CN110823265A - 一种纳米纤维基的可拉伸自供能传感器及其制备方法 - Google Patents

一种纳米纤维基的可拉伸自供能传感器及其制备方法 Download PDF

Info

Publication number
CN110823265A
CN110823265A CN201810911630.2A CN201810911630A CN110823265A CN 110823265 A CN110823265 A CN 110823265A CN 201810911630 A CN201810911630 A CN 201810911630A CN 110823265 A CN110823265 A CN 110823265A
Authority
CN
China
Prior art keywords
nanofiber
spinning
electrode layer
nanofiber membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810911630.2A
Other languages
English (en)
Inventor
姚政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Guoyuan Environmental Technology Co Ltd
Original Assignee
Jiangsu Guoyuan Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Guoyuan Environmental Technology Co Ltd filed Critical Jiangsu Guoyuan Environmental Technology Co Ltd
Priority to CN201810911630.2A priority Critical patent/CN110823265A/zh
Publication of CN110823265A publication Critical patent/CN110823265A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种纳米纤维基的可拉伸自供能传感器及其制备方法,该自功能传感器包括摩擦层和电极层,所述摩擦层覆盖在电极层表面,所述摩擦层为复合纳米纤维膜,所述电极层包括第一纳米纤维膜和导电纳米材料,所述导电纳米材料敷设在第一纳米纤维膜上表面,本发明提供的柔性可拉伸的自供能传感器用于人体动作监测,主要是基于摩擦纳米发电机的摩擦起电和静电感应效应产生的电信号来反映人体动作特征信号的变化。本发明提出的柔性可拉伸材料结合静电纺丝技术和丝网印刷技术,使整个可穿戴器件兼具柔性可拉伸的特点,可随意扭曲和拉伸,即使在剪切之后,器件仍能够正常工作。

Description

一种纳米纤维基的可拉伸自供能传感器及其制备方法
技术领域
本发明涉及传感器制备技术领域,特别涉及一种纳米纤维基的可拉伸自供能传感器及其制备方法。
背景技术
柔性可拉伸电子器件被视为下一代电子产品,在可穿戴领域已受到了广泛关注,然而,目前仍然迫切需要一种耐用和可持续的能源来驱动这些电子设备。对于可穿戴设备而言,较为可靠的解决方案之一是收集人体运动产生的能量,并将其转化为电能,为可穿戴电子设备提供动力,使其持续工作,但目前基于摩擦生电以及静电感应原理的可拉伸器件的摩擦原料多以硅橡胶为主,所制备的可穿戴器件在舒适度上仍面临很大的挑战。另外电极材料在电子设备中同样有着十分重要的地位,目前的电极材料大部分为金属材料如铝箔、铜箔或氧化铟锡等,在长期弯曲过程中产生裂纹,在做柔性电极时有很大的局限性。
发明内容
为克服现有技术中存在的柔性可拉伸电子器件中的电极材料容易产生裂纹等问题,本发明提供了一种纳米纤维基的可拉伸自供能传感器及其制备方法。
具体技术方案如下:
一种纳米纤维基的可拉伸自供能传感器,包括摩擦层和电极层,所述摩擦层覆盖在电极层表面,所述摩擦层为复合纳米纤维膜,所述电极层包括第一纳米纤维膜和导电纳米材料,所述导电纳米材料敷设在第一纳米纤维膜上表面。
优选的,所述第一纳米纤维膜为静电纺TPU纳米纤维膜,所述导电纳米材料为碳纳米管。
优选的,所述摩擦层和电极层的最大拉伸率为400%。
优选的,所述摩擦层和电极层的总膜厚为25~35um。
本发明还提供了一种纳米纤维基的可拉伸自供能传感器的制备方法,
步骤1:在原始纺丝基底上通过高压电源将第一纺丝溶液拉伸成第一纳米纤维膜;
步骤2:利用丝网印刷技术在步骤1所得的第一纳米纤维膜上表面印刷导电纳米材料,形成电极层;
步骤3:将步骤2所得的电极层作为摩擦层的纺丝基底,并利用高压电源在其上表面将第二纺丝溶液与第一纺丝溶液通过共混纺丝拉伸成共混纤维膜,再以共混纤维膜为纺丝基底,在其上表面进行第二纺丝溶液静电纺丝,最终得到复合纳米纤维膜,
步骤4:热压复合纳米纤维膜;
步骤5:将复合纳米纤维膜剥离原始纺丝基底。
优选的,所述第一纺丝溶液为TPU纺丝溶液,所述第二纺丝溶液为PVDF纺丝溶液。
本发明与现有技术相比具有以下有益效果:
(1)本发明中的电极层和摩擦层均采用纳米纤维膜,纳米纤维膜具有良好的拉伸性能,该器件能作为自供能传感器,可直接将机械能转化为电信号,人体穿戴舒适,且可用于检测人体动作。
(2)本发明采用静电纺丝技术和丝网印刷技术,制备电极层和摩擦层,制备工艺成熟,成本低,且可大规模生产。通过静电纺丝技术制备出的纳米纤维膜,具有超高拉伸性能,静电纺丝技术与丝网印刷技术相结合制备出的柔性电极,代替以往的金属电极,实现了可弯折性和舒适性。
(3)静电纺丝技术用于制备纳米纤维,是通过对原料的选择以及纺丝工艺的调控,可制备出具有柔性可拉伸的纳米纤维膜,将电极印刷在柔性可拉伸的纳米纤维膜上作为传感器器件,则可直接将人体不同运动形式产生的机械能转化为电信号,成为自驱动的柔性可拉伸传感器器件。可拉伸传感器器件可适用于不同拉伸扭曲状态,且具有良好的回复能力,可广泛应用于可穿戴设备中,如监测手指、肘关节以及膝关节等动作。纳米纤维与丝网印刷技术相结合的优势在于真正实现了全柔性器件的目的,同时静电纺丝技术与丝网印刷技术操作简单、原料成本低廉,具有一定的实用性和产业化的前景。
附图说明
图1为本发明一种纳米纤维基的可拉伸自供能传感器的结构示意图;
图2为本发明一种纳米纤维基的可拉伸自供能传感器的制备流程图;
图3为本发明一种纳米纤维基的可拉伸自供能传感器的工作原理图;
图4为本发明一种纳米纤维基的可拉伸自供能传感器的拉伸曲线;
图5为本发明一种纳米纤维基的可拉伸自供能传感器中PVDF的表面形貌图;
图6为本发明一种纳米纤维基的可拉伸自供能传感器中TPU的表面形貌图;
图7为本发明一种纳米纤维基的可拉伸自供能传感器中的印刷电极图。
图中,1-TPU纳米纤维膜,2-导电纳米材料,3-TPU/PVDF共混纳米纤维膜,4-PVDF纳米纤维膜,5-TPU纺丝溶液,6-PVDF纺丝溶液,7-高压电源,8-原始纺丝基底。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明公开了一种纳米纤维基的可拉伸自供能传感器,包括摩擦层和电极层,摩擦层覆盖在电极层表面,如图1所示,摩擦层为复合纳米纤维膜,电极层包括第一纳米纤维膜和导电纳米材料2,导电纳米材料2敷设在第一纳米纤维膜上表面。如图5和6所示,为PVDF和TPU纳米纤维的表面形貌图,第一纳米纤维膜为静电纺TPU纳米纤维膜1,导电纳米材料2为碳纳米管。如图4所示,摩擦层和电极层的最大拉伸率为400%,且纳米纤维基的可拉伸自供能传感器的膜厚为25~35um。
如图2所示,本发明还提供了一种纳米纤维基的可拉伸自供能传感器的制备方法,
步骤1:在原始纺丝基底8上通过高压电源将第一纺丝溶液拉伸成第一纳米纤维膜;
步骤2:利用丝网印刷技术在步骤1所得的第一纳米纤维膜上表面印刷导电纳米材料2,形成电极层;
步骤3:将步骤2所得的电极层作为摩擦层的纺丝基底,并利用高压电源在其上表面将第二纺丝溶液与第一纺丝溶液通过共混纺丝拉伸成共混纤维膜,再以共混纤维膜为纺丝基底,在其上表面进行第二纺丝溶液静电纺丝,最终得到复合纳米纤维膜,
步骤4:热压复合纳米纤维膜;
步骤5:将复合纳米纤维膜剥离原始纺丝基底8。
优选的,第一纺丝溶液为TPU纺丝溶液5,第二纺丝溶液为PVDF纺丝溶液6。
本实验中采用的纳米纤维膜制备方法不局限于静电纺丝,亦可为熔融纺丝等其他纺丝方法,印刷方式不局限于丝网印刷,亦可为喷墨打印等其他印刷方法。第一纳米纤维膜不局限于PDMS、PMMA、TPEE、PI、PA6、PVDF-HFP、PVDF、PAN、PET、TPU、PA66、PA56等。电极材料可以为各种导电纳米材料2,不局限于Ag纳米颗粒、Ag纳米线、Au纳米颗粒、未改性/改性的碳纳米管、未改性/改性的石墨烯等。实施例1以静电纺丝技术制得的TPU、PVDF纳米纤维膜3和丝网印刷碳纳米管电极为例说明,如图7所示,为印刷电极图。丝网印刷的基底材料表面的微纳结构有利于提高印刷电极和基底之间的结合力,同时也能提升传感器件的灵敏度。
实施例1:
一种纳米纤维基的可拉伸自供能传感器的制备方法,
步骤1:在原始纺丝基底8上通过高压电源7将TPU纺丝溶液5拉伸成TPU纳米纤维膜1;
步骤2:利用丝网印刷技术在步骤1所得的TPU纳米纤维膜1上表面印刷导电纳米材料9,形成电极层;
步骤3:将步骤2所得的电极层作为摩擦层纺丝基底,并利用高压电源在其上表面将PVDF纺丝溶液与TPU纺丝溶液通过共混纺丝拉伸成共混纤维膜,再以共混纤维膜为纺丝基底,在其上表面进行PVDF纺丝溶液静电纺丝,最终得到复合纳米纤维膜,
步骤4:热压复合纳米纤维膜;
步骤5:将复合纳米纤维膜剥离原始纺丝基底8。
如图1所示,在静电纺TPU纳米纤维膜1上采用丝网印刷技术印刷碳纳米管,作为电极层,在电极层上首先进行TPU、PVDF共混静电纺丝,得到TPU/PVDF共混纳米纤维膜,然后在TPU/PVDF共混纳米纤维膜再静电纺一定时间的PVDF,最终得到TPU/PVDF//PVDF复合纳米纤维膜作为摩擦层,即得到一个单电极模式的摩擦纳米发电机传感器。当PVDF纳米纤维膜4和皮肤接触时,由于摩擦起电和静电感应效应,碳纳米管电极材料和地面之间会有电流和电压的输出信号。
如图2所示,首先TPU纺丝溶液5在高压电源7的作用下,在原始纺丝基底8上拉伸成TPU纳米纤维膜1,通过丝网印刷技术在其上面印刷导电纳米材料2作为电极层;将电极层作为摩擦层的纺丝基底,并利用高压电源7在其上表面将PVDF纺丝溶液6与TPU纺丝溶液5拉伸成TPU/PVDF共混纳米纤维膜3,再利用高压电源7将PVDF纺丝溶液6在TPU/PVDF共混纳米纤维膜3上进行静电纺丝,最终得到TPU/PVDF//PVDF复合纳米纤维膜,作为摩擦层,该步骤将电极层与摩擦层合为一体,使其得到一个单电极的摩擦纳米发电机器件。
工作原理:如图3所示,在初始状态下,皮肤与PVDF纳米纤维膜4完全接触,PVDF纳米纤维薄由于摩擦起电作用使得PVDF纳米纤维膜4表面带负电,此时上下摩擦面的正负电荷处于平衡状态,外接回路中没有电流。PVDF纳米纤维膜4和皮肤发生分离的时候,由于两种摩擦材料之间的距离变大,电子会从地移动到碳纳米管电极材料;当PVDF纳米纤维膜4与碳纳米管导电纳米材料2距离达到最大的时候,碳纳米管电极会感应出与PVDF纳米纤维膜4表面等量的负电荷。当PVDF纳米纤维膜4与皮肤相互靠近的时候,为了平衡PVDF纳米纤维膜4上的电荷,电子从碳纳米管导电纳米材料2中流入地表,PVDF纳米纤维膜4与皮肤逐渐靠近最终相互接触,工作状态回到最初状态,即开始下一个循环。
以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (6)

1.一种纳米纤维基的可拉伸自供能传感器,其特征在于:包括摩擦层和电极层,所述摩擦层覆盖在电极层表面,所述摩擦层为复合纳米纤维膜,所述电极层包括第一纳米纤维膜和导电纳米材料,所述导电纳米材料敷设在第一纳米纤维膜上表面。
2.根据权利要求1所述的一种纳米纤维基的可拉伸自供能传感器,其特征在于:所述第一纳米纤维膜为静电纺TPU纳米纤维膜,所述导电纳米材料为碳纳米管。
3.根据权利要求1所述的一种纳米纤维基的可拉伸自供能传感器,其特征在于:所述摩擦层和电极层的最大拉伸率为400%。
4.根据权利要求1所述的一种纳米纤维基的可拉伸自供能传感器,其特征在于:所述摩擦层和电极层的总膜厚为25~35um。
5.一种用于权利要求1~4任一项所述的纳米纤维基的可拉伸自供能传感器的制备方法,其特征在于:
步骤1:在原始纺丝基底上通过高压电源将第一纺丝溶液拉伸成第一纳米纤维膜;
步骤2:利用丝网印刷技术在步骤1所得的第一纳米纤维膜上表面印刷导电纳米材料,形成电极层;
步骤3:将步骤2所得的电极层作为摩擦层的纺丝基底,并利用高压电源在其上表面将第二纺丝溶液与第一纺丝溶液通过共混纺丝拉伸成共混纤维膜,再以共混纤维膜为纺丝基底,在其上表面进行第二纺丝溶液静电纺丝,最终得到复合纳米纤维膜,
步骤4:热压复合纳米纤维膜;
步骤5:将复合纳米纤维膜剥离原始纺丝基底。
6.根据权利要求5所述的一种纳米纤维基的可拉伸自供能传感器的制备方法,其特征在于:所述第一纺丝溶液为TPU纺丝溶液,所述第二纺丝溶液为PVDF纺丝溶液。
CN201810911630.2A 2018-08-10 2018-08-10 一种纳米纤维基的可拉伸自供能传感器及其制备方法 Withdrawn CN110823265A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810911630.2A CN110823265A (zh) 2018-08-10 2018-08-10 一种纳米纤维基的可拉伸自供能传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810911630.2A CN110823265A (zh) 2018-08-10 2018-08-10 一种纳米纤维基的可拉伸自供能传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN110823265A true CN110823265A (zh) 2020-02-21

Family

ID=69541412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810911630.2A Withdrawn CN110823265A (zh) 2018-08-10 2018-08-10 一种纳米纤维基的可拉伸自供能传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN110823265A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117927A (zh) * 2020-08-04 2020-12-22 中国电子科技集团公司第十八研究所 一种柔性发电机及其制备方法
CN112198153A (zh) * 2020-12-01 2021-01-08 江苏波司登科技有限公司 一种自供能湿度传感器、制备方法及应用
CN113197569A (zh) * 2021-04-23 2021-08-03 华中科技大学 基于摩擦发电的人体意图识别传感器及其识别方法
CN113334956A (zh) * 2021-05-31 2021-09-03 泉州师范学院 静电射流柔性转移印刷方法
CN113724919A (zh) * 2021-08-24 2021-11-30 上海科润光电技术有限公司 一种用于实时监测的自发光柔性可穿戴器件
CN114176597A (zh) * 2021-12-17 2022-03-15 广东思谷智能技术有限公司 一种全电纺高透气高疏水摩擦纳米传感器及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117927A (zh) * 2020-08-04 2020-12-22 中国电子科技集团公司第十八研究所 一种柔性发电机及其制备方法
CN112198153A (zh) * 2020-12-01 2021-01-08 江苏波司登科技有限公司 一种自供能湿度传感器、制备方法及应用
CN113197569A (zh) * 2021-04-23 2021-08-03 华中科技大学 基于摩擦发电的人体意图识别传感器及其识别方法
CN113334956A (zh) * 2021-05-31 2021-09-03 泉州师范学院 静电射流柔性转移印刷方法
CN113724919A (zh) * 2021-08-24 2021-11-30 上海科润光电技术有限公司 一种用于实时监测的自发光柔性可穿戴器件
CN113724919B (zh) * 2021-08-24 2023-12-12 上海科润光电技术有限公司 一种用于实时监测的自发光柔性可穿戴器件
CN114176597A (zh) * 2021-12-17 2022-03-15 广东思谷智能技术有限公司 一种全电纺高透气高疏水摩擦纳米传感器及其制备方法

Similar Documents

Publication Publication Date Title
CN110823265A (zh) 一种纳米纤维基的可拉伸自供能传感器及其制备方法
Guo et al. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring
Gong et al. Polymer nanocomposite meshes for flexible electronic devices
Dong et al. Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection
Xiong et al. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile
Dudem et al. Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting
Qi et al. Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator
Wu et al. All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers
Zhang et al. Electronic fibers and textiles: Recent progress and perspective
CN109586608B (zh) 一种柔性可拉伸单电极摩擦纳米发电机及其制备方法
Zhang et al. A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application
Zhang et al. Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring
Xu et al. Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers
Li et al. The rising of fiber constructed piezo/triboelectric nanogenerators: from material selections, fabrication techniques to emerging applications
Zhang et al. Facile method and novel dielectric material using a nanoparticle-doped thermoplastic elastomer composite fabric for triboelectric nanogenerator applications
Su et al. Silk fibroin-carbon nanotube composites based fiber substrated wearable triboelectric nanogenerator
Li et al. Silk inspired in-situ interlocked superelastic microfibers for permeable stretchable triboelectric nanogenerator
Aazem et al. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics
WO2021237908A1 (zh) 柔性混合发电机及制备方法与应用、柔性自充电装置
Wang et al. Integrated and shape-adaptable multifunctional flexible triboelectric nanogenerators using coaxial direct ink writing 3D printing
He et al. Multifunctional triboelectric nanogenerator based on flexible and self-healing sandwich structural film
Hao et al. Scalable, ultra-high stretchable and conductive fiber triboelectric nanogenerator for biomechanical sensing
Zhang et al. Preparation of a high-performance chitosan-based triboelectric nanogenerator by regulating the surface microstructure and dielectric constant
Lee et al. Highly flexible triboelectric nanogenerators with electrospun PVDF-TrFE nanofibers on MWCNTs/PDMS/AgNWs composite electrodes
Zu et al. Humidity-resistant, durable, wearable single-electrode triboelectric nanogenerator for mechanical energy harvesting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200221

WW01 Invention patent application withdrawn after publication