。DCI可以包括触发,例如,以便例如在可以(例如,单独地)提供授权参数之后启用UL传输。
WTRU可以(例如,针对基于授权的接入或免授权接入)确定信道在第一起始点之前可能不空闲。WTRU可以再次尝试起始点集合中的一个或多个(例如每个)下一个起始点,例如直到WTRU可以确定信道可自由传输。例如,当WTRU可以确定信道对于起始点是空闲的时,WTRU可以进行传送(例如,从起始点开始)。
可以缩短传输时间。可以固定或配置一时间段中的传输的结束。在示例中,传输可以在时间段的最后时间单元中或在该时间段内的另一配置的时间单元中结束。
可用于传输的时间量可以例如是传输在时间段中的起始点的函数。
在示例中,在时间段中的第一时间单元处开始的传输可以导致T1时间用于传输,并且在时间段中的第二时间单元处开始的传输可以导致T2时间用于传输。例如,当第二时间单元在第一时间单元之后时,T2可小于T1。例如,当CCA在第一时间单元失败而在第二时间单元通过,且WTRU在第二时间单元开始传输时,WTRU可以具有较少的传输时间(例如,T2时间而不是T1时间)。
传输时间(例如,最大传输时间)可以是固定的或配置的。传输时间可以是例如时间段的长度、可以配置的TTI、或者传输的调度的、授权的或分配的时间或TTI。
传输时间可以开始于时间单元,并且传输时间可以与开始时间单元相关,例如,这可发生在当WTRU可以在不是在时间段的开始的时间单元开始传输时。例如,当传输时间可能比从所述时间单元到时间段结束的时间长时,传输可以在下一个时间段中继续。
WTRU和/或eNB可以确定可以被传输的传输块的数量。可以发送的传输块的数量可以是例如传输的起始点或时间和/或终点或时间的函数。
WTRU可以被分配或授权n个或最多n个时间段:TP1、TP2、…、TPn。WTRU可以执行CCA。CCA可以在TP1之前开始。WTRU可以确定信道将空闲以用于在时间段k TPk内的时间单元x TUx处开始的传输。
WTRU可以传送开始于TUx的第一传输块(TB)。WTRU可以确定其可以传送的传输块的数量B。WTRU可以传送例如多达B个传输块(B<=N)。在示例中,B可以是在TUx开始并在TPn结束时结束的时间段中可以发送的传输块(例如,完整传输块)的数量。WTRU可以例如在传送B个传输块之后释放信道。例如,当WTRU可能已经完成传送数据或TB时,WTRU可以在传送B个传输块之前释放信道。
例如,当第一TB传输可能(例如,不)在时间段的开始处开始时,可以减小第一TB的大小(例如,使得第一TB的传输可以适合第一时间段)。可以被发送的剩余TB可以是完整大小的。第一TB和一个或多个后续TB可以(例如,可替换地)是完整大小的,并且最后TB的大小可以被减小,例如以适合可以包含传输的最后时间段的最后部分。
WTRU可以传送的数据量(例如,传输块大小(TBS))可以是传输的起始点和/或终点的函数。
在示例中,WTRU可以在SF内的符号的开始处执行用于传输的CCA。WTRU可以(例如当CCA失败时)在SF内的稍后符号处再次尝试。WTRU可以在所述稍后符号处开始进行传送,例如这可发生在当WTRU可以确定CCA通过时。
例如,当WTRU在稍后的时间单元(例如,符号)再次尝试时,可以使用完整的CCA。完整的CCA可能不是新的CCA。完整CCA可以是可能在前一时间单元(例如,符号)之前执行的完整CCA的延续。在示例中,WTRU可以执行(例如,完整的)CCA,并且可以在确定信道可以空闲之后,在所授权或分配的时间资源中的第一符号处开始传输。
可以提供开始和/或结束时间的指示,其可以例如通过盲解码来检测。eNB可以使用盲解码或来自WTRU传输的辅助,例如,以接收和/或解码在时间和/或频率上具有一个或多个灵活边界或模式的传输。
在示例中,eNB可以确定(例如,基于盲检测)其可以接收的传输的开始和/或结束。盲检测可以包括例如尝试接收和/或解码一个或多个候选传输大小。例如,当CRC被确定为正确时,传输可以被认为是成功接收和/或解码的。传输大小可以包括例如时间单元和/或时间段的数量。候选可以包括时间和频率分量,例如,用于其中可以例如基于传输在时间上的长度来为传输适配频率资源的数量和/或模式。
WTRU可以提供指示和/或辅助。在示例中,参考信号可以被发送和/或用于指示传输的开始和/或结束。
在示例中,WTRU可以传送第一参考信号,例如以指示传输的开始。WTRU可以例如在传输的至少一个时间单元中传送参考信号。在示例中,可以在传输的(例如,至少)第一时间单元中发送参考信号。
WTRU可以传送第二参考信号,例如,以指示传输的结束。WTRU可以在传输的(例如至少一个)时间单元中传送参考信号。在示例中,可以在传输的(例如,至少)最后时间单元中传输参考信号。
WTRU可以传送用于传输的第一和/或第二参考信号。第一和第二参考信号可以相同或不同。
诸如传输的开始时间(例如,开始时间单元或时间段)的开始可以是例如可被配置的开始集合中的一个。开始时间可以是在一个时间段内的开始时间单元。
诸如传输的结束时间(例如,结束时间单元或时间段)的结束可以是可以被配置的结束集合中的一个。结束时间可以是时间段内的结束时间单元。
例如,当可以用于传输的频率资源可以是从频率资源集合中确定的子集时,可以以独立于所选择或使用的子集而存在的带宽或模式来发送参考信号。
参考信号可以(例如,可替换地)在可以用于传输的频率资源子集的带宽或模式上被发送,例如被重复。
在示例中,第一子集可包括F1频率资源的集合或模式,第二子集可包括F2频率资源的集合或模式。F1资源可以是F2资源的子集。WTRU可以在F1资源内传送参考信号,例如这可发生在当使用F1资源传送时。WTRU可以在F1资源内传送参考信号,例如这可发生在当使用F2资源传送时。在(例如,替换的)示例中,WTRU可以不在可能在F2中但可能不在F1中的资源中传送参考信号,例如这可发生在当使用F2资源传送时。在(例如,替换的)示例中,WTRU可以在可能处于F2中但可能不处于F1中的资源中传送参考信号,例如这可发生在当使用F2资源传送时。传输可以是F1资源内传输的重复或扩展。
在资源集合或模式(例如,F1或F2)内的参考信号的传输可以在所述资源的子集内,例如,在RB或所述资源内的RE集合内。
可以用于指示时间参考的参考信号可以被称为时间参考信号(TRS)。
WTRU可以例如在传输开始时包括控制信道。控制信道可以例如包括传输的长度或持续时间(例如,在时间上)的指示。
控制信道在频率中的位置可以例如基于可以用于传输的最小频率资源集合。
在示例中,例如,当可以用于传输的频率资源可以是从频率资源集合中确定的子集时,可以以独立于所选择或使用的子集而存在的带宽或模式来发送控制信道。
控制信道可以(例如,也)指示可以使用的频率资源集合(例如,从配置的候选集合中选择的候选集合)。
WTRU可以进行或执行测量,该测量可以是能量检测测量,例如,这可发生在当执行信道评估时,例如以确定信道是否空闲。可以在可以包括一个或多个(例如,所有)候选频率集合的频带或频率集合上执行能量检测或测量。WTRU可以将测量或检测到的能量与阈值进行比较,例如,以确定信道是否可以空闲或繁忙。
候选频率集合可以是另一候选频率集合的子集。频率集合例如可以包括一个或多个(例如,所有)其他候选频率集合。最大频率集合可包括例如一个或多个(例如,所有)其他候选频率集合。
WTRU可以执行对频带或频率资源集合的信道评估,该频带或频率资源集合可以是或可以包括最大频率集合。
WTRU可以执行CCA所针对的频带或频率资源集合可以大于WTRU可以在其上进行传送的频带或频率资源集合。
WTRU(例如在它可以执行CCA时)可能不知道该WTRU可以(例如将)在什么频率上传送。在示例中,WTRU可以在第一时间单元执行CCA,其中对于该第一时间单元,可以有T1时间进行传送。WTRU可以(例如,对于T1时间)在资源集合R1上传送。WTRU可以确定信道是否在第二时间单元空闲以用于传输,例如这可发生在当CCA在第一时间单元失败时(例如当WTRU可以确定信道繁忙时)。例如,对于可以在第二时间单元开始的传输,可以有T2时间来传输(例如,其中T2可以小于T1)。WTRU可以(例如,对于T2时间)在资源集合R2上传送。R2可以包括比R1更多的频率资源。R2可以比R1跨越更多的频率。R1加R2可以跨越比R1更多的频率。
WTRU可以为频带或频率集合执行CCA,该频带或频率集合可以例如至少包括集合R1和集合R2中的频率资源,例如以确保可以(例如)遵守CCA退避/延时。
在(例如,替换的)示例中,WTRU可以在频带或频率集合上执行多个能量检测测量,该频带或频率集合可以包括一个或多个候选频率集合。多个能量检测测量(例如,其中的每一个)可以针对频带的子集。在示例中,子集可以重叠并且可以不是正交的。在(例如,另一)示例中,(例如,每个)子集可以是不连贯的和/或所有子集的集合可以包括整个频带。WTRU可以例如基于在频带子集和(例如,所需的)传输带宽上的测量来确定要传送的每传输带宽(例如,在任何时间)的信道评估值。在示例中,频带可以被分段成n个子带,WTRU可以在所述子带上获得n个能量检测测量。WTRU可以例如通过在针对可能有T1时间要传送的第一时刻的n个子带上获得n个能量检测测量来执行CCA。WTRU可以(例如,用于这样的传输)需要资源集合R1。WTRU可以在可以组成R1资源的n个子带的一个或多个(例如全部)组合上搜索,例如以确定子带的任意组合是否可以满足空闲信道评估。WTRU可以将搜索限制到例如形成R1的相邻子带集合。WTRU可以(例如,可替换地)将搜索限制到例如形成R1的非相邻子带集合。WTRU可以(例如当CCA失败时)通过(例如再次)针对第二时刻在n个子带上获得n个能量检测测量来尝试CCA,其中针对该第二时刻,可以有T2时间进行传输并且传输可以使用资源集合R2。WTRU可以在可以组成R2资源的n个子带的一个或多个(例如所有)组合上搜索,例如以确定子带的任意组合是否可以满足空闲信道评估。
例如,当WTRU可以执行CCA时,WTRU可以被配置成删截出(例如不使用或不测量)一个或多个子带。子带可以被分配或用于其他WTRU或WTRU类型。在示例中,NDL个PRB可以被使用、确定或配置用于未许可频谱。NDL个PRB的子集可以从能量检测中排除。可以配置要排除的子带或PRB。
可以(例如,经由较高层信令)配置或确定(例如,基于时段号、时间单元号、小区ID和/或PRB数量)从CCA删截出的PRB子集。
可以从CCA删截出来的PRB的子集可以不被用于传输。在示例中,例如当WTRU可以被调度用于上行链路传输并且一个或多个被调度的PRB可能与可以从CCA删截出来的PRB子集重叠时,WTRU可以不在PRB子集中发送信号。
用于确定信道是否被占用的能量阈值可以例如基于可以从CCA删截出来的PRB的数量。在示例中,偏移可以用于能量阈值。例如,可以基于可以从CCA删截出来的PRB的数量来确定偏移。
例如,可以基于可以从CCA删截出来的PRB的数量来确定最大允许传输功率。
WTRU可以执行用于一个或多个频率集合的CCA。一(例如,每一)频率集合可以被配置有数字配置、波形和/或传输方案。
一(例如,每一)频率集合可以被配置有CCA的能量阈值。能量阈值可以取决于可以在频率集合中使用的波形。
WTRU的CCA能力可以提供灵活的传输边界。WTRU可以具有不同的能力来执行CCA。WTRU可以具有和/或报告能力,例如,关于WTRU可以执行一个或多个(例如,连续的)CCA的时间粒度的能力。
WTRU可以具有、提供和/或报告(例如,向eNB)其执行CCA的能力。能力可以指示例如WTRU可以或者可以能够执行CCA的频率和/或时间边界,例如这可以按照时间单元或时间段。
在示例中,WTRU可以执行或者能够针对(例如,在其上开始传输)时间单元边界或时间段边界执行CCA。
WTRU可能能够或者可能不能够执行针对相邻或连续时间单元边界的CCA。WTRU可能不或可能不能够针对相邻或连续的时间单元边界执行CCA。
可能不能针对相邻或连续时间单元边界执行CCA的WTRU可以执行CCA,例如每个时间段执行一次。在示例中,WTRU可以不再尝试直到另一或下一时间段(例如,针对另一或下一时间段的时间单元),例如,这可发生在当WTRU可以确定信道在一时间段期间可能不空闲(例如,针对一时间段的时间单元)。
可以(例如,仅)支持针对多个时间段的CCA的WTRU可以被调度为或者可以(例如,仅)被调度为针对时间段(例如,SF)而不针对时间单元(例如,时隙或符号)而执行CCA,例如,这可针对基于授权的传输。
可以(例如,仅)支持针对多个时间段的CCA的WTRU可以(例如,仅)针对多个时间段执行CCA(例如,针对每时间段的一个时间单元,例如针对每时间段或SF的一个符号位置),例如,这可针对用于无授权传输。
执行针对时间段而不是时间单元的CCA会延迟传输,但是会使得WTRU能够休眠更长时间。
WTRU可以执行CCA的时间粒度可以例如取决于预期传输的数字配置。在示例中,对于可能以大的子载波间隔进行传输的WTRU来说,在相邻或连续符号上执行CCA可能是不必要的成本。WTRU可以被配置有时间粒度,该时间粒度可以取决于预期传输的子载波间隔或取决于信道的默认子载波间隔。例如,可以经由广播传输(例如,在系统信息块中)或经由群组专用或WTRU专用配置来提供配置。
可以确定信道是否可以空闲以便在时间边界处进行传输。WTRU可以执行CCA,例如,开始和/或针对在时间边界之前的多个时间单元和/或时间段执行CCA,以例如满足CCA要求。
例如,可以由诸如eNB、gNB、TRP和/或小区等的网络节点或元件来提供配置。WTRU可以从网络节点接收配置。WTRU可以例如经由较高层(例如RRC)信令或广播信令来接收配置。WTRU可以例如经由物理层信令接收配置,例如在DCI中接收配置。配置可以特定于WTRU、小区、TRP、波束和/或波束群组等。
可以提供无授权接入资源池。资源池例如可以用于无授权传输。资源池可以是资源(例如,时间和/或频率资源)集合,其可以由一个或多个WTRU用于传输。WTRU可以例如从资源池中确定或选择资源子集以用于传输。
一个或多个资源池可被配置和/或用于由一个或多个WTRU的无授权传输。WTRU可以接收关于该WTRU可以用于无授权传输的资源池的配置。
WTRU可以为来自资源池的资源子集执行CCA,例如,这可发生在当WTRU可以使用该资源子集时。例如,当WTRU可以被配置具有一个或多个资源池时,WTRU可以(例如,可替换地)执行每个资源池的CCA。
资源池可以例如用时间调度或模式来配置。调度或模式可以是周期性的。调度或模式可以由时间单元和/或时间段集合组成,例如连续的时间单元、连续的时间段和/或可以重复的时间单元和/或时间段的模式。时间单元集合可以在一个时间段内。时间单元、时间单元集合或时间段可以相对于可以是波束特定的参考点。在示例中,参考点可以是同步突发(例如,SS突发)的开始或结束或者可以是可以在同步突发内的同步块(例如,SS块)。
重复可以是周期性的。该重复可以具有持续时间,在该持续时间之后,重复可以结束。重复可以继续,例如,直到进一步的配置可以指示该重复可以(例如,将)结束或者可以不再使用。
可以被配置有时间调度或模式的资源池可被称为半持久调度(SPS)配置。
资源池可以被配置有一个或多个资源集合,所述资源集合可以包括时间和/或频率资源。资源可以是资源块(RB)或物理资源块(PRB)。资源在频率上可以是连续的(例如,连续的子载波)。资源可以在频率上分布,例如,在频带或子频带上分布。
SPS的使用可暗示一些资源可专用于UL并且可不用于DL。这种暗示可能不适用于例如使用CCA的情况。例如,在其中可以配置SPS资源的时间单元或时间段(例如,SF)开始之前,可以执行DL传输的eNB可以执行CCA。例如,当CCA通过时,eNB可以采用或使用信道用于DL传输。例如,当WTRU CCA在eNB开始传送之后足够时间之后进行时,WTRU可以看到信道繁忙并且不在UL中传送。
WTRU可以例如基于接收到的DL定时来调整其UL定时。WTRU可以(例如,针对UL中的时间单元或时间段的传输)在相应的接收的时间单元或时间段之前传送定时提前(TA)值。
eNB可以例如在确定何时执行CCA以及何时开始发送时考虑小区大小和/或TA。
在示例中,10km的小区大小可以对应于67us量级的定时提前。符号可以对应于例如67us的量级。eNB可以执行CCA,例如,以在资源池开始之前开始发送至少一符号,例如,以使得小区中的WTRU(例如,包括小区边缘处的WTRU)能够在资源池开始之前看到信道繁忙。
资源池可以被配置有在时间单元或时间段中的频率资源(例如,RB或PRB的集合)。一个或多个频率资源可以用于一个或多个资源池。用于资源池的频率资源可以与用于另一资源池的频率资源正交。用于资源池的频率资源可以与用于另一资源池的频率资源部分地或完全地重叠。
频率资源集合可以被配置用于无授权接入。可以基于例如资源池ID、小区ID、时间单元号和/或时间段号来确定来自资源池的所配置的频率资源集合的频率资源。
用于资源池的频率资源可以从第一时间资源改变为第二时间资源(例如,时间单元、时间段或时隙)。
WTRU可以执行与资源池相关联的频率资源的CCA。频率资源可以基于例如时间单元号、时间段号和/或时隙号而被改变。
可以提供资源池指派和WTRU标识。在示例中,可以配置和/或使用一个或多个资源池。
一资源池可被配置用于一WTRU群组。WTRU可以被配置或被指派一群组和/或资源池。eNB可以执行分组。eNB可以向WTRU通知其可能处于的群组。在示例中,WTRU可以被配置成具有其可能处于的群组。配置可以包括群组ID。WTRU可以例如基于其群组或群组ID来确定要使用的资源池。
WTRU可以被配置成(例如被指派一种方式)在其传输中指示其标识。标识的指示可被用于群组内。在示例中,可以由WTRU使用以在第一群组中标识自己的第一指示可以由第二WTRU使用以在第二群组中标识自己。WTRU可以由eNB例如基于WTRU用于传输的资源池来区分。
例如,WTRU可以使用CRC掩码来在其传送时标识其自身。可以由eNB配置掩码。WTRU可以用掩码来对其传输的CRC进行掩码(例如加扰)。掩码可以是例如RNTI。掩码可以是WTRU的C-RNTI或WTRU的C-RNTI的一部分或函数。掩码可以例如与WTRU的C-RNTI分开被接收或配置。
在示例中,WTRU可以接收用于被授权的接入的第一RNTI(例如,其C-RNTI)和用于无授权接入的第二RNTI。用于无授权接入的掩码或RNTI可以是与用于授权传输的RNTI或CRC掩码不同数量的比特。在示例中,用于被授权的传输的RNTI可以用于对可以是针对WTRU的DCI的CRC进行掩码,以例如提供授权。
WTRU可以(例如,可替换地)使用CRC掩码来标识该WTRU缓冲器是否为空。在示例中,可以使用第一CRC掩码(例如,当传输可以是最后传输时),并且可以使用第二CRC掩码(例如,当可以存在后续传输时)。
WTRU可以例如使用WTRU特定的加扰ID,例如用于DM-RS序列。在示例中,DM-RS序列可以例如基于WTRU-ID而被加扰。eNB(或gNB)可以(例如盲目地)检测DM-RS序列,例如以识别WTRU。
可以提供资源池层级。可以存在多个资源池集合,例如,SPS配置的资源池。多个资源池集合可以具有不同的出现或重复频率。第一层级资源池(例如,层级1)可以比第二层层级资源池(例如,层级2)可出现得更不频繁。
在示例中,层级1资源池可以具有第一出现或重复频率(例如,每N1个时间段)。层级2资源池可以具有第二出现或重复频率(例如,每N2个时间段)。在示例中,层级1资源可以比层级2资源更不频繁地出现或重复。在示例中,N2可以小于N1(例如,第二层级的资源可以比第一层级的资源更频繁地重复)。
对用于传输的第一层级资源池或第二层级资源的选择或使用可以基于例如信道的可用性。在示例中,WTRU可以(例如首先)尝试使用第一层级资源池中的一个或多个资源。例如,当WTRU可以确定信道可能繁忙时(例如,当试图使用第一资源池时超过阈值次数),WTRU可以使用或试图使用第二层级资源池的一个或多个资源。
在示例中,WTRU可以从第一层级资源池开始,例如层级1。WTRU可以确定即将到来的层级1资源的出现或分配,其中WTRU可以在该资源中进行传送。即将到来的资源出现或分配可以包括时间单元和/或时间段集合(例如,n个时间段)。WTRU可以例如在第一时间段之前执行CCA。WTRU可以确定信道是否在第一时间段内可以空闲以用于传输。WTRU可以在第一时间段内在(例如至少)资源中传送,例如这可发生在当信道可以是空闲时。WTRU可以(例如当信道可能不是空闲时)针对在资源出现或分配中的一个或多个随后的n-1个时间段确定信道是否可以空闲。WTRU可以例如从第一时间段开始进行传送,其中针对该第一时间段,WTRU可以确定信道是空闲的。
WTRU可以(例如当信道在所有时间段都处于繁忙状态时)在资源池稍后(例如下一个)出现时再次尝试。
例如,基于信道可能繁忙的确定,WTRU可能通过阈值数量N次尝试均不能使用第一层级资源池进行传送。WTRU可以尝试使用第二层级资源池中的资源进行传送,例如更频繁的资源池。N可以是第一层级资源池的出现次数。N可以是时间单元或时间段的数量。可以配置N的值。
可以配置和/或使用一个或多个资源池或资源池集合。资源池或资源池集合可以被配置有优先级。不同的资源池或资源池集合可以具有不同的优先级或者可以被配置有不同的优先级。在示例中,第一层级资源池(例如层级1)可以具有或者可以被配置有比第二层级资源池(例如层级2)更高的优先级。WTRU可以(例如决定)使用资源池进行传输,例如基于传输的优先级或类型而使用资源池进行传输。
在示例中,第一层级资源池可以用于较高优先级的数据或信号类型(例如,UCI、URLLC),而第二层级资源池可以用于较低优先级的数据或信号类型(例如,数据、eMBB、mMTC)。
在示例中,例如,第一层级资源池可以用于数据信道的重传,而第二层级资源池可以用于初始传输,或者反之亦然。
例如,当WTRU可以被配置、确定或指示在第一层级资源池和第二层级资源池中传送信号时,WTRU可以在多个资源池中传送信号(例如,当上行链路传输功率不受限制时)。例如,当上行链路传输功率可能(例如,是)受限时,WTRU可以丢弃或按比例缩小用于第二层级(例如,较低优先级)资源池的信号。
第一层级资源池可以被配置有比第二层级资源池的能量检测阈值低的能量检测阈值,或者反之亦然。在示例中,可以提供第二层级资源池的能量检测阈值的偏移,例如相对于第一层级资源池的能量检测阈值的偏移。
图2是资源池层级的示例。层级1资源池可以包括例如一具有n1个机会(opportunity)的集合(例如,每N1个时间段一个该集合)。层级2资源池可以包括例如一具有n2个机会的集合(例如,每N2个时间段一个该集合)。N2的值可以小于N1的值。N1和N2的值可以相同或不同。机会可以是传输机会。机会可以包括例如时间和/或频率资源(例如,RB或PRB)集合。传输时机可以包括传输机会集合。资源池的传输时机可以定期或周期性地出现。在示例中,层级1资源池的传输时机可以每N1个时间段出现一次。层级2资源池的传输时机可以每N2个时间段出现一次。
传输时机内或机会集合内的机会可以是或可以不是时间上相邻或连续的。机会可以对应于一个或多个时间单元和/或时间段。传输时机内或机会集合内的机会可以对应于或可以不对应于相同的持续时间或时间量。WTRU可以在机会开始时、在机会期间的一个或多个稍后的时间、在时机开始时、和/或在机时期间的一个或多个稍后的时间执行CCA。时机可以包括例如机会和/或时机。机会和时机可以是相同的。
图3是资源池层级选择和使用的示例。在该示例中,例如当WTRU可以确定其可能没有找到对于第一资源池层级的多个机会空闲的信道时,WTRU可以(例如决定)尝试使用第二资源池层级。
图4是资源池层级选择和使用的示例。例如,当WTRU可以确定其可能没有发现信道对于第一资源池层级的多个时机是空闲的时,WTRU可以(例如决定)尝试使用第二资源池层级。
可以提供到基于授权的接入的切换。例如,当WTRU不能使用(例如,层级1和/或层级2)无授权资源进行传送(例如,由于确定信道可能繁忙)时,WTRU可以请求基于授权的资源和/或被许可的资源。例如,当WTRU可能无法使用无授权资源进行传输达尝试的阈值次数时,WTRU可以做出请求。尝试的数量可以包括例如层级1尝试的数量和/或层级2尝试的数量。
WTRU可以请求基于授权的资源和/或许可的资源,例如通过传送以下内容来请求:(i)在许可信道上(例如,在主小区(PCell)上)的调度请求(SR);(ii)未许可信道上的SR和/或(iii)许可或未许可信道上的PRACH。
SR可以在分配的资源(例如,为PUCCH信道分配的资源)上被发送。
例如,对于某些类型的通信(例如,MTC),资源池可能不经常出现。在示例中,资源池可以一天出现几次。在示例中,资源池可以针对可以一天出现一次或多次的时间段的模式而出现。
例如,当WTRU在多次尝试之后可能无法使用无授权资源时,WTRU可以使用PRACH资源,其可以更频繁地出现(例如,更多地)。
图5是资源池层级选择和使用的示例。例如,当WTRU可以确定其可能没有找到对于第一资源池层级的多个机会空闲的信道时,WTRU可以(例如决定)尝试使用第二资源池层级。例如,当WTRU可以确定其可能没有找到对于第二资源池层级的多个机会空闲的信道时,WTRU可以(例如决定)请求被授权或被许可的资源。
图6是资源池层级选择和使用的示例。例如,当WTRU可以确定其可能没有发现信道对于第一资源池层级的多个时机是空闲的时,WTRU可以(例如决定)尝试使用第二资源池层级。例如,当WTRU可以确定其可能没有找到用于第二资源池层级的多个时机的信道空闲时,WTRU可以(例如决定)请求被授权或被许可的资源。
可以在基于波束的系统中提供未许可操作。可以在基于波束的系统中提供资源池。在示例中,一个或多个资源池可以用于支持多个波束。(例如,每个)资源池可以与波束或波束对链路(BPL)相关联。
(例如,每个)资源池可以被配置有相关联的下行链路信号,该下行链路信号可以被用来例如测量波束的质量。测量可以是例如RSRP测量。可以用于波束质量测量的下行链路信号可以包括例如波束发现信号、波束参考信号、CSI-RS、SS突发(例如,SS突发中的SS)和/或SS块(例如,SS块中的SS)。
可以以周期性的方式配置用于波束或BPL的资源池。在示例中,用于波束或BPL的资源池可以例如每T1循环或以T1的时间段周期性地存在、可用、被使用、被配置或被确定。
WTRU可以被配置成具有一个或多个波束或BPL以用于无授权接入。用于一个或多个波束或BPL的一个或多个资源池可以位于例如正交时间资源中。
可以在SS突发中使用一个或多个SS块。(例如,每个)SS块可以与波束相关联。可以与波束相关联的(例如,每个)资源池可以位于具有与该波束相关联的SS块的(例如,相同的)时间资源中。
WTRU可以确定与由WTRU确定的波束或波束对链路相关联的资源池。在示例中,WTRU可以测量SS突发中的SS块的波束质量。WTRU可以例如基于波束质量测量来确定最佳或优选波束(例如SS块)。信令(例如,广播信令)可以为(例如,每个)波束提供相关联的资源池。WTRU可以使用与确定的波束或BPL相关联的资源池用于无授权接入。
WTRU可以指示或以其他方式通知gNB为无授权接入确定的波束(例如SS块)。gNB可确认或配置供WTRU使用的资源池。
gNB可例如向WTRU提供WTRU-ID(例如C-RNTI),例如用于波束特定资源池中的无授权接入。
WTRU可以在资源池中尝试无授权接入。例如,当WTRU可能无法接入针对所述资源池的信道或者可能无法使用所述资源池成功地进行传送(例如,持续了预定义或配置的次数(例如,N次))时,WTRU可以切换到可以与不同波束相关联的另一资源池。成功发送失败可以包括例如未能从gNB接收到例如响应于传输的确认(例如,HARQ-ACK)。
CCA可以在基于波束的系统中执行。在示例中,WTRU可以执行针对一个或多个资源池的CCA,该资源池可以与一个或多个波束或BPL(例如,所确定的波束或BPL)相关联。WTRU(例如,当WTRU可以执行CCA时)可以确定用于执行CCA的接收波束,例如基于该WTRU在确定波束或BPL时可能已经使用的接收波束来确定。
WTRU可以例如基于当WTRU确定波束或BPL时可能已经使用的接收波束来执行针对资源池的CCA。
WTRU可以例如基于可以提供最高RSRP的(例如,最佳的)接收波束来执行针对资源池的CCA。最佳接收波束可以对应于WTRU可以使用资源池进行传输的发射波束。
WTRU可以执行针对一个或多个(例如,所有)接收波束的CCA。WTRU可以用来确定信道占用的能量级别可以例如基于为(例如任何)接收波束测量或检测的最高能量。
WTRU可以执行针对一个或多个(例如,所有)接收波束的CCA。WTRU可以用来确定信道占用的能量级别可以例如基于一个或多个(例如,所有)接收波束的能量级别的平均值。接收波束扫描可以在CCA持续时间(例如,4us、9us或25us)内执行。接收波束扫描可以在多个CCA持续时间上执行。
WTRU可以例如在波束扫描之后确定信道是空闲的。WTRU可以使用接收波束来执行CCA(例如短CCA,诸如25us持续时间),其中该接收波束可以对应于WTRU可能(例如将)在传输之前刚刚在其上进行传送的发射波束,例如以确保信道在传输之前在该方向上可以(例如是)空闲。例如,当WTRU可以确定信道是空闲的时,WTRU可以进行传送。例如,当WTRU可以确定信道不是空闲的时,WTRU可以不进行传送。
已经公开了用于在未许可频带中进行传输适配和无授权接入的系统、方法和手段。可以为传输适配提供灵活的传输边界。可以提供无授权接入资源池。例如通过使用资源池和/或CCA,可以在基于波束的系统中提供未许可操作。
通过非限制性示例的方式描述了特征、元素和动作(例如,过程和手段)。虽然示例可以针对LTE、LTE-A、新无线电(NR)或5G协议,但是本文中的主题适用于其它无线通信、系统、服务和协议。无论在附图中还是在说明书中呈现,所描述的主题的每个特征、元素、动作或其他方面可以单独地或以任何组合来实施,这其中包括以任何顺序与无论是已知的还是未知的其他主题一起实施,而不管本文呈现的示例如何。
WTRU可以指代物理设备的标识,或者指代用户的标识,例如与订阅相关的标识,例如MSISDN、SIP URI等。WTRU可以指代基于应用的标识,例如可以用于每个应用的用户名。
上述过程可以在计算机程序、软件和/或固件中实施,所述计算机程序、软件和/或固件被结合在计算机可读媒体中以由计算机和/或处理器执行。计算机可读媒体的示例包括但不限于电子信号(通过有线和/或无线连接传输)和/或计算机可读存储媒体。计算机可读存储媒体的示例包括但不限于:只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储器设备、诸如但不限于内部硬盘和可移动盘的磁媒体、磁光媒体、和/或诸如CD-ROM盘和/或数字多功能盘(DVD)的光媒体。与软件相关联的处理器可以用于实施在WTRU、终端、基站、RNC和/或任何主机计算机中使用的射频收发器。

Claims (14)

1.一种包括处理器的WTRU,被配置成:
接收候选资源集合;
确定信道是否空闲以供传输,其中所述确定包括在一时间段内周期性地执行对所述信道的空闲信道评估(CCA)或先听后说(LBT);
在确定所述信道是空闲的情况下,基于所述时间段中剩余的时间来从所述候选资源集合中确定资源,其中所确定的资源包括一个或多个频率资源;
基于所述一个或多个频率资源的数量来确定多输入多输出(MIMO)方案;以及
使用所述资源发送传输,其中所述传输包括解调参考信号(DM-RS)。
2.根据权利要求1所述的WTRU,其中所述MIMO方案包括:
如果所述一个或多个频率资源的数量小于或等于阈值,则进行空间频率块编码(SFBC),或者
如果所述一个或多个频率资源的数量大于所述阈值,则进行预编码器循环。
3.根据权利要求1所述的WTRU,其中所述DM-RS被放置在所述传输的末尾。
4.根据权利要求1所述的WTRU,其中与所述DS-RS相关联的序列向接收机指示所述资源。
5.根据权利要求1所述的WTRU,其中所述处理器还被配置成将调制符号映射到与所述资源相关联的资源元素。
6.根据权利要求1所述的WTRU,其中所述一个或多个频率资源的数量当所述时间段中剩余的所述时间较短时较大,且当所述时间段中剩余的所述时间较长时越小。
7.根据权利要求1所述的WTRU,其中所述周期性检查在与所述时间段相关联的每个时间单元中执行,直到所述信道被确定为空闲。
8.一种方法,包括:
接收候选资源集合;
确定信道是否空闲以供传输,其中所述确定包括在一时间段内周期性地执行对所述信道的空闲信道评估(CCA)或先听后说(LBT);
在确定所述信道空闲的情况下,基于所述时间段中剩余的时间来从所述候选资源集合中确定资源,其中所确定的资源包括一个或多个频率资源;
基于所述一个或多个频率资源的数量来确定多输入多输出(MIMO)方案;以及
使用所述资源发送传输,其中所述传输包括解调参考信号(DM-RS)。
9.根据权利要求8所述的方法,其中所述MIMO方案包括:
如果所述一个或多个频率资源的所述数量小于或等于阈值,则进行空间频率块编码(SFBC),或者
如果所述资源数量大于阈值,则进行预编码器循环。
10.根据权利要求8所述的方法,其中所述DM-RS被放置在所述传输的末尾。
11.根据权利要求8所述的方法,其中与所述DS-RS相关联的序列向接收机指示所述资源。
12.根据权利要求8所述的方法,进一步包括将调制符号映射到与所述资源相关联的资源元素。
13.根据权利要求8所述的方法,其中所述一个或多个频率资源的数量当所述时间段中剩余的所述时间较短时较大,且当所述时间段中剩余的所述时间较长时越小。
14.根据权利要求8所述的方法,其中在与所述时间段相关联的每个时间单元中执行所述周期性检查,直到确定所述信道空闲为止。
CN201880042277.7A 2017-05-03 2018-04-25 传输适配和无授权接入 Active CN110832928B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202311160712.5A CN117354947A (zh) 2017-05-03 2018-04-25 传输适配和无授权接入
CN202311164007.2A CN117354948A (zh) 2017-05-03 2018-04-25 传输适配和无授权接入

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762500533P 2017-05-03 2017-05-03
US62/500,533 2017-05-03
PCT/US2018/029251 WO2018204136A1 (en) 2017-05-03 2018-04-25 Transmission adaptation and grant-free access

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202311164007.2A Division CN117354948A (zh) 2017-05-03 2018-04-25 传输适配和无授权接入
CN202311160712.5A Division CN117354947A (zh) 2017-05-03 2018-04-25 传输适配和无授权接入

Publications (2)

Publication Number Publication Date
CN110832928A true CN110832928A (zh) 2020-02-21
CN110832928B CN110832928B (zh) 2023-09-08

Family

ID=62148504

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202311164007.2A Pending CN117354948A (zh) 2017-05-03 2018-04-25 传输适配和无授权接入
CN201880042277.7A Active CN110832928B (zh) 2017-05-03 2018-04-25 传输适配和无授权接入
CN202311160712.5A Pending CN117354947A (zh) 2017-05-03 2018-04-25 传输适配和无授权接入

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202311164007.2A Pending CN117354948A (zh) 2017-05-03 2018-04-25 传输适配和无授权接入

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311160712.5A Pending CN117354947A (zh) 2017-05-03 2018-04-25 传输适配和无授权接入

Country Status (5)

Country Link
US (2) US11452132B2 (zh)
EP (2) EP4164319A3 (zh)
JP (2) JP7122327B2 (zh)
CN (3) CN117354948A (zh)
WO (1) WO2018204136A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039556B (zh) * 2017-06-09 2023-11-07 华为技术有限公司 一种信号传输方法、相关设备及系统
CN109152054A (zh) * 2017-06-16 2019-01-04 华硕电脑股份有限公司 无线通信系统中用于非授权频谱的波束管理的方法和设备
ES2779959T3 (es) * 2017-06-16 2020-08-20 Ericsson Telefon Ab L M Diseño conjunto de correspondencia de recursos de DM-RS y PT-RS
CN109392097B (zh) * 2017-08-04 2020-10-30 维沃移动通信有限公司 一种数据传输方法及装置
EP3692756B1 (en) * 2017-10-02 2023-11-22 Nokia Technologies Oy Beam-specific and non-beam-specific synchronization signal block positions for wireless networks
US10517045B2 (en) * 2017-11-17 2019-12-24 Qualcomm Incorporated Techniques for power control using carrier aggregation in wireless communications
US10912128B2 (en) * 2018-01-23 2021-02-02 Samsung Electronics Co., Ltd. Listen-before-talk for wideband operations of NR unlicensed spectrum
US10779276B2 (en) 2018-03-30 2020-09-15 Apple Inc. Self-contained slot and slot duration configuration in NR systems
US11218206B2 (en) * 2018-07-18 2022-01-04 Qualcomm Incorporated Channel state information (CSI) computation for effective isotropic radiated power (EIRP)-constrained transmissions
US10972950B2 (en) * 2018-07-20 2021-04-06 Qualcomm Incorporated Methods and apparatus for handover enhancements
WO2020042180A1 (zh) * 2018-08-31 2020-03-05 华为技术有限公司 参考信号接收与发送方法、设备及系统
US10827411B2 (en) * 2018-09-13 2020-11-03 Rosemount Aerospace, Inc Deployment of a wireless aircraft network
JP6924176B2 (ja) * 2018-11-22 2021-08-25 アンリツ株式会社 移動端末試験装置、移動端末試験システムとnsaの試験方法
US11902215B2 (en) 2019-02-15 2024-02-13 Lenovo (Beijing) Limited Method and apparatus for resource mapping in unlicensed spectrum
CA3155006A1 (en) * 2019-11-08 2021-05-14 Lei Dong Resource selection method and apparatus
EP4088535A4 (en) * 2020-02-14 2023-10-11 ZTE Corporation METHOD FOR MULTIPLEXING SERVICES AT DIFFERENT PRIORITY LEVELS
WO2021215098A1 (ja) * 2020-04-24 2021-10-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末及び通信方法
US11991668B2 (en) * 2020-07-01 2024-05-21 Qualcomm Incorporated Resource selection for aperiodic configured grant uplink communication
US11671189B2 (en) * 2020-09-23 2023-06-06 Meta Platforms Technologies, Llc Systems and methods for managing energy detection thresholds
US20240008076A1 (en) * 2021-01-12 2024-01-04 Qualcomm Incorporated Channel sensing for spectrum sharing with high priority systems
US11751170B2 (en) * 2021-07-19 2023-09-05 Sprint Spectrum Llc Dynamically reassigning a high-noise frequency segment from a first access node to a second access node
US11917675B2 (en) * 2021-09-24 2024-02-27 Qualcomm Incorporated Techniques for channel aware rank adaptation
US12069725B2 (en) * 2021-11-19 2024-08-20 Qualcomm Incorporated Starting position control in channel occupancy time for new radio sidelink communications
US20240114541A1 (en) * 2022-09-23 2024-04-04 Qualcomm Incorporated Support of low latency transmissions in sidelink

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083208A (zh) * 2009-11-30 2011-06-01 普天信息技术研究院有限公司 资源分配方法和装置
CN102325378A (zh) * 2011-08-31 2012-01-18 新邮通信设备有限公司 控制物理下行控制信道传输的方法和设备
CN102448179A (zh) * 2012-01-18 2012-05-09 中兴通讯股份有限公司 一种分配资源的方法及演进型基站
CN103874096A (zh) * 2012-12-18 2014-06-18 中兴通讯股份有限公司 一种下行控制信息的发送和检测方法、发送端和接收端
US20140169260A1 (en) * 2011-08-05 2014-06-19 Panasonic Corporation Transmission device, preamble transmission device and transmission method
US20140341035A1 (en) * 2013-05-20 2014-11-20 Qualcomm Incoporated Beacon transmission over unlicensed spectrum
CN105050198A (zh) * 2009-04-23 2015-11-11 交互数字专利控股公司 eNB及在其中使能允许的多载波UL RACH配置集合使用的方法
CN105207859A (zh) * 2014-06-16 2015-12-30 国家电网公司 一种电力通信网络中otn网络规划设置方法
WO2016106662A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 在使用非授权频段的小区中传输参考信号的方法及设备
WO2016144481A1 (en) * 2015-03-06 2016-09-15 Qualcomm Incorporated Mitigation of inter-base station resynchronization loss in lte/lte-a networks with contention-based shared frequency spectrum

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108716A2 (ko) 2011-02-11 2012-08-16 한국전자통신연구원 다중 송수신 포인트를 사용하는 무선 통신 시스템
KR102631732B1 (ko) * 2014-11-14 2024-01-30 인터디지탈 패튼 홀딩스, 인크 비인가 대역에서의 롱 텀 에볼루션(lte) 동작을 위한 채널 측정 및 보고 메커니즘을 위한 방법 및 프로시져
US11197317B2 (en) 2014-12-23 2021-12-07 Qualcomm Incorporated Techniques for determining a symbol period for a starting symbol of a transmission in a shared radio frequency spectrum
CN107660348B (zh) * 2015-04-08 2021-08-13 交互数字专利控股公司 用于未许可频带中的lte操作的系统和方法
TWI750136B (zh) 2015-09-23 2021-12-21 美商Idac控股公司 以無線傳送/接收單元(wtru)為中心傳輸
RU2613278C1 (ru) 2016-04-13 2017-03-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ"). Комбинированная основа для функционального напитка

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105050198A (zh) * 2009-04-23 2015-11-11 交互数字专利控股公司 eNB及在其中使能允许的多载波UL RACH配置集合使用的方法
CN102083208A (zh) * 2009-11-30 2011-06-01 普天信息技术研究院有限公司 资源分配方法和装置
US20140169260A1 (en) * 2011-08-05 2014-06-19 Panasonic Corporation Transmission device, preamble transmission device and transmission method
CN102325378A (zh) * 2011-08-31 2012-01-18 新邮通信设备有限公司 控制物理下行控制信道传输的方法和设备
CN102448179A (zh) * 2012-01-18 2012-05-09 中兴通讯股份有限公司 一种分配资源的方法及演进型基站
CN103874096A (zh) * 2012-12-18 2014-06-18 中兴通讯股份有限公司 一种下行控制信息的发送和检测方法、发送端和接收端
US20140341035A1 (en) * 2013-05-20 2014-11-20 Qualcomm Incoporated Beacon transmission over unlicensed spectrum
CN105207859A (zh) * 2014-06-16 2015-12-30 国家电网公司 一种电力通信网络中otn网络规划设置方法
WO2016106662A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 在使用非授权频段的小区中传输参考信号的方法及设备
WO2016144481A1 (en) * 2015-03-06 2016-09-15 Qualcomm Incorporated Mitigation of inter-base station resynchronization loss in lte/lte-a networks with contention-based shared frequency spectrum

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: ""Further discussion on transmission scheme 2 for DL"", 《3GPP TSG RAN WG1 #88BIS R1-1704718》 *
INTEL CORPORATION: ""Further discussion on transmission scheme 2 for DL"", 《3GPP TSG RAN WG1 #88BIS R1-1704718》, 25 March 2017 (2017-03-25), pages 2 *
柏青;吕平宝;王勇;钱荣福;: "下一代网络时延提升的关键技术", 电信快报, no. 01 *

Also Published As

Publication number Publication date
EP4164319A3 (en) 2023-05-31
JP2022169609A (ja) 2022-11-09
CN117354948A (zh) 2024-01-05
EP3620000B1 (en) 2022-09-21
EP4164319A2 (en) 2023-04-12
US20220386366A1 (en) 2022-12-01
WO2018204136A1 (en) 2018-11-08
US11452132B2 (en) 2022-09-20
JP2020519120A (ja) 2020-06-25
RU2019137415A3 (zh) 2021-09-10
CN117354947A (zh) 2024-01-05
RU2019137415A (ru) 2021-05-21
US20200077437A1 (en) 2020-03-05
JP7122327B2 (ja) 2022-08-19
EP3620000A1 (en) 2020-03-11
CN110832928B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
CN110832928B (zh) 传输适配和无授权接入
US11516853B2 (en) Random access in next generation wireless systems
US11265919B2 (en) RACH procedures in unlicensed spectrum
US20220086915A1 (en) Methods and apparatus for msg-a transmission in two-step rach
US12022436B2 (en) Control information transmission and sensing in wireless systems
CN113475032B (zh) 在nr-u中接收控制信息
CN112567838A (zh) 用于拥塞控制的nr v2x方法
CN112154706A (zh) 用于信道接入管理的方法
US20220225412A1 (en) Shared channel occupancy time operation
CN114365448A (zh) Nr-u中csi-rs和csi反馈的接收方法
KR20220005435A (ko) 광대역 비면허 채널 액세스 방법
RU2777374C2 (ru) Адаптация передачи и доступ без предоставления
US20240340959A1 (en) Sidelink collision detection and indication
EP4430903A1 (en) Methods on enhancing reliability and supporting mixed priority traffic in high frequency communications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230424

Address after: Delaware

Applicant after: INTERDIGITAL PATENT HOLDINGS, Inc.

Address before: Wilmington, Delaware, USA

Applicant before: IDAC HOLDINGS, Inc.

GR01 Patent grant
GR01 Patent grant