CN110817893B - 铁掺杂的凹凸棒石光电材料的制备方法 - Google Patents

铁掺杂的凹凸棒石光电材料的制备方法 Download PDF

Info

Publication number
CN110817893B
CN110817893B CN201911112948.5A CN201911112948A CN110817893B CN 110817893 B CN110817893 B CN 110817893B CN 201911112948 A CN201911112948 A CN 201911112948A CN 110817893 B CN110817893 B CN 110817893B
Authority
CN
China
Prior art keywords
attapulgite
iron
doped
photoelectric material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911112948.5A
Other languages
English (en)
Other versions
CN110817893A (zh
Inventor
张立静
杨春雷
杨烨
张玉婷
闾蓉蓉
徐孙悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201911112948.5A priority Critical patent/CN110817893B/zh
Publication of CN110817893A publication Critical patent/CN110817893A/zh
Application granted granted Critical
Publication of CN110817893B publication Critical patent/CN110817893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明涉及纳米复合光电材料的制备技术领域,公开了一种铁掺杂凹凸棒石光电材料的制备方法,将高纯度的纳米凹凸棒石均匀分散到三氯化铁的酸性溶液中,然后将上述混合溶液放在反应釜中,100‑180ºC水热条件下反应24h‑150h,然后将所得到的产品离心、清洗、干燥,得到铁掺杂的凹凸棒石光电材料;其中,所述纳米凹凸棒石与所述六水合三氯化铁的质量比为100:1‑5。本发明通过水热法将Fe离子引入到凹凸棒石中,制成的光电材料具有较好的光电响应,成本低,操作简单,对环境污染小。

Description

铁掺杂的凹凸棒石光电材料的制备方法
技术领域
本发明涉及纳米复合光电材料的制备技术领域,特别涉及一种铁掺杂的凹土棒石光电材料的制备方法。
背景技术
凹凸棒石是一种稀有的非金属矿产资源,在农牧业,建材,药物,石油,食品等领域有着广泛地应用。凹凸棒石是一种具有层链状结构的含水富镁铝硅酸盐,本身是一种绝缘体,硅酸盐半导体很少见。有文献报道,理论计算表明凹凸棒石中引入铁离子可以将凹凸棒石由绝缘体变成半导体(张键,天然接铁桂黢盐可见光催化分解水制氢研究[D],南京理工大学,2014)。但是人工合成铁离子掺杂凹凸棒石,铁很容易水解胶团化,因此很多时候只会在凹凸棒石表面引入氧化铁,或者形成单独的氧化铁颗粒,Fe离子很难进入到凹凸棒石的内部。
发明内容
发明目的:针对现有技术中存在的问题,本发明提供一种铁掺杂的凹凸棒石光电材料的制备方法,通过水热法将Fe离子引入到凹凸棒石中,制成的光电材料具有较好的光电响应,制作方法简单,成本低,环境友好。
技术方案: 本发明还提供了一种铁掺杂凹凸棒石光电材料的制备方法,将纳米凹凸棒石均匀分散到三氯化铁的酸性溶液中, 然后将上述混合溶液放在反应釜中,100-180ºC水热条件下反应24h-150h,然后将所得到的产品离心、清洗、干燥,得到铁掺杂的凹凸棒石光电材料;
其中,所述纳米凹凸棒石与所述六水三氯化铁的质量比为:100:1-5;优选100:4.8。
优选地,所述三氯化铁的酸性溶液是通过将六水合三氯化铁分散到pH=2的硫酸溶液中制得。
优选地,所述清洗的方法为用水洗三次后,再用乙醇清洗一次。
有益效果:本发明通过简单的水热法将Fe离子引入到凹凸棒石中,将六水合三氯化铁溶解于pH=2的硫酸溶液中,其目的是防止三价铁离子水解,阻止大块铁胶团的形成,然后通过水热方法,在反应釜中形成的高温高压的状态,使得铁离子与凹凸棒石进行离子交换,从而形成Fe离子掺杂的凹凸棒石,使得凹凸棒石成为具有较好的光电响应的半导体材料,制备成的铁掺杂的凹凸棒石光电材料具有较好的光电响应。该方法合成步骤简单,无污染,无毒,环境友好,便于工业化。
附图说明
图1为凹凸棒石(ATP)及150ºC下水热反应24 h、72h、150 h的铁掺杂凹凸棒石的XRD图;
图2为不同水热温度和时间的SEM图,其中,(1)为 150ºC下水热反应24 h的Fe-凹凸棒石的复合样品;(2) 为150ºC下水热反应72 h的Fe-凹凸棒石的复合样品;(3) 为150ºC下水热反应150 h的Fe-凹凸棒石的复合样品的SEM图;
图3为150ºC不同反应时间的I-V曲线图。(1) 凹凸棒石(ATP)的I-V曲线图;(2)150ºC下水热反应72 h的Fe-凹土棒石的复合样品的I-V曲线图;
图4为凹凸棒石及150ºC水热反应24 h、72 h及150 h的Fe掺杂凹土棒石的阻抗谱图,测试电压为0.33 V vs.SCE。
具体实施方式
下面结合附图对本发明进行详细的介绍。
实施方式1:
将凹凸棒石0.1g溶于pH=1的六水合三氯化铁的硫酸溶液40 mL中,磁力搅拌10min,超声10min;
将上述溶液转移到反应釜中,150℃水热反应24h;
将所得到的沉淀用去离子水清洗三次,乙醇清洗1次,去除多余的离子,然后干燥,得铁掺杂的凹凸棒石光电材料。
实施方式2:
将凹凸棒石0.1g溶于pH=2的六水合三氯化铁的硫酸溶液40 mL中,磁力搅拌10min,超声10min;
将上述溶液转移到反应釜中,150℃水热反应72h;
将所得到的沉淀用去离子水清洗三次,乙醇清洗1次,去除多余的离子,然后干燥,得铁掺杂的凹凸棒石光电材料。
实施方式3:
将凹凸棒石0.1g溶于pH=2.1的六水合三氯化铁的硫酸溶液中40 mL,磁力搅拌10min,超声10min;
将上述溶液转移到反应釜中,150℃水热反应150 h;
将所得到的沉淀用去离子水清洗三次,乙醇清洗1次,去除多余的离子,然后干燥,得铁掺杂的凹凸棒石光电材料。
对上述实施方式1至3中所得的Fe掺杂凹凸棒石的性能进行分析如下:
图1是Fe掺杂凹凸棒石在150ºC下反应24,72,150h的XRD图,随着反应时间的延长,凹凸棒石的的衍射峰变弱,说明随着反应时间的延长,凹凸棒石的结晶度变弱,但是并未出现氧化铁的衍射峰,说明在反应体系中并没有铁的氧化物的生成。
图2表明反应温度不变,反应时间延长,样品的形貌没有发生明显的变化,所有的样品都表现为棒状结构。
图3表明Fe掺杂凹凸棒石无论暗态电流密度还是光照下的电流密度都较凹凸棒石明显提高,说明Fe的掺杂明显提高了凹凸棒石的光电响应。
图4表明,Fe掺杂凹凸棒石在150ºC下反应72 h的阻抗半圆最小,说明铁掺杂凹土后,电子的转移电阻变小,进一步说明Fe的掺杂使得凹凸棒石由绝缘体变成半导体。
表1 实施方式1至3所得的Fe掺杂凹凸棒石中的元素含量表(EDX测试)
Figure 170162DEST_PATH_IMAGE002
表1 表明随着反应时间的延长,Fe的质量分数增加,Mg的质量分数减少,说明Fe置换了凹凸棒石中的Mg元素。
上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (2)

1.一种铁掺杂凹凸棒石光电材料的制备方法,其特征在于,将纳米凹凸棒石均匀分散到六水合三氯化铁的酸性溶液中, 然后将混合溶液放在反应釜中,100-180ºC水热条件下反应24h-150h,然后将所得到的产品离心、清洗、干燥,得到铁掺杂的凹凸棒石光电材料;
其中,纳米凹凸棒石与六水合三氯化铁的质量比为100:1-5;
六水合三氯化铁的酸性溶液是通过将六水合三氯化铁分散到pH=2的硫酸溶液中制得。
2.根据权利要求1所述的铁掺杂凹凸棒石光电材料的制备方法,其特征在于,所述清洗的方法为用水洗三次后,再用乙醇清洗一次。
CN201911112948.5A 2019-11-14 2019-11-14 铁掺杂的凹凸棒石光电材料的制备方法 Active CN110817893B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911112948.5A CN110817893B (zh) 2019-11-14 2019-11-14 铁掺杂的凹凸棒石光电材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911112948.5A CN110817893B (zh) 2019-11-14 2019-11-14 铁掺杂的凹凸棒石光电材料的制备方法

Publications (2)

Publication Number Publication Date
CN110817893A CN110817893A (zh) 2020-02-21
CN110817893B true CN110817893B (zh) 2021-06-18

Family

ID=69555100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911112948.5A Active CN110817893B (zh) 2019-11-14 2019-11-14 铁掺杂的凹凸棒石光电材料的制备方法

Country Status (1)

Country Link
CN (1) CN110817893B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536632A (en) * 1967-10-10 1970-10-27 Exxon Research Engineering Co Heterogeneous catalysts
US6296745B1 (en) * 2000-04-28 2001-10-02 Ppg Industries Ohio, Inc. Method of operating chlor-alkali electrolytic cells
CN103230796A (zh) * 2013-04-25 2013-08-07 六安科瑞达新型材料有限公司 凹凸棒石负载四氧化三铁的制备方法
CN107051412A (zh) * 2017-05-24 2017-08-18 安徽工业大学 一种磁性凹凸棒石纳米复合材料的制备方法
CN108565479B (zh) * 2018-04-16 2020-09-25 淮阴工学院 凹凸棒土复合材料及其制备方法和应用
CN110280272A (zh) * 2019-08-05 2019-09-27 华北电力大学(保定) 一种CdS/Fe3O4/凹凸棒复合材料及应用

Also Published As

Publication number Publication date
CN110817893A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
Yang et al. Efficient hydrogen generation of vector Z-scheme CaTiO3/Cu/TiO2 photocatalyst assisted by cocatalyst Cu nanoparticles
Ma et al. Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal transformation to CuO
Li et al. Branching growth of novel silver phosphate dendrites and the greatly improved photocatalytic activity by the active {110} facets
CN109908915B (zh) 一种处理六价铬废水的磁性可见光催化剂及其制备方法
Huang et al. Conductive substrates-based component tailoring via thermal conversion of metal organic framework for enhanced microwave absorption performances
Yang et al. Investigation of photocatalytic properties based on Fe and Ce Co-doped ZnO via hydrothermal method and first principles
CN113926483A (zh) 一种磁回收型双芬顿Fe3O4-Fe-CN复合材料的制备方法及应用
Yao et al. Manipulating electromagnetic response for tunable microwave absorption, electromagnetic interference shielding, and device
CN110745790B (zh) 一种硒化铋纳米粉末的水热制备方法
Liu et al. A method for effectively regulating the green emissions of ZnO through NiS@ NiO/rGO
Wang et al. Influence of annealing process on ferromagnetism of undoped TiO2 nanoparticles prepared by sol–gel method
Zhang et al. Heterostructure design of MoO2/FeCo/NPC nanocomposites via supramolecular self-assembly for efficient electromagnetic wave absorption
Jasrotia et al. Nanocrystalline Co/Ga substituted CuFe2O4 magnetic nanoferrites for green hydrogen generation
CN110817893B (zh) 铁掺杂的凹凸棒石光电材料的制备方法
CN101941677B (zh) 一种氧化锰表面改性的氧化锌纳米棒材的制备方法
Jiang et al. Synthesis of zinc oxide nanotetrapods by a novel fast microemulsion-based hydrothermal method
Zheng et al. Tuning the morphology and pyrolysis process of rare-earth Gd-doped prussian blue derivatives for electromagnetic wave absorption and anti-corrosion performance
CN101525148A (zh) 一种制备氧化铜一维纳米材料的方法
Jin et al. A ZnO-002/amorphous Bi2WO6 heterojunction with enhanced electron-hole separation for high-performance Cr (VI) photoreduction
CN103349993A (zh) 一种合成可磁分离的氮化铁基磁性纳米光催化剂的方法
Zhang et al. A hydrothermal method for low-temperature growth of nanocrystalline pyrite nickel diselenide
CN108273522B (zh) 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用
Opra et al. Manganese, fluorine, and nitrogen Co-doped bronze titanium dioxide nanotubes with improved lithium-ion storage properties
Bai et al. Synthetic Potassium Vanadium Oxide K2V6O16· 1.5 H2O Superlong Nanobelts: A 1D Room‐Temperature Ferromagnetic Semiconductor
Sumithra et al. Enhanced Room Temperature Ferromagnetism in Fe-Doped Zinc Stannate Nanostructures Prepared by Facile Hydrothermal Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant