CN110813246B - 一种纳米孔淀粉基吸附剂及其制备方法 - Google Patents

一种纳米孔淀粉基吸附剂及其制备方法 Download PDF

Info

Publication number
CN110813246B
CN110813246B CN201911005684.3A CN201911005684A CN110813246B CN 110813246 B CN110813246 B CN 110813246B CN 201911005684 A CN201911005684 A CN 201911005684A CN 110813246 B CN110813246 B CN 110813246B
Authority
CN
China
Prior art keywords
starch
extrusion
particles
zero
hydroxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911005684.3A
Other languages
English (en)
Other versions
CN110813246A (zh
Inventor
徐恩波
刘东红
程焕
周建伟
丁甜
叶兴乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201911005684.3A priority Critical patent/CN110813246B/zh
Publication of CN110813246A publication Critical patent/CN110813246A/zh
Application granted granted Critical
Publication of CN110813246B publication Critical patent/CN110813246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种纳米孔淀粉基吸附剂的制备方法,方法主要是通过在淀粉颗粒表面构建大量的片状晶体,通过该片状晶体诱导纳米级孔道结构的形成。本发明通过大量的对照试验证明了该片状晶体对于纳米级孔道结构的形成具有直接影响。淀粉基体材料中孔道结构的构建,大大提高了比表面积,提升了吸附吸能,同时,这种方法有利于引入功能性颗粒(磁性颗粒),避免先成孔后引入功能性颗粒的孔道堵塞问题;此外,改善了来源广泛、绿色可降解淀粉存在结构强度差、吸附能力弱的缺陷,80%淀粉基质也可吸附亚甲基蓝达约60mg/g,在水体污染净化、药物包埋及其他环境、材料领域的应用前景巨大。

Description

一种纳米孔淀粉基吸附剂及其制备方法
技术领域
本发明公开了一种纳米孔淀粉基吸附剂及其制备方法,尤其是涉及一种采用淀粉表面铁矿化协同Fe0挤压嵌入式磁化,制得的纳米孔淀粉基磁性材料的方法。
背景技术
环境污染日益严重,尤其是食品加工、化工染料废水排放等水体污染一直威胁着生态环境安全与人类生产活动。多孔材料是一类由有机、无机原料合成或改性得到的功能材料,因其特殊而巨大的比表面积和孔道体积,具有强大的吸附性能,可以净化受污染水域。
目前,多孔材料的制备与规模化应用面临许多挑战:
一、传统吸附剂在水体净化过程中容易脱落颗粒造成二次污染。而诸如石墨烯/氧化石墨烯、有机金属框架MOFs、碳纳米管/纳米颗粒、无机硅/费石/海泡石等新材料虽然吸附能力强,但也都存在生物不可降解的特点,且制备价格昂贵。同时,以上新材料在水体中脱落颗粒属于纳米级污染物,造成的二次污染程度难以估量。
二、多孔材料吸附剂的分离难度高、效率低。在净化水体后,如何切实有效地分离出富集污染物的多孔材料是一个难题。研究人员常通过多孔材料赋磁的方法,即在现有材料基质中负载磁性颗粒或磁流体,从而达到制备磁性多孔材料、净化水体磁分离的目的。然而,该法在磁体负载量方面难以调控:磁性颗粒与材料的物理结合率低,导致磁体负载率不高、磁饱和强度差;磁流体则容易堵塞材料孔道,造成孔隙体积吸附无效化现象。
淀粉来源广泛、绿色安全、生物可降解且加工性能良好,可作为潜在的功能吸附剂原材料。然而,天然淀粉及其衍生物的吸附能力差(以亚甲基蓝MB计,~3mg MB/g淀粉),即使通过生物酶法、物理及其联用方法改性得到多孔结构,几乎都是大孔尺度,其吸附能力也仍旧不高(<10mg MB/g淀粉)。化学法改性淀粉的效果相对较好,但引入大量化学试剂不利于环境保护,且淀粉占最终材料比值往往不到一半(淀粉含量<50%,吸附能力实质是由其他试剂含量提高所得)。此外,传统多孔淀粉的孔道大而通透(1-2μm),磁化后几乎被占据而失去原有孔道体积。
发明内容
本发明的一个目的在于,提供一种多孔的淀粉基吸附剂的制备方法,通过本方法制备得到的淀粉基吸附剂,相比于传统多孔淀粉,其孔道尺寸为纳米级,具有极高的比表面积,吸附性能更强。
本发明的另一个目的在于,提供一种多孔的淀粉基吸附剂的制备方法,通过本方法制备得到的淀粉基吸附剂,相比于传统的化学合成的吸附剂,具有更好的降解性和生物安全性。
上述的任一方法至少包括表面矿化诱导,矿化后的表面进一步诱导纳米级孔道的形成。
上述的任一方法还可以包括:在酶法螺杆挤压过程中引入功能性金属粒子,为该吸附剂提供磁性或额外的吸附性。多孔结构的淀粉基吸附剂又能为该功能性金属粒子提供良好的负载环境,保证该功能性金属粒子的功能稳定性。
本发明具体公开了一种纳米孔淀粉基吸附剂的制备方法,该方法主要是通过在淀粉颗粒表面构建大量的片状晶体,通过该片状晶体诱导纳米级孔道结构的形成。本发明通过大量的对照试验证明了该片状晶体对于纳米级孔道结构的形成具有直接影响。
具体地,该方法至少包括:
(1)在羟基离子化处理后的淀粉水溶液中加入零价金属粒子I,以诱导淀粉表面矿化,使得淀粉颗粒表面形成片状的矿化晶;
(2)将矿化后的淀粉与淀粉酶制剂混合后,通过酶法螺杆挤压,形成具有纳米孔结构的淀粉基吸附材料。
本领域所述的羟基离子化处理是指:淀粉的羟基失去H+,其氧原子结合金属离子;具体的,本发明采用如下手段:
将二价及以上价态金属盐与淀粉在10-50℃、pH5-9条件下水浴混合30-360min,之后过筛清洗得羟基上氧原子与金属离子结合的改性淀粉。所述二价及以上价态金属盐为镁、钙、锶、钡、钛、锆、铬、钼、锰、钴、镍、铜、锌、铝中的一种或多种;
二价及以上价态金属盐的阳离子可以在水溶液中进入或富集在淀粉颗粒表面,取代羟基上的氢原子形成新键,一方面有利于强化淀粉结构、促进挤压过程中淀粉酶选择性降解淀粉;另一方面则有利于淀粉矿化过程中淀粉表面对金属离子的吸引从而形成矿化晶。
本领域所述的表面矿化是指:表面的有机态化合物转化为无机态化合物过程。表面的羟基离子化处理是对表面的活化过程,具体的,本发明在羟基离子化处理的基础上,通过以下手段进行矿化:
将羟基离子化后的淀粉与零价金属粒子I混合,零价金属粒子I失电子形成金属离子,金属离子与淀粉的离子化羟基原位复合,诱导淀粉表面矿化。
步骤2的矿化过程中,还加入功能性的零价金属粒子II(例如:零价铁粒子Fe0Ps),所述淀粉与零价金属粒子II的质量比为100:2~50。零价金属粒子I和零价金属粒子II可以是相同的金属粒子,或不同的金属粒子,零价金属粒子I用于诱导表面矿化,零价金属粒子II赋予该吸附剂更多功能性。在某些优选的实施例中,所述零价金属粒子I和零价金属粒子II均为零价铁粒子Fe0Ps。
在某些实施例中,通过如下步骤可制备得到吸附剂:
(A1)淀粉羟基离子化。将二价及以上价态金属盐与淀粉在10-50℃、pH5-9条件下水浴混合30-360min,其中,二价及以上价态金属盐与淀粉的质量比为0.05-0.6g/g,淀粉浓度为50-200g/L。之后过筛清洗得羟基上氧原子与金属离子结合的改性淀粉。
(A2)改性淀粉矿化。将步骤(A1)中的羟基离子化改性淀粉置入20-45℃水溶液中,并加入零价铁粒子Fe0Ps,搅拌混合5-15min后待改性淀粉颜色变黄褐色。
(A3)磁铁吸出多余的Fe0Ps,过筛、低温烘干(30-45℃)。
(A4)酶法挤压形成淀粉纳米孔。向步骤(A3)烘干后的产物中加入淀粉酶制剂预调节,该混合物进入挤压机腔进行挤压反应,反应后出料,制得所述纳米孔淀粉基吸附剂。
在某些优选的实施例中,通过如下步骤可制备得到磁性吸附剂,该磁性吸附剂具有多孔结构和铁的双重吸附功能,具体步骤如下:
(B1)淀粉羟基离子化。将二价及以上价态金属盐与淀粉在10-50℃、pH5-9条件下水浴混合30-360min,其中,二价及以上价态金属盐与淀粉的质量比为0.05-0.6g/g,淀粉浓度为50-200g/L。之后过筛清洗得羟基上氧原子与金属离子结合的改性淀粉。
(B2)改性淀粉矿化。将步骤(B1)中的羟基离子化改性淀粉置入20-45℃水溶液中,并加入零价铁粒子Fe0Ps,搅拌混合5-15min后待改性淀粉颜色变黄褐色。其中,所述淀粉水溶液的体积分数为100-800g/L。
(B3)过筛、低温烘干(30-45℃)。
(B4)酶法挤压形成淀粉纳米孔。向步骤(B3)烘干后的产物中加入淀粉酶制剂预调节,该混合物进入挤压机腔反应后出料,制得所述纳米孔淀粉基磁性吸附剂。
在某些优选的实施例中,通过如下步骤可制备得到磁性吸附剂,该磁性吸附剂具有多孔结构和铁的双重吸附功能,具体步骤如下:
(C1)淀粉羟基离子化。将二价及以上价态金属盐与淀粉在10-50℃、pH5-9条件下水浴混合30-360min,其中,二价及以上价态金属盐与淀粉的质量比为0.05-0.6g/g,淀粉浓度为50-200g/L。之后过筛清洗得羟基上氧原子与金属离子结合的改性淀粉。
(C2)改性淀粉矿化。将步骤(C1)中的羟基离子化改性淀粉置入20-45℃水溶液中,并加入零价铁粒子Fe0Ps,搅拌混合5-15min后待改性淀粉颜色变黄褐色。
(C3)磁铁吸出多余的Fe0Ps,过筛、低温烘干(30-45℃)。
(C4)酶法挤压形成淀粉纳米孔。向步骤(C3)烘干后的产物中加入淀粉酶制剂预调节,该混合物进入挤压机腔进行预挤压反应,预挤压后加入Fe0Ps进行连续挤压反应,反应后出料,制得所述纳米孔淀粉基磁性吸附剂。
在某些优选的实施例中,所述零价铁粒子Fe0Ps的平均粒径范围在50nm-100μm。
本发明所述淀粉酶系列制剂包括耐高温α-淀粉酶、中温α-淀粉酶、β-淀粉酶、普鲁兰酶、异淀粉酶中的一种或多种,均可市购。
本发明酶法螺杆挤压手段与常用手段无异,经淀粉酶制剂预调节后的混合物预调节的湿度为26-52wt%、含酶量为0.01-1.5%、pH为4.5-9.5。酶法挤压操作参数可设置为,挤压温度50-120℃、螺杆转速30-400rpm。受挤压处理的时间控制在2-15min,对于前后两个阶段挤压的情形,在预挤压阶段受挤压处理的受挤压处理时间控制在1-6min,物料在再次连续挤压阶段的受挤压处理时间控制在1-9min。
本发明具有的有益效果是:
与现有技术相比,本发明的纳米孔淀粉基磁性吸附剂:1、通过纳米级多孔物理吸附,对目标物有非常高的吸附清除效果,且该淀粉基吸附剂的结构牢固、可降解,不易造成二次污染;2、采用循环式溶液处理以及挤压连续式生产,制备步骤相对简单、绿色安全、产量高(近乎100%),原料利用充分;3、该吸附剂磁性可根据Fe0引入量调控,且磁体不影响材料的孔道体积和内部表面积;4、淀粉原料廉价易得,而该材料淀粉原料占比70-95%仍可提供良好的吸附性与吸磁性。
附图说明
图1为改性(锌化)淀粉-铁粒子挤出物即挤出矿化淀粉生物材料((Zn-St)10Fe0 nEs)的形成示意图;
图2(a–b)为原始淀粉(St)和锌化淀粉(Zn-St Ps)的SEM图像。(c-d)为不同放大倍数下在酶促反应挤压(eREX)工艺之前SEM图像;
图3(a–c)为不同放大倍数下20%铁相对含量(Zn-St,db)的锌化淀粉-铁粒子挤出物((Zn-St)10Fe0 2Es)的SEM图。
图4为比较非矿化淀粉(St@Fe0Ps)(左)和矿化淀粉(Zn-St@Fe0Ps)(右)的数字图像。
图5(a–c)为未经矿化处理得到的Zn-St Es在不同放大倍数下的SEM图像。
图6(a)Zn-St@Fe0Ps的SEM图像。(b)Zn-St@Fe0Ps的EDS分析。(c-f)Zn-St@Fe0Ps的元素映射,包括C,O,Fe和Zn。
图7(a)(Zn-St)10Fe0 2Es的EDS分析。(b)(Zn-St)10Fe0 2Es的元素映射,包括C,O,Fe和Zn。
图8(a–b)、(c)、(d–e)分别为挤出矿化淀粉的N2吸附、Hg吸附、FT-IR、XPS Fe2p、Zn2p图谱。
图9(a)为挤出矿化淀粉材料随挤压过程中Fe0Ps含量变化的磁性变化曲线。(b)为不同亚甲基蓝(MB)吸附浓度下,(Zn-St)10Fe0 n Es随着Fe0Ps含量变化的吸附能力变化曲线。(c)为(Zn-St)10Fe0 2Es吸附MB后的SEM图像。(d)为(Zn-St)10Fe0 2Es与St、Zn-St Es、Fe0Ps的吸附循环次数比较图。
具体实施方式
如图1所示,本发明的羟基离子化改性淀粉,其多个羟基上氧原子与正价金属离子Mn+结合,导致在水溶液中未饱和的金属离子通过静电相互作用排斥H+、吸引OH-,从而改变淀粉的理化性质与电学性质。添加零价金属粒子后,以零价铁Fe0粒子为例,Fe0粒子与改性淀粉颗粒间相互接触从而形成多组“类微原电池”,铁作为负极失去电子e生成Fe2+,改性淀粉作为正级使H+得电子e释放H2,导致OH-富集在改性淀粉表面的—O---Mn+周围,并通过离子带电性吸引Fe2+游动并沉积到淀粉表面形成交叉片状或棱柱状氧化铁复合物,发生淀粉表面矿化。之后在酶法挤压的微混合反应过程中,淀粉基质遭到剪切分散、混匀、重组,基于矿化效果与局部选择性淀粉酶解作用形成纳米孔;挤压过程存在的完整Fe0粒子则作为磁体嵌入淀粉基多孔材料骨架中,暴露部分可为污染物清除提供化学吸附。
下面结合实施例,对本发明进行具体描述。
实施例1
一种纳米孔淀粉基吸附剂,制备方法包括如下步骤:
(1)将锌金属盐与玉米淀粉(SEM如图2a)按质量比0.2g/g在35℃、pH6.5条件下水浴(淀粉体积分数250g/L)混合360min,之后过筛清洗得羟基上氧原子与金属锌离子结合的改性淀粉(SEM如图2b)。
富含铝金属盐的水溶液留存,补充至0.2g/g水平,可循环使用制备改性淀粉;
(2)将步骤(1)中的羟基锌离子化改性淀粉置入室温25℃水溶液(淀粉体积分数600g/L)中,并加入平均粒径26μm的零价铁粒子Fe0Ps(Fe0与改性淀粉的质量比为0.2g/g),搅拌混合10min后待改性淀粉颜色变黄褐色,磁铁吸出剩余的Fe0Ps,过筛、低温烘干(40℃)得到表面负载Fe离子的矿化改性淀粉(SEM如图2c和d)。图6为矿化淀粉的EDS图谱,淀粉表面的铁元素含量高达约7%,说明其覆盖表面具有铁矿化晶体存在。
(3)将步骤(2)中的矿化改性淀粉与高温α-淀粉酶(0.1%)预调节(湿度36wt%),该混合物进入挤压机腔反应后出料(挤压温度90℃、螺杆转速150rpm,以连续进料的某一段物料计,挤压时间为15min),制得所述纳米孔淀粉基吸附剂,如图3所示。图7为挤出矿化淀粉材料的EDS图谱,形成的纳米孔铁元素含量约0.8%,说明原淀粉表面的铁矿化晶体在挤压过程中受到剪切、混合而均匀分散于淀粉基质中,从而诱导纳米孔的生成。
图8为挤出矿化淀粉材料的N2吸附、Hg吸附、FT-IR、XPS Fe2p、Zn2p表征图谱,从中可以得出:(1)挤出材料具有多孔结构,比表面积和孔道体积比原淀粉大,孔径在约2~4nm、50~300nm和5~100μm均有分布,成孔率46.5%;(2)所制得结构为淀粉链与Fe、Zn元素的复合体。
图9为挤出矿化淀粉材料的磁性特征与亚甲基蓝吸附图,说明该材料不仅具有较佳的磁分离能力,还具有循环吸附亚甲基蓝的可行性,亚甲基蓝(作为污染物模型)吸附率达61.0mg/g。
对比例1
将未经羟基锌离子化改性的淀粉置入室温25℃水溶液(淀粉体积分数600g/L)中,并加入平均粒径26μm的零价铁粒子Fe0Ps(Fe0与改性淀粉的质量比为0.2g/g),搅拌混合10min后,淀粉颜色未见改变。
与实施例1步骤2获得的矿化改性淀粉相比,其颜色呈原淀粉的白色,如图4,说明淀粉表面并未发生矿化、生成铁矿化晶体。
对比例2
(1)将锌金属盐与玉米淀粉按质量比0.2g/g在35℃、pH6.5条件下水浴(淀粉体积分数250g/L)混合360min,之后过筛清洗得羟基上氧原子与金属锌离子结合的改性淀粉。
(2)将步骤(1)中的改性淀粉与高温α-淀粉酶(0.1%)预调节(湿度36wt%),该混合物进入挤压机腔反应后出料(挤压温度90℃、螺杆转速150rpm,以连续进料的某一段物料计,挤压时间为15min),制得所述纳米孔淀粉基吸附剂,如图5所示。说明仅进行羟基离子化而未进行矿化的淀粉,在酶法螺杆挤压后无法形成纳米级孔。
实施例2
一种纳米孔淀粉基磁性吸附剂,制备方法包括如下步骤:
(1)将铝金属盐与马铃薯淀粉按质量比0.05g/g在50℃、pH9条件下水浴(淀粉体积分数200g/L)混合30min,之后过筛清洗得羟基上氧原子与金属铝离子结合的改性淀粉,通过SEM观察,其表面与未经改性的淀粉颗粒表面无异。
富含铝金属盐的水溶液留存,补充至0.05g/g水平,可循环使用制备改性淀粉;
(2)将步骤(1)中的羟基铝离子化改性淀粉置入20℃水溶液(淀粉体积分数800g/L)中,并加入平均粒径100μm的零价铁粒子Fe0Ps(Fe0与改性淀粉的质量比为1g/g),搅拌混合15min后待改性淀粉颜色变黄褐色,过筛、低温烘干(45℃)得到表面负载Fe离子的矿化改性淀粉。通过SEM观察,其表面具有大量的片状晶体;EDS图谱显示,表面的铁元素含量高达约7%,说明其覆盖表面具有铁矿化晶体存在。
(3)将步骤(2)中的矿化改性淀粉与中温α-淀粉酶(1.5%)、异淀粉酶(0.01%)预调节(湿度52wt%),该混合物进入挤压机腔反应后出料(挤压温度50℃、螺杆转速30rpm,以连续进料的某一段物料计,挤压时间为2min),制得所述纳米孔淀粉基磁性吸附剂,类似于图3的结构。
本实施例制得的纳米孔淀粉基磁性吸附剂,其纳米孔径大小分布范围在20-80nm,成孔率31.2%,磁饱和强度106.24emu/g,亚甲基蓝(作为污染物模型)吸附率达28.3mg/g。
实施例3
一种纳米孔淀粉基磁性吸附剂,制备方法包括如下步骤:
(1)将锌金属盐与木薯淀粉按质量比0.2g/g在35℃、pH7条件下水浴(淀粉体积分数125g/L)混合180min,之后过筛清洗得羟基上氧原子与金属锌离子结合的改性淀粉,通过SEM观察,其表面与未经改性的淀粉颗粒表面无异。
(2)将步骤(1)中的羟基锌离子化改性淀粉置入30℃水溶液(淀粉体积分数300g/L)中,并加入平均粒径30μm的零价铁粒子Fe0Ps(Fe0与改性淀粉的质量比为0.3g/g),搅拌混合8min后待改性淀粉颜色变黄褐色,磁铁吸出Fe0Ps,过筛、低温烘干(40℃)得到表面负载Fe离子的矿化改性淀粉。通过SEM观察,其表面具有大量的片状晶体;EDS图谱显示,表面的铁元素含量高达约7%,说明其覆盖表面具有铁矿化晶体存在。
(3)将步骤(2)中的矿化改性淀粉与高温α-淀粉酶(1%)预调节(湿度42wt%),该混合物进入挤压机腔预反应后出料,以连续进料的某一段物料计,挤压时间为6min;然后按0.3g/g淀粉加入Fe0粒子,挤压温度90℃、螺杆转速200rpm,以连续进料的某一段物料计,挤压时间为9min,制得所述纳米孔淀粉基磁性吸附剂。
本实施例制得的纳米孔淀粉基磁性吸附剂,其纳米孔径大小分布范围在50-200nm,成孔率63.7%,磁饱和强度40.72emu/g,亚甲基蓝(作为污染物模型)吸附率达76.13mg/g。
实施例4
一种纳米孔淀粉基磁性吸附剂,制备方法包括如下步骤:
(1)将锰金属盐与玉米淀粉按质量比0.6g/g在10℃、pH5条件下水浴(淀粉体积分数50g/L)混合360min,之后过筛清洗得羟基上氧原子与金属锰离子结合的改性淀粉,通过SEM观察,其表面与未经改性的淀粉颗粒表面无异。
(2)将步骤(1)中的羟基锰离子化改性淀粉置入45℃水溶液(淀粉体积分数100g/L)中,并加入平均粒径50nm的零价铁粒子Fe0Ps(Fe0与改性淀粉的质量比为0.02g/g),搅拌混合5min后待改性淀粉颜色变黄褐色,磁铁吸出Fe0Ps,过筛、低温烘干(30℃)得到表面负载Fe离子的矿化改性淀粉。通过SEM观察,其表面具有大量的片状晶体;EDS图谱显示,表面的铁元素含量高达约7%,说明其覆盖表面具有铁矿化晶体存在。
(3)将步骤(2)中的矿化改性淀粉与耐高温α-淀粉酶(0.1%)、普鲁兰酶(1.5%)预调节(湿度26wt%),该混合物进入挤压机腔预反应后出料,以连续进料的某一段物料计,挤压时间为1min;然后按0.02g/g淀粉加入Fe0粒子,挤压温度120℃、螺杆转速30rpm,以连续进料的某一段物料计,挤压时间为1min,制得所述纳米孔淀粉基磁性吸附剂。
本实施例制得的纳米孔淀粉基磁性吸附剂,其纳米孔径大小分布范围在100-500nm,成孔率47.82%,磁饱和强度5.23emu/g,亚甲基蓝(作为污染物模型)吸附率达35.73mg/g。

Claims (9)

1.一种纳米孔淀粉基吸附剂的制备方法,其特征在于,该方法至少包括:
(1)在羟基离子化处理后的淀粉水溶液中加入零价金属粒子
Figure DEST_PATH_IMAGE002
,以诱导淀粉表面矿化,使得淀粉颗粒表面形成片状的矿化晶;具体包括:
(1.1)将淀粉进行羟基离子化处理;羟基离子化处理具体为:将二价及以上价态金属盐与淀粉在10-50℃、pH5-9条件下水浴混合30-360min,之后过筛清洗得羟基上氧原子与金属离子结合的改性淀粉;所述二价及以上价态金属盐为镁、钙、锶、钡、钛、锆、铬、钼、锰、钴、镍、铜、锌、铝中的一种或多种;
(1.2)将羟基离子化后的淀粉与零价金属粒子
Figure 750256DEST_PATH_IMAGE002
混合,零价金属粒子
Figure 73921DEST_PATH_IMAGE002
失电子形成金属离子,金属离子与淀粉的离子化羟基原位复合,诱导淀粉表面矿化;所述零价金属粒子
Figure 56920DEST_PATH_IMAGE002
为Fe0 Ps;
(2)将矿化后的淀粉与淀粉酶制剂混合后,通过酶法螺杆挤压,形成具有纳米孔结构的淀粉基吸附材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)的挤压过程中,还加入功能性的零价金属粒子
Figure DEST_PATH_IMAGE004
,所述淀粉与零价金属粒子的质量比为100:2~50;所述零价金属粒子
Figure 389813DEST_PATH_IMAGE004
为Fe0 Ps。
3.根据权利要求1所述的制备方法,其特征在于,包括如下步骤:
(A1)淀粉羟基离子化;将二价及以上价态金属盐与的淀粉在10-50℃、pH5-9条件下水浴混合30-360min,其中,二价及以上价态金属盐与淀粉的质量比为0.05-0.6 g/g,淀粉浓度为50-200 g/L;之后过筛清洗得羟基上氧原子与金属离子结合的改性淀粉;
(A2)改性淀粉矿化:将步骤(A1)中的羟基离子化改性淀粉置入20-45℃水溶液中,并加入零价铁粒子Fe0 Ps,搅拌混合5-15min后待改性淀粉颜色变黄褐色;其中,所述淀粉水溶液的体积分数为100-800 g/L;
(A3)过筛、30-45℃下低温烘干;
(A4)酶法挤压形成淀粉纳米孔:向步骤(A3)烘干后的产物中加入淀粉酶制剂预调节,该混合物进入挤压机腔反应后出料,制得所述纳米孔淀粉基吸附剂。
4.根据权利要求2所述的制备方法,其特征在于,包括如下步骤:
(B1)淀粉羟基离子化:将二价及以上价态金属盐与淀粉在10-50℃、pH5-9条件下水浴混合30-360min,其中,二价及以上价态金属盐与淀粉的质量比为0.05-0.6 g/g,淀粉浓度为50-200 g/L;之后过筛清洗得羟基上氧原子与金属离子结合的改性淀粉;
(B2)改性淀粉矿化:将步骤(B1)中的羟基离子化改性淀粉置入20-45℃水溶液中,并加入零价铁粒子Fe0 Ps,搅拌混合5-15min后待改性淀粉颜色变黄褐色;
(B3)磁铁吸出多余的Fe0 Ps,过筛、30-45℃下低温烘干;
(B4)酶法挤压形成淀粉纳米孔:向步骤(B3)烘干后的产物中加入淀粉酶制剂预调节,该混合物进入挤压机腔进行预挤压反应,预挤压后加入Fe0 Ps进行连续挤压反应,反应后出料,制得所述纳米孔淀粉基吸附剂。
5.根据权利要求3或4所述的制备方法,其特征在于,所述零价铁粒子Fe0 Ps的平均粒径范围在50nm-100μm。
6.根据权利要求3或4所述的制备方法,其特征在于,所述淀粉酶制剂为耐高温α-淀粉酶、中温α-淀粉酶、β-淀粉酶、普鲁兰酶、异淀粉酶中的一种或多种。
7.根据权利要求3或4所述的制备方法,其特征在于,经淀粉酶制剂预调节后的混合物预调节的湿度为26-52wt%、含酶量为0.01-1.5%、pH为4.5-9.5。
8.根据权利要求3所述的制备方法,其特征在于,酶法螺杆挤压操作参数设置为:挤压温度50-120℃、螺杆转速30-400rpm,受挤压处理的时间控制在2-15 min。
9.根据权利要求4所述的制备方法,其特征在于,酶法螺杆挤压操作参数设置为:挤压温度50-120℃、螺杆转速30-400rpm,物料在预挤压阶段受挤压处理的受挤压处理时间控制在1-6 min,物料在再次连续挤压阶段的受挤压处理时间控制在1-9 min。
CN201911005684.3A 2019-10-22 2019-10-22 一种纳米孔淀粉基吸附剂及其制备方法 Active CN110813246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911005684.3A CN110813246B (zh) 2019-10-22 2019-10-22 一种纳米孔淀粉基吸附剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911005684.3A CN110813246B (zh) 2019-10-22 2019-10-22 一种纳米孔淀粉基吸附剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110813246A CN110813246A (zh) 2020-02-21
CN110813246B true CN110813246B (zh) 2020-09-22

Family

ID=69550203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911005684.3A Active CN110813246B (zh) 2019-10-22 2019-10-22 一种纳米孔淀粉基吸附剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110813246B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111687426B (zh) * 2020-07-13 2021-11-23 中国科学院武汉岩土力学研究所 一种缓释型纳米零价铁粒子的制备方法
CN113369486B (zh) * 2021-06-17 2023-06-16 中科检测技术服务(重庆)有限公司 一种用于太阳能电池板的纳米铜颗粒制备方法
CN113477225A (zh) * 2021-06-22 2021-10-08 西安理工大学 一种磁响应型淀粉吸附材料的制备方法
CN114797750B (zh) * 2022-04-22 2023-10-13 河北省科学院能源研究所 一种交联淀粉基复合吸附剂及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2460064A (en) * 2008-05-15 2009-11-18 Maria Catherine Tabiner A method of forming a permanently magnetic absorbent composite material
US9266088B2 (en) * 2012-09-11 2016-02-23 Pioneer Pet Products, Llc Method of making extruded self-clumping cat litter
PL233881B1 (pl) * 2013-03-22 2019-12-31 Uniwersytet Przyrodniczy We Wroclawiu Sposób wytwarzania adsorbentu o cząstkach stałych
WO2015181205A1 (en) * 2014-05-28 2015-12-03 Biaqua B.V. Method for removing phosphate from water fractions
CN105642244B (zh) * 2016-02-03 2018-12-07 安徽农业大学 一种交联-酶解复合超微改性淀粉吸附剂的制备方法与应用
WO2018206923A1 (en) * 2017-05-11 2018-11-15 Opal Ip Limited Novel formulations

Also Published As

Publication number Publication date
CN110813246A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN110813246B (zh) 一种纳米孔淀粉基吸附剂及其制备方法
Tho et al. Enhanced simultaneous adsorption of As (iii), Cd (ii), Pb (ii) and Cr (vi) ions from aqueous solution using cassava root husk-derived biochar loaded with ZnO nanoparticles
Ahmed et al. Enhanced adsorption of aqueous Pb (II) by modified biochar produced through pyrolysis of watermelon seeds
Guo et al. Preparation of novel ZnO-NP@ Zn-MOF-74 composites for simultaneous removal of copper and tetracycline from aqueous solution
Zhu et al. High-efficiency and low-cost α-Fe2O3 nanoparticles-coated volcanic rock for Cd (II) removal from wastewater
Bhatia et al. Application of nanoadsorbents for removal of lead from water
Gómez-Pacheco et al. Optimization of the preparation process of biological sludge adsorbents for application in water treatment
Wang et al. High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb (II) removal from wastewater
CN104671738A (zh) 一种页岩硅藻泥壁材及其制备方法
Zeng et al. Adsorption of As (V) by magnetic alginate-chitosan porous beads based on iron sludge
CN110479226B (zh) 一种粘土矿物/农林废弃生物质复合污水处理剂、其制备方法及应用
CN101559349B (zh) 一种免烧型盐酸活化沸石滤料及其制备方法
Edathil et al. Alginate derived porous graphitic carbon for highly efficient remediation of sulfide from wastewater
Yan et al. As (V) removal from water using the La (III)-Montmorillonite hydrogel beads
US20200338526A1 (en) Sorbents from iron-rich and aluminium-rich starting materials
CN112892476A (zh) 生物炭复合材料及其制备方法与应用
Ilyas et al. MXene-based 2D Ti3C2Tx nanosheets for highly efficient cadmium (Cd2+) adsorption
Ahmed et al. Morphological behaviors of brushite/vivianite nanocomposites and their potency for Se (IV) and Cd (II) removal from aqueous solutions
Ibrahim et al. Outlook on the carbon-based materials for heavy metal removal
Torabi et al. Electrosorption of phenolic compounds by carbon sheet electrode from zinc chloride functionalized activated carbon from pomegranate husk
KR101344235B1 (ko) 알럼 슬러지를 이용한 유해성 이온 제거용 흡착제 및 이의 제조방법
KR20160121131A (ko) 다층막으로 된 하이드로젤 캡슐 및 이의 제조방법
JP7005052B2 (ja) ナノポア澱粉基吸着剤及びその製造方法
Liu et al. Adsorption-desorption behaviors of ciprofloxacin onto aged polystyrene fragments in aquatic environments
Kandel et al. Decoration of dandelion-like manganese-doped iron oxide microflowers on plasma-treated biochar for alleviation of heavy metal pollution in water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant