CN110825029A - 自适应加工机构位姿误差的补偿方法及系统 - Google Patents

自适应加工机构位姿误差的补偿方法及系统 Download PDF

Info

Publication number
CN110825029A
CN110825029A CN201911031431.3A CN201911031431A CN110825029A CN 110825029 A CN110825029 A CN 110825029A CN 201911031431 A CN201911031431 A CN 201911031431A CN 110825029 A CN110825029 A CN 110825029A
Authority
CN
China
Prior art keywords
normal vector
machining
theoretical
coordinate system
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911031431.3A
Other languages
English (en)
Other versions
CN110825029B (zh
Inventor
吴丹
任昊
张继文
陈恳
王国磊
徐静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201911031431.3A priority Critical patent/CN110825029B/zh
Publication of CN110825029A publication Critical patent/CN110825029A/zh
Application granted granted Critical
Publication of CN110825029B publication Critical patent/CN110825029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35408Calculate new position data from actual data to compensate for contour error

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

本发明公开了一种自适应加工机构位姿误差的补偿方法及系统,其中,该方法包括以下步骤:利用距离传感器阵列获取当前工件在测量坐标系下的法矢向量;获取当前工件的理论法矢向量,并根据法矢向量和理论法矢向量分别计算法矢向量的待加工位置和理论法矢向量的理论加工位置;计算待加工位置和理论加工位置的加工误差,利用线性关系处理加工误差,得到每个进给主轴的补偿量。该方法通过加工机构上的距离传感器阵列检测并预测偏移量,依据预测值,使用机床的进给轴进行平动补偿,进而消除加工误差的主体部分,获取更高的加工精度。

Description

自适应加工机构位姿误差的补偿方法及系统
技术领域
本发明涉及自动化装备及制造中的自适应加工前的检测技术领域,特别涉及一种自适应加工机构位姿误差的补偿方法及系统。
背景技术
在现代的自动化制造装备当中,法矢测量是重要的组成部分,对于无法通过加工保证垂直度的大型部件来说,使用法矢测量机构测量局部法矢,并调整加工机构位姿以保证垂直度,进而提升加工精度,是相对合理的做法。进而,在法矢测量、调整的过程当中,使用带有球铰关节,可以在工件表面被动调整并匹配方向的自适应加工机构,可以减少脱离工件并调姿引起的时间消耗,从而提升效率。在自适应匹配的过程当中,自适应加工机构沿理论的轴线方向接近法线方向未知的工件,在机构接触到工件之后,包含着两运动自由度的球铰的加工机构,将会利用球铰的被动调整,使得末端压紧工件,进而自适应地调整到工件的法矢方向上。工件上自适应的球铰机构所指向的待加工位置与加工主轴指向的理论加工位置存在误差,通过局部的平面假设,并计算位置误差进行补偿,可以得到更好的加工精度。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种自适应加工机构位姿误差的补偿方法,该方法能够消除加工误差的主体部分,获取更高的加工精度。
本发明的另一个目的在于提出一种自适应加工机构位姿误差的补偿系统。
为达到上述目的,本发明一方面提出了自适应加工机构位姿误差的补偿方法,包括以下步骤:利用距离传感器阵列获取当前工件在测量坐标系下的法矢向量;获取所述当前工件的理论法矢向量,并根据所述法矢向量和所述理论法矢向量分别计算所述法矢向量的待加工位置和所述理论法矢向量的理论加工位置;计算所述待加工位置和所述理论加工位置的加工误差,利用线性关系处理所述加工误差,得到每个进给主轴的补偿量。
本发明实施例的自适应加工机构位姿误差的补偿方法,通过距离传感器阵列测量到的工件表面在测量坐标系下的偏角,预测当前工件表面由于自适应引起的位置误差,并换算得到各个坐标轴的进给量,使自适应加工机构的加工精度更高。
另外,根据本发明上述实施例的自适应加工机构位姿误差的补偿方法还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述利用距离传感器阵列获取当前工件在测量坐标系下的法矢向量,包括:建立当前自适应加工机构的测量坐标系和实际加工机床的加工坐标系,并构建所述测量坐标系和所述测量坐标系的线性关系;获取并处理所述距离传感器阵列的当前读数,得到所述当前工件在测量坐标系下的法矢偏角;利用所述法矢偏角计算在测量坐标系下的法矢向量。
进一步地,在本发明的一个实施例中,所述获取所述当前工件的理论法矢向量,并根据所述法矢向量和所述理论法矢向量分别计算所述法矢向量的待加工位置和所述理论法矢向量的理论加工位置,包括:根据实际加工机床的加工坐标系获取所述当前工件的理论法矢向量;对比所述法矢向量与所述理论法矢向量,预测当前自适应加工机床的朝向;获取当前自适应加工机床的调姿球心偏置长度,并通过所述调姿球心偏置长度和所述法矢向量计算在所述测量坐标下的待加工位置;利用所述理论法矢向量计算在所述测量坐标系下的理论加工位置。
进一步地,在本发明的一个实施例中,所述计算所述待加工位置和所述理论加工位置的加工误差,并利用线性关系将所述加工误差转化为加工坐标系,得到每个进给主轴的补偿量,包括:处理所述待加工位置与所述理论加工位置,得到所述测量坐标下的补偿向量,其中,所述补偿向量为所述加工误差;利用所述线性关系将所述补偿向量转换到所述加工坐标系中,得到每个加工主轴的补偿量。
为达到上述目的,本发明另一方面提出了一种自适应加工机构位姿误差的补偿系统,包括:获取模块,用于利用距离传感器阵列获取当前工件在测量坐标系下的法矢向量;计算模块,用于获取所述当前工件的理论法矢向量,并根据所述法矢向量和所述理论法矢向量分别计算所述法矢向量的待加工位置和所述理论法矢向量的理论加工位置;线性处理模块,用于计算所述待加工位置和所述理论加工位置的加工误差,利用线性关系处理所述加工误差,得到每个进给主轴的补偿量。
本发明实施例的自适应加工机构位姿误差的补偿系统,通过距离传感器阵列测量到的工件表面在测量坐标系下的偏角,预测当前工件表面由于自适应引起的位置误差,并换算得到各个坐标轴的进给量,使自适应加工机构的加工精度更高。
另外,根据本发明上述实施例的自适应加工机构位姿误差的补偿系统还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述获取模块包括:建立单元,用于建立当前自适应加工机构的测量坐标系和实际加工机床的加工坐标系,并构建所述测量坐标系和所述测量坐标系的线性关系;第一处理单元,用于获取并处理所述距离传感器阵列的当前读数,得到所述当前工件在测量坐标系下的法矢偏角;计算单元,用于利用所述法矢偏角计算在测量坐标系下的法矢向量。
进一步地,在本发明的一个实施例中,所述计算模块包括:获取单元,用于根据实际加工机床的加工坐标系获取所述当前工件的理论法矢向量;预测单元,用于对比所述法矢向量与所述理论法矢向量,预测当前自适应加工机床的朝向;第一计算单元,用于获取当前自适应加工机床的调姿球心偏置长度,并通过所述调姿球心偏置长度和所述法矢向量计算在所述测量坐标下的待加工位置;第二计算单元,用于利用所述理论法矢向量计算在所述测量坐标系下的理论加工位置。
进一步地,在本发明的一个实施例中,所述线性处理模块包括:第二处理单元,用于处理所述待加工位置与所述理论加工位置,得到所述测量坐标下的补偿向量,其中,所述补偿向量为所述加工误差;转换单元,用于利用所述线性关系将所述补偿向量转换到所述加工坐标系中,得到每个加工主轴的补偿量。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的自适应加工机构位姿误差的补偿方法流程图;
图2为根据本发明实施例的测量坐标系和实际加工机床的加工坐标系示意图;
图3为根据本发明实施例的面向自适应加工头的装置的一种构成的示意图;
图4为根据本发明实施例的末端自适应机构结构的示意图;
图5为根据本发明实施例的自适应加工机构位姿误差的补偿系统结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的自适应加工机构位姿误差的补偿方法及系统,首先将参照附图描述根据本发明实施例提出的自适应加工机构位姿误差的补偿方法。
图1是本发明一个实施例的自适应加工机构位姿误差的补偿方法流程图。
如图1所示,该自适应加工机构位姿误差的补偿方法包括以下步骤:
在步骤S1中,利用距离传感器阵列获取当前工件在测量坐标系下的法矢向量。
也就是说,使用距离传感器阵列,检测被加工曲面的局部法矢向量。
进一步地,在本发明的一个实施例中,如图2所示,步骤S1包括:建立当前自适应加工机构的测量坐标系和实际加工机床的加工坐标系,并构建测量坐标系和测量坐标系的线性关系;获取并处理距离传感器阵列的当前读数,得到当前工件在测量坐标系下的法矢偏角;利用所述法矢偏角计算在测量坐标系下的法矢向量。
需要说明的是,根据自适应加工设备由于被动自适应引起的误差计算方法,其计算方式与传感器阵列的布置方法、布置尺寸互不影响,因此步骤S1可以独立进行计算,将计算出的当前工件法矢向量
Figure BDA0002250264290000041
传递给步骤S2即可。步骤S1具体包括:建立加工机构末端的测量坐标系与实际加工机床空间的加工坐标系换算关系;使用当前距离传感器阵列的读数d1~d4,得到当前工件在测量坐标系下的法矢偏角θ13,θ24;进一步,利用传感器阵列测量的法矢偏角θ13,θ24,计算当前工件法矢在传感器测量坐标系下的法矢向量
Figure BDA0002250264290000042
在步骤S2中,获取当前工件的理论法矢向量,并根据法矢向量和理论法矢向量分别计算法矢向量的待加工位置和理论法矢向量的理论加工位置。
进一步地,步骤S2包括:根据实际加工机床的加工坐标系获取当前工件的理论法矢向量;对比法矢向量与理论法矢向量,预测当前自适应加工机床的朝向;获取当前自适应加工机床的调姿球心偏置长度,并通过调姿球心偏置长度和法矢向量计算在测量坐标下的待加工位置;利用理论法矢向量计算在测量坐标系下的理论加工位置。
需要说明的是,在得到当前工件的法矢向量之后,其误差还收到自适应加工机构的结构尺寸,尤其是调姿球心偏置长度l的影响,进一步,利用结构尺寸,可以计算出局部的调姿误差。因此,步骤S2具体包括:将工件当前法矢与测量坐标系下的理论法矢,也是加工法矢
Figure BDA0002250264290000044
进行对比,预测当前自适应加工机构的朝向;使用自适应加工机构的调姿球心偏置长度l和当前法矢
Figure BDA0002250264290000045
计算自适应加工机构的待加工点此时在测量坐标系下的位置
Figure BDA0002250264290000046
和当前工件所在平面表达式;同理,使用理论法矢
Figure BDA0002250264290000047
计算理论加工点位在测量坐标系下的位置
Figure BDA0002250264290000048
在步骤S3中,计算待加工位置和理论加工位置的加工误差,利用线性关系处理加工误差,得到每个进给主轴的补偿量。
也就是说,使用局部法矢与理论法矢的误差,预测由于自适应加工机构在空间内被动偏摆引起的加工误差,将三维的孔位误差转化到机床坐标系给出各个进给轴需要补偿的距离。
进一步地,步骤S3包括:处理待加工位置与理论加工位置,得到测量坐标下的补偿向量,其中,补偿向量为加工误差;利用线性关系将补偿向量转换到加工坐标系中,得到每个加工主轴的补偿量。
在计算出在测量坐标系下因为被动自适应引起的位置误差之后,根据当前加工机构的构成方式,可以通过坐标系换算,得到各个加工轴需要补偿的距离。因此,步骤S3具体包括:使用工件平面的加工机构所在位置
Figure BDA0002250264290000051
与理论加工点
Figure BDA0002250264290000052
作差,得到测量坐标系下需要补偿的向量;通过线性关系,转换到加工坐标系当中,得到各个加工主轴的补偿量。
综上,本发明实施例针对利用球铰作为自适应单元的加工机构在压紧过程当中的被动旋转通过平动补偿修正孔位偏差的方法,本发明实施了的原理是球铰关节被动调节加工机构压紧平面的方向以匹配工件局部法矢方向的过程当中,将会产生加工点位在空间当中的偏移,为了补偿这一偏移,通过加工机构上的距离传感器阵列检测并预测偏移量,依据预测值,使用机床的进给轴进行平动补偿,从而消除加工误差的主体部分,提高加工精度。
下面结合具体示例对本发明实施例做进一步详细说明。
如图3所示,以加工机构为例,将本发明实施例应用于五自由度的加工机构。这一加工机构在提供X,Y,Z三轴的进给的同时,围绕A、C转轴交点6提供了两个转动自由度,分别为围绕Z轴的C转轴,和围绕X轴经过C轴一次旋转之后得到的X’转轴的A转轴。在加工装置的末端安装有提供自适应自由度的球铰机构5,以及组成阵列的距离传感器1、距离传感器2、距离传感器3、距离传感器4。以这种形式的加工设备为例,对自适应加工设备的位姿误差的补偿方法包括步骤:S1,使用距离传感器阵列,检测被加工曲面的局部法矢;S2,获取当前工件的理论法矢向量,并分别计算法矢向量的待加工位置和理论法矢向量的理论加工位置;S3,使用局部法矢与理论法矢的误差,预测由于自适应加工机构在空间内被动偏摆引起的加工误差,将三维的孔位误差转化到机床坐标系给出各个进给轴需要补偿的距离。
步骤S1的具体实施步骤:
S101,利用当前加工机构的构成形式,以图3所示机构为例,使用A、C转轴的的转角建立加工机构末端的测量坐标系与实际加工机床空间的加工坐标系换算关系。
S102,使用当前距离传感器阵列的读数d1~d4与当前距离传感器阵列的分布圆直径D,得到当前工件在测量坐标系下的法矢偏角θ13,θ24,其计算公式为
Figure BDA0002250264290000061
Figure BDA0002250264290000062
S103,利用传感器阵列测量的法矢偏角θ13,θ24,计算当前工件法矢在传感器测量坐标系下的法矢向量
Figure BDA0002250264290000063
其计算公式为
Figure BDA0002250264290000064
如图4所示,在得到当前工件的法矢向量之后,其误差还收到自适应加工机构的结构尺寸,尤其是调姿球心偏置长度l的影响,在加工机构当中,球心偏置长度,l可以用压紧工件端面8到球铰5旋转球心的垂直距离10代替,利用结构尺寸,可以计算出局部的调姿误差。
步骤S2的具体实施步骤为:
S201,将工件当前法矢与测量坐标系下的理论法矢,也是加工法矢
Figure BDA0002250264290000066
进行对比,预测当前自适应加工机构的朝向。
S202,使用自适应加工机构的调姿球心偏置长度l和当前法矢
Figure BDA0002250264290000067
计算自适应加工机构的待加工位置7此时在测量坐标系下的位置
Figure BDA0002250264290000068
和当前工件所在平面表达式。
S203,同理,使用理论法矢
Figure BDA0002250264290000069
计算理论加工位置9在测量坐标系下的位置
步骤S3的具体实施步骤为:
S301,使用工件平面的加工机构所在位置
Figure BDA00022502642900000611
与理论加工点
Figure BDA00022502642900000612
作差,理论位置相对于实际位置的待补偿偏移量L在测量坐标系下的表达式为:
Figure BDA00022502642900000613
S302,通过线性变化,转换到加工坐标系当中,得到各个加工主轴的补偿量。以图3当中的A、C转轴构成的五轴加工机构为例。
给出建立在球铰球心5的末端测量坐标系相对于机床坐标系围绕A、C转轴交点6的转角θA,θC,可以得到补偿偏移量对应的X、Y、Z各个主轴的补偿值:
Figure BDA00022502642900000614
Figure BDA00022502642900000615
将三个机床主轴的补偿值补偿进运动机构当中,可以消除由于自适应加工机构法矢的被动调整引起的加工位姿误差的主体部分,进而提升自适应加工机构的加工精度。
根据本发明实施例提出的自适应加工机构位姿误差的补偿方法,能够分析自适应加工设备在调法矢过程当中由于被动适应引起的加工点位偏移;能够通过加工设备当前测量的偏移量,解耦得到空间当中各个进给轴运动的补偿量;能够通过对自适应加工设备的位置偏移补偿,使得自适应加工设备的由于被动适应工件法矢引起的位置误差大幅减少,从而使该类设备的精度提升。
其次参照附图描述根据本发明实施例提出的自适应加工机构位姿误差的补偿系统。
图5是本发明一个实施例的自适应加工机构位姿误差的补偿系统结构示意图。
如图5所示,该自适应加工机构位姿误差的补偿系统10包括:获取模块100、计算模块200和线性处理模块300。
其中,获取模块100,用于利用距离传感器阵列获取当前工件在测量坐标系下的法矢向量。计算模块200,用于获取当前工件的理论法矢向量,并根据法矢向量和理论法矢向量分别计算法矢向量的待加工位置和理论法矢向量的理论加工位置;线性处理模块300,用于计算待加工位置和理论加工位置的加工误差,利用线性关系处理加工误差,得到每个进给主轴的补偿量。
进一步地,在本发明的一个实施例中,获取模块100包括:建立单元,用于建立当前自适应加工机构的测量坐标系和实际加工机床的加工坐标系,并构建测量坐标系和测量坐标系的线性关系;第一处理单元,用于获取并处理距离传感器阵列的当前读数,得到当前工件在测量坐标系下的法矢偏角;计算单元,用于利用法矢偏角计算在测量坐标系下的法矢向量。
进一步地,在本发明的一个实施例中,计算模块200包括:获取单元,用于根据实际加工机床的加工坐标系获取当前工件的理论法矢向量;预测单元,用于对比法矢向量与理论法矢向量,预测当前自适应加工机床的朝向;第一计算单元,用于获取当前自适应加工机床的调姿球心偏置长度,并通过调姿球心偏置长度和法矢向量计算在测量坐标下的待加工位置;第二计算单元,用于利用理论法矢向量计算在测量坐标系下的理论加工位置。
进一步地,在本发明的一个实施例中,线性处理模块300包括:第二处理单元,用于处理待加工位置与理论加工位置,得到测量坐标下的补偿向量,其中,补偿向量为加工误差;转换单元,用于利用线性关系将补偿向量转换到加工坐标系中,得到每个加工主轴的补偿量。
需要说明的是,前述对自适应加工机构位姿误差的补偿方法实施例的解释说明也适用于该系统,此处不再赘述。
根据本发明实施例提出的自适应加工机构位姿误差的补偿系统,能够分析自适应加工设备在调法矢过程当中由于被动适应引起的加工点位偏移;能够通过加工设备当前测量的偏移量,解耦得到空间当中各个进给轴运动的补偿量;能够通过对自适应加工设备的位置偏移补偿,使得自适应加工设备的由于被动适应工件法矢引起的位置误差大幅减少,从而使该类设备的精度提升。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

1.一种自适应加工机构位姿误差的补偿方法,其特征在于,包括以下步骤:
利用距离传感器阵列获取当前工件在测量坐标系下的法矢向量;
获取所述当前工件的理论法矢向量,并根据所述法矢向量和所述理论法矢向量分别计算所述法矢向量的待加工位置和所述理论法矢向量的理论加工位置;以及
计算所述待加工位置和所述理论加工位置的加工误差,利用线性关系处理所述加工误差,得到每个进给主轴的补偿量。
2.根据权利要求1所述的自适应加工机构位姿误差的补偿方法,其特征在于,所述利用距离传感器阵列获取当前工件在测量坐标系下的法矢向量,包括:
建立当前自适应加工机构的测量坐标系和实际加工机床的加工坐标系,并构建所述测量坐标系和所述测量坐标系的线性关系;
获取并处理所述距离传感器阵列的当前读数,得到所述当前工件在测量坐标系下的法矢偏角;
利用所述法矢偏角计算在测量坐标系下的法矢向量。
3.根据权利要求1所述的自适应加工机构位姿误差的补偿方法,其特征在于,所述获取所述当前工件的理论法矢向量,并根据所述法矢向量和所述理论法矢向量分别计算所述法矢向量的待加工位置和所述理论法矢向量的理论加工位置,包括:
根据实际加工机床的加工坐标系获取所述当前工件的理论法矢向量;
对比所述法矢向量与所述理论法矢向量,预测当前自适应加工机床的朝向;
获取当前自适应加工机床的调姿球心偏置长度,并通过所述调姿球心偏置长度和所述法矢向量计算在所述测量坐标下的待加工位置;
利用所述理论法矢向量计算在所述测量坐标系下的理论加工位置。
4.根据权利要求1所述的自适应加工机构位姿误差的补偿方法,其特征在于,所述计算所述待加工位置和所述理论加工位置的加工误差,并利用线性关系将所述加工误差转化为加工坐标系,得到每个进给主轴的补偿量,包括:
处理所述待加工位置与所述理论加工位置,得到所述测量坐标下的补偿向量,其中,所述补偿向量为所述加工误差;
利用所述线性关系将所述补偿向量转换到所述加工坐标系中,得到每个加工主轴的补偿量。
5.一种自适应加工机构位姿误差的补偿系统,其特征在于,包括:
获取模块,用于利用距离传感器阵列获取当前工件在测量坐标系下的法矢向量;
计算模块,用于获取所述当前工件的理论法矢向量,并根据所述法矢向量和所述理论法矢向量分别计算所述法矢向量的待加工位置和所述理论法矢向量的理论加工位置;以及
线性处理模块,用于计算所述待加工位置和所述理论加工位置的加工误差,利用线性关系处理所述加工误差,得到每个进给主轴的补偿量。
6.根据权利要求5所述的自适应加工机构位姿误差的补偿系统,其特征在于,所述获取模块包括:
建立单元,用于建立当前自适应加工机构的测量坐标系和实际加工机床的加工坐标系,并构建所述测量坐标系和所述测量坐标系的线性关系;
第一处理单元,用于获取并处理所述距离传感器阵列的当前读数,得到所述当前工件在测量坐标系下的法矢偏角;
计算单元,用于利用所述法矢偏角计算在测量坐标系下的法矢向量。
7.根据权利要求5所述的自适应加工机构位姿误差的补偿系统,其特征在于,所述计算模块包括:
获取单元,用于根据实际加工机床的加工坐标系获取所述当前工件的理论法矢向量;
预测单元,用于对比所述法矢向量与所述理论法矢向量,预测当前自适应加工机床的朝向;
第一计算单元,用于获取当前自适应加工机床的调姿球心偏置长度,并通过所述调姿球心偏置长度和所述法矢向量计算在所述测量坐标下的待加工位置;
第二计算单元,用于利用所述理论法矢向量计算在所述测量坐标系下的理论加工位置。
8.根据权利要求5所述的自适应加工机构位姿误差的补偿系统,其特征在于,所述线性处理模块包括:
第二处理单元,用于处理所述待加工位置与所述理论加工位置,得到所述测量坐标下的补偿向量,其中,所述补偿向量为所述加工误差;
转换单元,用于利用所述线性关系将所述补偿向量转换到所述加工坐标系中,得到每个加工主轴的补偿量。
CN201911031431.3A 2019-10-28 2019-10-28 自适应加工机构位姿误差的补偿方法及系统 Active CN110825029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911031431.3A CN110825029B (zh) 2019-10-28 2019-10-28 自适应加工机构位姿误差的补偿方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911031431.3A CN110825029B (zh) 2019-10-28 2019-10-28 自适应加工机构位姿误差的补偿方法及系统

Publications (2)

Publication Number Publication Date
CN110825029A true CN110825029A (zh) 2020-02-21
CN110825029B CN110825029B (zh) 2020-10-16

Family

ID=69550842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911031431.3A Active CN110825029B (zh) 2019-10-28 2019-10-28 自适应加工机构位姿误差的补偿方法及系统

Country Status (1)

Country Link
CN (1) CN110825029B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111921788A (zh) * 2020-08-07 2020-11-13 欣辰卓锐(苏州)智能装备有限公司 高精度动态跟踪点胶方法及其装置
CN112051799A (zh) * 2020-09-10 2020-12-08 成都广泰威达数控技术股份有限公司 一种机械加工自适应控制方法
CN114589545A (zh) * 2021-12-08 2022-06-07 北京星航机电装备有限公司 一种复杂曲面变形在线检测及五轴补偿加工方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289836A1 (de) * 1987-05-04 1988-11-09 Siemens Aktiengesellschaft Verfahren zur Positionierung eines Werkzeugs eines mehrgelenkigen Roboters
TW380070B (en) * 1996-04-10 2000-01-21 Agie Ag Ind Elektronik Wire erosion machine and method for the operation thereof
CN102225516A (zh) * 2011-06-09 2011-10-26 天津大学 一种实现夹具系统综合误差提取及确定补偿值的方法
US20120187890A1 (en) * 2011-01-26 2012-07-26 Fanuc Corporation Numerical controller having workpiece mounting error compensation unit for three-axis machine tool
CN103447877A (zh) * 2013-09-16 2013-12-18 南京航空航天大学 自主移动机构法矢检测与调姿运动方法
CN103592893A (zh) * 2013-10-24 2014-02-19 中国科学院长春光学精密机械与物理研究所 一种光学元件加工中自动补偿位姿误差的方法
CN105705302A (zh) * 2013-02-04 2016-06-22 约翰尼斯·高特立博 用于运动学位姿误差的校准方法与结构及相应的计算机程序和计算机可读的数据存储介质
CN106625573A (zh) * 2016-10-25 2017-05-10 天津大学 一种五自由度混联机器人直接误差补偿技术
CN107727026A (zh) * 2017-10-18 2018-02-23 北方工业大学 面向双工业机器人协同工作的工件坐标系的标定方法
CN108406771A (zh) * 2018-03-09 2018-08-17 江南大学 一种平面约束误差模型及机器人自标定方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289836A1 (de) * 1987-05-04 1988-11-09 Siemens Aktiengesellschaft Verfahren zur Positionierung eines Werkzeugs eines mehrgelenkigen Roboters
TW380070B (en) * 1996-04-10 2000-01-21 Agie Ag Ind Elektronik Wire erosion machine and method for the operation thereof
US20120187890A1 (en) * 2011-01-26 2012-07-26 Fanuc Corporation Numerical controller having workpiece mounting error compensation unit for three-axis machine tool
CN102225516A (zh) * 2011-06-09 2011-10-26 天津大学 一种实现夹具系统综合误差提取及确定补偿值的方法
CN105705302A (zh) * 2013-02-04 2016-06-22 约翰尼斯·高特立博 用于运动学位姿误差的校准方法与结构及相应的计算机程序和计算机可读的数据存储介质
CN103447877A (zh) * 2013-09-16 2013-12-18 南京航空航天大学 自主移动机构法矢检测与调姿运动方法
CN103592893A (zh) * 2013-10-24 2014-02-19 中国科学院长春光学精密机械与物理研究所 一种光学元件加工中自动补偿位姿误差的方法
CN106625573A (zh) * 2016-10-25 2017-05-10 天津大学 一种五自由度混联机器人直接误差补偿技术
CN107727026A (zh) * 2017-10-18 2018-02-23 北方工业大学 面向双工业机器人协同工作的工件坐标系的标定方法
CN108406771A (zh) * 2018-03-09 2018-08-17 江南大学 一种平面约束误差模型及机器人自标定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RONGHUA LI: "Three-dimensional pose estimation based on LS-SVM error compensation", 《2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE》 *
朱贺贺: "接触式螺纹测量仪的六自由度位姿误差的测量与补偿", 《机械与电子》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111921788A (zh) * 2020-08-07 2020-11-13 欣辰卓锐(苏州)智能装备有限公司 高精度动态跟踪点胶方法及其装置
CN112051799A (zh) * 2020-09-10 2020-12-08 成都广泰威达数控技术股份有限公司 一种机械加工自适应控制方法
CN114589545A (zh) * 2021-12-08 2022-06-07 北京星航机电装备有限公司 一种复杂曲面变形在线检测及五轴补偿加工方法

Also Published As

Publication number Publication date
CN110825029B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
CN110825029B (zh) 自适应加工机构位姿误差的补偿方法及系统
US10357863B2 (en) Error identification method of machine tool and error identification system of the same
US9212906B2 (en) Device for detecting axis coplanarity of orthogonal rotary shafts having built-in intersection and precision detecting method
CN109454281B (zh) 一种机器人铣削加工中的螺旋桨工件坐标系标定方法
CN101992407A (zh) 设备的误差辨识方法和误差辨识程序
CN112526926B (zh) 一种五轴数控机床旋转轴结构参数误差补偿方法
CN101936722B (zh) 一种用于测量并控制天线罩修磨量的在线测量装置及方法
CN111664813B (zh) 一种自由面任意孔法矢测量装置、方法及补偿方法
CN109500619A (zh) 机床的数控装置和数控方法
CN110154022B (zh) 一种基于定向刚度模型的机器人制孔径向定位修正方法
CN112091255B (zh) 制孔定位偏差源分布区间及测量相机安装参数的计算方法
CN110940296A (zh) 一种高超声速飞行器舵偏角测量方法
CN114952861B (zh) 基于位姿测量数据的机器人运动学参数误差精准辨识方法
CN114253217B (zh) 带有自修正功能的五轴机床rtcp自动标定方法
CN103522127B (zh) 一种用于回转式曲线轮廓加工的在机测量装置及方法
CN113607053B (zh) 基于筒体内表面特征点的位姿调整装置、方法及系统
EP2669701A1 (en) Calibration to improve weather radar positioning determination
CN112815841B (zh) 法向测量传感器的位置标定方法及装置
CN111006626A (zh) 点胶设备的旋转轴标定方法及其装置
CN114485510B (zh) 孔位测量方法及其测量装置
CN112355712B (zh) 一种触发式在机测量的精度校准方法及系统
CN114111672A (zh) 一种多位移传感器法向测量的传感器安装位置参数快速标定方法
CN112525130B (zh) 接触式局部曲率特征的测量方法及系统
CN108972623B (zh) 基于力控传感器的机器人末端装夹误差自动修正方法
WO2020211032A1 (zh) 基于轴盘的转子六自由度运动测试及其运动参数解耦方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant