CN110812638A - 基于ards肺保护性策略的智能闭环机械通气控制系统及方法 - Google Patents

基于ards肺保护性策略的智能闭环机械通气控制系统及方法 Download PDF

Info

Publication number
CN110812638A
CN110812638A CN201911143558.4A CN201911143558A CN110812638A CN 110812638 A CN110812638 A CN 110812638A CN 201911143558 A CN201911143558 A CN 201911143558A CN 110812638 A CN110812638 A CN 110812638A
Authority
CN
China
Prior art keywords
ventilation
optimal
subsystem
ards
intelligent closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911143558.4A
Other languages
English (en)
Other versions
CN110812638B (zh
Inventor
张广
陈锋
余明
徐佳盟
袁晶
罗熙
郭昊冈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Medical Support Technology of Academy of System Engineering of Academy of Military Science
Original Assignee
Institute of Medical Support Technology of Academy of System Engineering of Academy of Military Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Medical Support Technology of Academy of System Engineering of Academy of Military Science filed Critical Institute of Medical Support Technology of Academy of System Engineering of Academy of Military Science
Priority to CN201911143558.4A priority Critical patent/CN110812638B/zh
Publication of CN110812638A publication Critical patent/CN110812638A/zh
Application granted granted Critical
Publication of CN110812638B publication Critical patent/CN110812638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/42Rate

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,它包括生理通气参数感知子系统,智能闭环控制子系统和通气调节执行子系统,所述的生理通气参数感知子系统实时监测患者呼吸参数,随后每间隔一段时间通过智能闭环控制子系统计算机械通气参数的最优组合,通过通气调节执行子系统调节ARDS患者呼吸机参数。其优点是:基于公认ARDS肺保护机械通气规则,能够在氧合和肺保护之间兼顾,从而智能选择动态的平衡策略,实现针对ARDS专业化个性化的机械通气自适应调节,能够避免医护人员因经验不足、操作不规范等人为因素导致的患者肺和其它器官损伤,达到最优的通气治疗效果,有效提高ARDS机械通气救治效率。

Description

基于ARDS肺保护性策略的智能闭环机械通气控制系统及方法
技术领域
本发明属于呼吸机领域,具体涉及一种基于ARDS肺保护性策略的智能闭环机械通气控制系统及方法。
背景技术
急性呼吸窘迫综合征(ARDS)是由肺内原因和肺外原因引起的,以非心源性肺水肿导致的临床综合征,以顽固性进行性低氧血症为临床主要表现,因高病死率而倍受关注。ARDS起病较急,可为24~48小时发病,也可长至5~7天,死亡率为40%~60%。
目前,机械通气是治疗ARDS的主要手段。机械通气的主要目的是保证人体组织适当氧供给,使器官组织可以得到足够的氧气,以便进行氧合作用获得能源,同时保证二氧化碳的充分排除,避免呼吸性酸中毒。同时,机械通气需要避免因平台压过高而导致的气压伤。因此,对于ARDS患者,在机械通气中权衡氧合和肺保护,选择最优的动态平衡策略,达到最佳的治疗效果,是目前机械通气的难点。在实际针对ARDS病症的机械通气处置过程中,医生对通气参数的人工设定往往仅依靠个人经验判断,对医护人员专业水平要求较高。此外,传统呼吸机调参耗时低效,一方面无法根据病患ARDS发展程度实时做出调整,另一方面在参数调节过程中无法兼顾其他处置操作,只能一对一开展,医护人员无法兼顾其它病患,易造成医疗资源的浪费。尤其是在突发公共卫生事件和战场一线情况下,由于伤员基数庞大,而医疗资源却十分有限,针对ARDS病症开展高质量个性化的救治将更加困难。
专利US20180193579提供了一种肺保护性通气检测方法,但该方法仅实现了基于呼吸机监测参数和检测到的临床事件评估当前呼吸机设置的合理性,尚未实现以提升患者氧合和肺保护为目的的智能通气闭环自动控制。专利US20130104892结合呼吸机通气时间与氧气设置水平提出了一种新的通气损伤指标来提示护理人员当前机械通气参数对患者的潜在损伤。但该专利仍然没有实现呼吸机的智能闭环控制,无法有效限制平台压从而避免气压伤的发生。专利EP0615764A1提供了一种用于呼吸机中的闭环吸气压力控制方法,该方法通过控制呼吸气体以期望的供应速率流经流量供应阀来实现在吸气周期中控制呼吸机中的气道压力。专利US8789530提供了基于动态适应性策略的机械通气自动控制系统,用于控制患者血液中的氧气浓度。以上专利虽然利用闭环控制策略,以期实现对机械通气相关参数的自动调节,但是这些并非针对ARDS病症救治设计,缺乏肺保护通气策略和氧合提升的权衡考虑。目前尚无基于权衡ARDS患者肺保护和氧合的优化机械闭环自动通气方面的专利。
发明内容
本发明的目的是提供一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,它能够实现针对ARDS病症的机械通气参数优化自适应调节。
本发明的技术方案如下:一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,它包括生理通气参数感知子系统,智能闭环控制子系统和通气调节执行子系统,所述的生理通气参数感知子系统实时监测患者呼吸参数,随后每间隔一段时间通过智能闭环控制子系统计算机械通气参数的最优组合,通过通气调节执行子系统调节ARDS患者呼吸机参数。
所述的生理通气参数感知子系统包括MCU主控单片机、血氧浓度传感器、气体压力传感器、氧浓度传感器、人机键入显示模块,所述的血氧浓度传感器与MCU主控芯片通过IIC通信,进行电连接,气体压力传感器与MCU主控芯片通过IIC通信,进行电连接;氧浓度传感器与MCU主控芯片通过UART_TTL串口通信,进行电连接;人机键入显示模块与MCU主控芯片通过电连接进行信号传输,生理通气参数感知系统通过SPI口与智能闭环控制子系统进行数据传输通信。
所述的MCU主控单片机型号为STM32、血氧浓度传感器型号为MAX30100、气体压力传感器型号为MIX-PX300、氧浓度传感器型号为Gasboard-7500C。
所述的生理通气参数感知子系统具有对患者呼吸能力与机械通气状态相关参数实时监测功能,通过血氧浓度传感器MAX30100对SpO2进行监测,通过气体压力传感器MIX-PX300对PEEP进行监测,通过氧浓度传感器Gasboard-7500C对FiO2进行监测,通过流量传感器Gasboard-7500C对VT、顺应性、呼气时间常数参数监测,通过人机键入显示模块将患者身高、性别信息输入生理通气参数感知系统并显示参数信息,从生理通气参数感知子系统中获取的患者相关参数将实时发送至智能闭环控制子系统。
智能闭环控制子系统包括最优潮气量计算子模块,它能够实现以下操作:结合身高、性别和生理通气参数感知子系统采集到的参数信息通过最优潮气量计算子模块计算最优潮气量,结合智能闭环控制子系统与滴定法上调或下调PEEP与FiO2,若平台压小于30cmH2O,则上调PEEP与FiO2使得SPO2高于92%,若平台压大于30cmH2O,则在最优潮气量计算子模块计算最优潮气量并通过通气调节执行子系统调节潮气量为最优潮气量后,判断平台压是否大于或小于30cmH2O,对PEEP与FiO2下调或上调,使平台压小于30cmH2O的前提下,SPO2高于92%,并视最终的PEEP与FiO2为最优PEEP和最优FiO2
所述的智能闭环控制子系统内包含最优潮气量计算子模块,所述的最优潮气量计算子模块的具体内容如下:最优潮气量计算模块输入部分包括VT,身高,性别,顺应性,PEEP和呼气时间常数6个参数,对输入参数的处理分为两部分,奖励部分:神经元1是当前潮气量对应的存活率;神经元2是当前驱动压对应的存活率;神经元3是当前平台压对应的存活率;惩罚部分:神经元4是当前潮气量与呼吸频率与Otis公式的解(fOtis,VTOtis)的欧式距离;神经元5是当前潮气量超出指南建议值的差值;神经元6是当前驱动压超出指南建议值的差值;神经元7是当前平台压超出指南建议值的差值,随后对神经元1~7使用f激活函数1~7进行变形,分别得到神经元x1~x7,各神经元的激活函数分别为:
Figure BDA0002281585880000041
Figure BDA0002281585880000043
Figure BDA0002281585880000045
Figure BDA0002281585880000047
其中,
Figure BDA0002281585880000048
Figure BDA0002281585880000049
g参数-存活率为来自全球五大洲50个国家的459个重症监护室在确诊ARDS患者时第一天的该参数与患者死亡率的函数关系;
最后,将神经元x1~x7分别乘以不同权重wi(i=1,2,L,7),并进行线性运算
Figure BDA0002281585880000051
使Value值达到最大的潮气量记为VT′,则最优潮气量为VT′,其中,权重wi则通过层次分析法求得,
Otis函数如下式所示:
其中,f为呼吸频率,a是与流速波形相关的因子,在正弦流速中,a为2π2/60,RCexp为呼气时间常数;MV为目标分钟通气量,计算公式为0.1L/kg×理想体重,VD为死腔量,计算公式为2.2L/kg×理想体重,f初始值为10d/min;
最小呼吸功下的最优呼吸频率计算方法为,将初始值f0=10d/min代入Otis公式计算,获得下一个呼吸频率预估值f1,再将f1代入公式重复计算得到下一个呼吸频率预估值f2,这个过程将一直重复进行,直到最新两个呼吸频率的差值Δf低于5d/min,而最小呼吸功下的最优潮气量计算方法为MV/最佳呼吸频率。
所述的通气调节执行子系统包括MCU主控单片机、驱动芯片、空气氧气混合阀,MCU主控单片机根据智能闭环控制子系统计算出的最优设定值,通过输出PWM波形控制驱动芯片,驱动空气氧气混合阀,实时调节PEEP、FiO2、VT值,所述的MCU主控单片机与驱动芯片之间进行电连接,驱动芯片与空气氧气混合阀之间进行电连接。
所述的通气调节执行子系统包括MCU主控单片机型号为STM32、驱动芯片型号为DRV101T、空气氧气混合阀型号为F01761。
一种基于ARDS肺保护性策略的智能闭环机械通气控制方法,包括如下步骤,
第一步:根据呼吸机预设参数对患者进行机械通气;
第二步:通过智能闭环控制子系统实时监测患者呼吸能力与机械通气状态相关参数,并将相关参数实时发送至智能闭环控制子系统;
第三步:待患者稳定后,智能闭环控制子系统结合身高、性别和生理通气参数感知子系统采集到的参数信息计算最优潮气量、最优PEEP和最优FiO2,并将计算得出的机械通气参数的最优组合方法发送至通气调节执行子系统;
第四步:根据智能闭环控制子系统计算出的最优设定值,通过单片机实时调节PEEP、FiO2、VT,从而实现对ARDS患者的优化通气;
第五步:返回第二步。
本发明的有益效果在于:(1)本发明可根据患者病情,实现全程智能自动化操作,通过降低机械通气调控操作难度,来降低ARDS患者机械通气救治过程中对专业医护人员的依赖程度,实现基于ARDS肺保护机械通气策略的广泛应用;(2)本发明基于公认ARDS肺保护机械通气规则,能够在氧合和肺保护之间兼顾,从而智能选择动态的平衡策略,实现针对ARDS专业化个性化的机械通气自适应调节,能够避免医护人员因经验不足、操作不规范等人为因素导致的患者肺和其它器官损伤,达到最优的通气治疗效果,有效提高ARDS机械通气救治效率。
附图说明
图1生理通气参数感知子系统示意图;
图2通气调节执行子系统示意图;
图3最优潮气量计算模示意图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
本发明结合2019年欧洲ARDS患者管理指南与2016年中国急性呼吸窘迫症患者机械通气指南(试行)提出一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,它能够从降低平台压避免气压伤与提高氧合两方面实现ARDS患者的闭环自动机械通气支持,从而一方面减少医疗资源消耗,另一方面有效提升ARDS病症的机械通气救治效率。所述系统可结合智能控制策略,根据患者的血氧饱和度、顺应性、呼吸阻力与平台压等生理指标计算最优潮气量(VT)、呼吸末正压(PEEP)和吸氧浓度(SpO2),针对患者病情实现个性化的呼吸机通气参数调节。
如图1所示,一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,包括:生理通气参数感知子系统,智能闭环控制子系统和通气调节执行子系统。其工作原理如下:首先通过生理通气参数感知子系统实时监测患者呼吸参数,随后每间隔一段时间通过智能闭环控制子系统计算机械通气参数的最优组合方法,最后通过通气调节执行子系统调节ARDS患者呼吸机参数。
如图1所示,生理通气参数感知子系统包括MCU主控单片机型号为STM32、血氧浓度传感器型号为MAX30100、气体压力传感器型号为MIX-PX300、氧浓度传感器型号为Gasboard-7500C、人机键入显示模块。血氧浓度传感器MAX30100与MCU主控芯片STM32通过IIC通信,进行电连接;气体压力传感器MIX-PX300与MCU主控芯片STM32通过IIC通信,进行电连接;氧浓度传感器Gasboard-7500C与MCU主控芯片STM32通过UART_TTL串口通信,进行电连接;人机键入显示模块与MCU主控芯片STM32通过电连接进行信号传输。生理通气参数感知系统通过SPI口与智能闭环控制子系统进行数据传输通信。
生理通气参数感知子系统具有对患者呼吸能力与机械通气状态相关参数实时监测功能,通过血氧浓度传感器MAX30100对SpO2进行监测,通过气体压力传感器MIX-PX300对PEEP进行监测,通过氧浓度传感器Gasboard-7500C对FiO2进行监测,通过流量传感器Gasboard-7500C对VT、顺应性、呼气时间常数参数监测,通过人机键入显示模块将患者身高、性别信息输入生理通气参数感知系统并显示参数信息。从生理通气参数感知子系统中获取的患者相关参数将实时发送至智能闭环控制子系统。
智能闭环控制子系统包括最优潮气量计算子模块,它能够实现以下操作:ARDS患者接入呼吸机后,呼吸机首先根据预设参数对患者进行机械通气;随后智能闭环控制子系统结合身高、性别和生理通气参数感知子系统采集到的参数信息通过最优潮气量计算子模块计算最优潮气量,结合智能闭环控制子系统与滴定法上调或下调PEEP与FiO2,若患者平台压小于30cmH2O,则上调PEEP与FiO2使得患者SPO2高于92%,若患者平台压大于30cmH2O,则在最优潮气量计算子模块计算最优潮气量并通过通气调节执行子系统调节患者潮气量为最优潮气量后,根据患者平台压是否大于或小于30cmH2O对PEEP与FiO2下调或上调,使患者平台压小于30cmH2O的前提下,SPO2高于92%,并视最终的PEEP与FiO2为最优PEEP和最优FiO2。每间隔一段时间(时间的选择根据具体情况而定)智能闭环控制子系统将计算机械通气参数的最优组合方法,并将该参数组合方法发送至通气调节执行子系统。智能闭环控制子系统通过SPI口与通气调节执行子系统进行数据传输通信。
最优潮气量计算子模块的具体内容如下:如图3为最优潮气量计算模块示意图。最优潮气量计算模块输入部分包括VT,身高,性别,顺应性,PEEP和呼气时间常数6个参数。如图3,对输入参数的处理分为两部分,奖励神经元模块和惩罚神经元模块。其中,奖励神经元模块中的神经元为奖励部分:神经元1是当前潮气量对应的存活率;神经元2是当前患者驱动压对应的存活率;神经元3是当前患者平台压对应的存活率。惩罚神经元模块中的神经元为惩罚部分:神经元4是当前患者潮气量与呼吸频率与Otis公式的解(fOtis,VTOtis)的欧式距离;神经元5是当前潮气量超出指南建议值的差值;神经元6是当前患者驱动压超出指南建议值的差值;神经元7是当前患者平台压超出指南建议值的差值。随后对神经元1~7使用f激活函数1~7进行变形,分别得到神经元x1~x7。各神经元的激活函数分别为:
Figure BDA0002281585880000091
Figure BDA0002281585880000092
Figure BDA0002281585880000093
Figure BDA0002281585880000094
Figure BDA0002281585880000095
Figure BDA0002281585880000096
Figure BDA0002281585880000097
其中,
Figure BDA0002281585880000099
g参数-存活率为来自全球五大洲50个国家的459个重症监护室在确诊ARDS患者时第一天的该参数与患者死亡率的函数关系。
最后,将神经元x1~x7分别乘以不同权重wi(i=1,2,L,7),并进行线性运算
Figure BDA0002281585880000101
使Value值达到最大的潮气量记为VT′,则最优潮气量为VT′。
权重wi则通过层次分析法求得,由专业呼吸科医师提供相关信息。
Otis函数如下式所示:
Figure BDA0002281585880000102
其中,f为呼吸频率,a是与流速波形相关的因子,在正弦流速中,a为2π2/60,RCexp为呼气时间常数;MV为目标分钟通气量,计算公式为0.1L/kg×理想体重,VD为死腔量,计算公式为2.2L/kg×理想体重,f初始值为10d/min。
最小呼吸功下的最优呼吸频率计算方法为,将初始值f0=10d/min代入Otis公式计算,获得下一个呼吸频率预估值f1,再将f1代入公式重复计算得到下一个呼吸频率预估值f2。这个过程将一直重复进行,直到最新两个呼吸频率的差值Δf低于5d/min。而最小呼吸功下的最优潮气量计算方法为MV/最佳呼吸频率。
如图2所示,通气调节执行子系统包括MCU主控单片机型号为STM32、驱动芯片型号为DRV101T、空气氧气混合阀型号为F01761。单片机STM32根据智能闭环控制子系统计算出的最优设定值,通过输出PWM波形控制驱动芯片DRV101T,驱动空气氧气混合阀F01761,实时调节PEEP、FiO2、VT值,从而实现对ARDS患者的优化通气。单片机STM32与驱动芯片DRV101T之间进行电连接,驱动芯片DRV101T与空气氧气混合阀F01761之间进行电连接。
通气调节执行子系统根据智能闭环控制子系统计算出的最优设定值,通过单片机STM32控制驱动芯片DRV101T以调节空气氧气混合阀F01761,实时调节PEEP、FiO2、VT,从而实现对ARDS患者的优化通气。
一种基于ARDS肺保护性策略的智能闭环机械通气控制系统的使用包括如下步骤:
第一步:根据呼吸机预设参数对患者进行机械通气;
第二步:通过智能闭环控制子系统实时监测患者呼吸能力与机械通气状态相关参数,并将相关参数实时发送至智能闭环控制子系统;
第三步:待患者稳定后,智能闭环控制子系统结合身高、性别和生理通气参数感知子系统采集到的参数信息计算最优潮气量、最优PEEP和最优FiO2,并将计算得出的机械通气参数的最优组合方法发送至通气调节执行子系统;
第四步:根据智能闭环控制子系统计算出的最优设定值,通过单片机实时调节PEEP、FiO2、VT,从而实现对ARDS患者的优化通气;
第五步:返回第二步。
实施例1
ARDS患者接入呼吸机后,首先根据呼吸机默认参数对患者进行机械通气。生理通气参数感知子系统实时监测患者生理参数(SpO2、PEEP、FiO2、VT、顺应性、呼气时间常数)并将患者参数实时传递给智能闭环控制子系统。待患者稳定后,根据智能闭环控制子系统结合患者身高、性别和患者生理参数,计算机械通气最优参数组合方式。智能闭环控制子系统智能控制原理流程参见图2。患者稳定后,通过公式计算患者平台压。若平台压小于30cmH2O,则在满足平台压小于30cmH2O的前提下,智能闭环控制子系统根据滴定法发送PEEP与FIO2指令给通气调节执行子系统,尽可能使患者观测值SPO2达到95%。结合患者身高、性别和患者生理参数,通过智能闭环控制子系统计算最优潮气量,通过通气调节执行子系统设定潮气量为最优潮气量,限制潮气量上限为8ml/kg。
若在初始状态患者平台压大于30cmH2O,结合患者身高、性别和患者参数,智能闭环控制子系统计算最优潮气量,并通过通气调节执行子系统设定潮气量为最优潮气量,限制潮气量下限为4ml/kg。若患者状态稳定后平台压仍大于30cmH2O,则通过通气调节执行子系统调整潮气量至4ml/kg。待患者稳定后,再次通过通气调节执行子系统根据滴定法上调或下调PEEP与FIO2,以保证平台压小于30cmH2O。
若在上述操作后,不能同时满足“患者平台压小于30cmH2O”和“患者SPO2大于88%”,则发出警报,提示医护人员考虑增加FIO2至大于50%或接入体外装置或采用其它治疗策略。
若在上述操作后,能够同时满足“患者平台压小于30cmH2O”和“患者SPO2大于88%”,则认为当前呼吸机参数为最优参数,并以该参数在一定时间内持续对患者进行机械通气。
若以最优参数进行一段时间的机械通气后,患者顺应性大于等于30ml/cmH2O,呼吸频率小于等于25d/min,吸入氧浓度小于等于40%,则发出提醒,提示该患者可以撤机。
滴定法为机械通气领域专业术语,本发明实施例对此不做赘述。
实施例2
下面结合具体的实例和图3,对实施例1中智能闭环控制子系统的计算最优潮气量方法进行详细解释,详见下文描述:
如图3为最优潮气量计算模块示意图。最优潮气量计算模块输入部分包括VT,身高,性别,顺应性,PEEP和呼气时间常数6个参数。如图3所示,对输入参数的处理分为两部分。虚线框①中的神经元为奖励部分:神经元1是当前潮气量对应的存活率;神经元2是当前患者驱动压对应的存活率;神经元3是当前患者平台压对应的存活率。虚线框②中的神经元为惩罚部分:神经元4是当前患者潮气量与呼吸频率与Otis公式的解(fOtis,VTOtis)的欧式距离;神经元5是当前潮气量超出指南建议值的差值;神经元6是当前患者驱动压超出指南建议值的差值;神经元7是当前患者平台压超出指南建议值的差值。随后对神经元1~7使用f激活函数1~7进行变形,分别得到神经元x1~x7。各神经元的激活函数分别为:
Figure BDA0002281585880000131
Figure BDA0002281585880000132
Figure BDA0002281585880000133
Figure BDA0002281585880000134
Figure BDA0002281585880000135
Figure BDA0002281585880000136
Figure BDA0002281585880000137
其中,
Figure BDA0002281585880000138
Figure BDA0002281585880000139
g参数-存活率为来自全球五大洲50个国家的459个重症监护室在确诊ARDS患者时第一天的该参数与患者死亡率的函数关系。
最后,将神经元x1~x7分别乘以不同权重wi(i=1,2,L,7),并进行线性运算使Value值达到最大的潮气量记为VT′,则最优潮气量为VT′。
权重wi则通过层次分析法求得,由专业呼吸科医师提供相关信息。
Otis函数如下式所示:
Figure BDA0002281585880000142
其中,f为呼吸频率,a是与流速波形相关的因子,在正弦流速中,a为2π2/60,RCexp为呼气时间常数;MV为目标分钟通气量,计算公式为0.1L/kg×理想体重,VD为死腔量,计算公式为2.2L/kg×理想体重,f初始值为10d/min。
最小呼吸功下的最优呼吸频率计算方法为,将初始值f0=10d/min代入Otis公式计算,获得下一个呼吸频率预估值f1,再将f1代入公式重复计算得到下一个呼吸频率预估值f2。这个过程将一直重复进行,直到最新两个呼吸频率的差值Δf低于5d/min。而最小呼吸功下的最优潮气量计算方法为MV/最佳呼吸频率。

Claims (9)

1.一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,其特征在于:它包括生理通气参数感知子系统,智能闭环控制子系统和通气调节执行子系统,所述的生理通气参数感知子系统实时监测患者呼吸参数,随后每间隔一段时间通过智能闭环控制子系统计算机械通气参数的最优组合,通过通气调节执行子系统调节ARDS患者呼吸机参数。
2.如权利要求1所述的一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,其特征在于:所述的生理通气参数感知子系统包括MCU主控单片机、血氧浓度传感器、气体压力传感器、氧浓度传感器、人机键入显示模块,所述的血氧浓度传感器与MCU主控芯片通过IIC通信,进行电连接,气体压力传感器与MCU主控芯片通过IIC通信,进行电连接;氧浓度传感器与MCU主控芯片通过UART_TTL串口通信,进行电连接;人机键入显示模块与MCU主控芯片通过电连接进行信号传输,生理通气参数感知系统通过SPI口与智能闭环控制子系统进行数据传输通信。
3.如权利要求2所述的一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,其特征在于:所述的MCU主控单片机型号为STM32、血氧浓度传感器型号为MAX30100、气体压力传感器型号为MIX-PX300、氧浓度传感器型号为Gasboard-7500C。
4.如权利要求3所述的一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,其特征在于:所述的生理通气参数感知子系统具有对患者呼吸能力与机械通气状态相关参数实时监测功能,通过血氧浓度传感器MAX30100对SpO2进行监测,通过气体压力传感器MIX-PX300对PEEP进行监测,通过氧浓度传感器Gasboard-7500C对FiO2进行监测,通过流量传感器Gasboard-7500C对VT、顺应性、呼气时间常数参数监测,通过人机键入显示模块将患者身高、性别信息输入生理通气参数感知系统并显示参数信息,从生理通气参数感知子系统中获取的患者相关参数将实时发送至智能闭环控制子系统。
5.如权利要求1所述的一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,其特征在于:智能闭环控制子系统包括最优潮气量计算子模块,它能够实现以下操作:结合身高、性别和生理通气参数感知子系统采集到的参数信息通过最优潮气量计算子模块计算最优潮气量,结合智能闭环控制子系统与滴定法上调或下调PEEP与FiO2,若平台压小于30cmH2O,则上调PEEP与FiO2使得SPO2高于92%,若平台压大于30cmH2O,则在最优潮气量计算子模块计算最优潮气量并通过通气调节执行子系统调节潮气量为最优潮气量后,判断平台压是否大于或小于30cmH2O,对PEEP与FiO2下调或上调,使平台压小于30cmH2O的前提下,SPO2高于92%,并视最终的PEEP与FiO2为最优PEEP和最优FiO2
6.如权利要求5所述的一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,其特征在于:所述的智能闭环控制子系统内包含最优潮气量计算子模块,所述的最优潮气量计算子模块的具体内容如下:最优潮气量计算模块输入部分包括VT,身高,性别,顺应性,PEEP和呼气时间常数6个参数,对输入参数的处理分为两部分,奖励部分:神经元1是当前潮气量对应的存活率;神经元2是当前驱动压对应的存活率;神经元3是当前平台压对应的存活率;惩罚部分:神经元4是当前潮气量与呼吸频率与Otis公式的解(fOtis,VTOtis)的欧式距离;神经元5是当前潮气量超出指南建议值的差值;神经元6是当前驱动压超出指南建议值的差值;神经元7是当前平台压超出指南建议值的差值,随后对神经元1~7使用f激活函数1~7进行变形,分别得到神经元x1~x7,各神经元的激活函数分别为:
Figure FDA0002281585870000031
Figure FDA0002281585870000032
Figure FDA0002281585870000033
Figure FDA0002281585870000037
其中,
Figure FDA0002281585870000038
Figure FDA0002281585870000039
g参数-存活率为来自全球五大洲50个国家的459个重症监护室在确诊ARDS患者时第一天的该参数与患者死亡率的函数关系;
最后,将神经元x1~x7分别乘以不同权重wi(i=1,2,…,7),并进行线性运算
Figure FDA00022815858700000310
使Value值达到最大的潮气量记为VT′,则最优潮气量为VT′,
其中,权重wi则通过层次分析法求得,
Otis函数如下式所示:
其中,f为呼吸频率,a是与流速波形相关的因子,在正弦流速中,a为2π2/60,RCexp为呼气时间常数;MV为目标分钟通气量,计算公式为0.1L/kg×理想体重,VD为死腔量,计算公式为2.2L/kg×理想体重,f初始值为10d/min;
最小呼吸功下的最优呼吸频率计算方法为,将初始值f0=10d/min代入Otis公式计算,获得下一个呼吸频率预估值f1,再将f1代入公式重复计算得到下一个呼吸频率预估值f2,这个过程将一直重复进行,直到最新两个呼吸频率的差值Δf低于5d/min,而最小呼吸功下的最优潮气量计算方法为MV/最佳呼吸频率。
7.如权利要求1所述的一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,其特征在于:所述的通气调节执行子系统包括MCU主控单片机、驱动芯片、空气氧气混合阀,MCU主控单片机根据智能闭环控制子系统计算出的最优设定值,通过输出PWM波形控制驱动芯片,驱动空气氧气混合阀,实时调节PEEP、FiO2、VT值,所述的MCU主控单片机与驱动芯片之间进行电连接,驱动芯片与空气氧气混合阀之间进行电连接。
8.如权利要求1所述的一种基于ARDS肺保护性策略的智能闭环机械通气控制系统,其特征在于:所述的通气调节执行子系统包括MCU主控单片机型号为STM32、驱动芯片型号为DRV101T、空气氧气混合阀型号为F01761。
9.一种基于ARDS肺保护性策略的智能闭环机械通气控制方法,其特征在于:包括如下步骤,
第一步:根据呼吸机预设参数对患者进行机械通气;
第二步:通过智能闭环控制子系统实时监测患者呼吸能力与机械通气状态相关参数,并将相关参数实时发送至智能闭环控制子系统;
第三步:待患者稳定后,智能闭环控制子系统结合身高、性别和生理通气参数感知子系统采集到的参数信息计算最优潮气量、最优PEEP和最优FiO2,并将计算得出的机械通气参数的最优组合方法发送至通气调节执行子系统;
第四步:根据智能闭环控制子系统计算出的最优设定值,通过单片机实时调节PEEP、FiO2、VT,从而实现对ARDS患者的优化通气;
第五步:返回第二步。
CN201911143558.4A 2019-11-20 2019-11-20 基于ards肺保护性策略的智能闭环机械通气控制系统及方法 Active CN110812638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911143558.4A CN110812638B (zh) 2019-11-20 2019-11-20 基于ards肺保护性策略的智能闭环机械通气控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911143558.4A CN110812638B (zh) 2019-11-20 2019-11-20 基于ards肺保护性策略的智能闭环机械通气控制系统及方法

Publications (2)

Publication Number Publication Date
CN110812638A true CN110812638A (zh) 2020-02-21
CN110812638B CN110812638B (zh) 2022-04-12

Family

ID=69557486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911143558.4A Active CN110812638B (zh) 2019-11-20 2019-11-20 基于ards肺保护性策略的智能闭环机械通气控制系统及方法

Country Status (1)

Country Link
CN (1) CN110812638B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111407250A (zh) * 2020-04-02 2020-07-14 郑州大学第一附属医院 一种用于监测患者ards发展的系统及其治疗方法
CN112604113A (zh) * 2020-12-29 2021-04-06 杭州电子科技大学 一种便捷式呼吸机的控制系统
CN113490523A (zh) * 2020-12-29 2021-10-08 东南大学附属中大医院 呼吸支持设备及其控制方法和存储介质
CN113908389A (zh) * 2021-09-08 2022-01-11 上海瑞鞍星医疗科技有限公司 具有治疗肺毛细血管功能障碍的呼吸机控制方法及呼吸机
WO2022133942A1 (zh) * 2020-12-24 2022-06-30 深圳迈瑞生物医疗电子股份有限公司 医疗通气设备及通气监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711889A (zh) * 2010-01-22 2012-10-03 皇家飞利浦电子股份有限公司 自动控制的通气系统
CN106714882A (zh) * 2014-09-12 2017-05-24 慕曼德保健公司 具有决策支持的用于呼吸的机械通气系统
CN107438844A (zh) * 2015-04-08 2017-12-05 皇家飞利浦有限公司 由急性呼吸窘迫综合征(ards)的风险评分引导的用于推荐通气治疗的工具
CN109718441A (zh) * 2018-12-28 2019-05-07 北京谊安医疗系统股份有限公司 呼吸支持设备的呼吸参数调节方法、装置及呼吸支持设备
CN109731195A (zh) * 2018-12-28 2019-05-10 北京谊安医疗系统股份有限公司 呼吸支持设备的呼吸参数设置方法、装置及呼吸支持设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711889A (zh) * 2010-01-22 2012-10-03 皇家飞利浦电子股份有限公司 自动控制的通气系统
CN106714882A (zh) * 2014-09-12 2017-05-24 慕曼德保健公司 具有决策支持的用于呼吸的机械通气系统
CN107438844A (zh) * 2015-04-08 2017-12-05 皇家飞利浦有限公司 由急性呼吸窘迫综合征(ards)的风险评分引导的用于推荐通气治疗的工具
CN109718441A (zh) * 2018-12-28 2019-05-07 北京谊安医疗系统股份有限公司 呼吸支持设备的呼吸参数调节方法、装置及呼吸支持设备
CN109731195A (zh) * 2018-12-28 2019-05-10 北京谊安医疗系统股份有限公司 呼吸支持设备的呼吸参数设置方法、装置及呼吸支持设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVE A. DONGELMANS 等: "《自适应辅助通气的潮气量决定因素:一项多中心观察研究》", 《麻醉与镇痛(中文版)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111407250A (zh) * 2020-04-02 2020-07-14 郑州大学第一附属医院 一种用于监测患者ards发展的系统及其治疗方法
WO2022133942A1 (zh) * 2020-12-24 2022-06-30 深圳迈瑞生物医疗电子股份有限公司 医疗通气设备及通气监测方法
CN112604113A (zh) * 2020-12-29 2021-04-06 杭州电子科技大学 一种便捷式呼吸机的控制系统
CN113490523A (zh) * 2020-12-29 2021-10-08 东南大学附属中大医院 呼吸支持设备及其控制方法和存储介质
CN113908389A (zh) * 2021-09-08 2022-01-11 上海瑞鞍星医疗科技有限公司 具有治疗肺毛细血管功能障碍的呼吸机控制方法及呼吸机

Also Published As

Publication number Publication date
CN110812638B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN110812638B (zh) 基于ards肺保护性策略的智能闭环机械通气控制系统及方法
CN101500633B (zh) 呼吸器监控系统和使用同样系统的方法
CN104302338B (zh) 用于通气治疗的装置和方法
CN102917746B (zh) 无线通气机报告
EP2934640A1 (de) Beatmungssystem
CN102056536A (zh) 用于保持主体状态的方法和系统
CN105980014A (zh) 双压力传感器患者通气设备
CN114177451B (zh) 一种呼吸机的单呼吸周期压力—容量双控模式的控制方法
CN110368561A (zh) 一种呼吸机智能系统及其工作方法
EP3551248A1 (en) System for co2 removal
CN109718442B (zh) 呼吸支持设备的呼吸参数调节方法、装置及呼吸支持设备
CN103052955B (zh) 一种用于在多个医学设备之间进行语义通信的方法和装置
CN110537917A (zh) 一种基于呼吸力学的机械通气智能监测系统及监测方法
WO2015144500A1 (en) Medical intelligent ventilation system
Brunner History and principles of closed-loop control applied to mechanical ventilation
CN114588443A (zh) 一种基于肺部成像的经鼻高流量氧疗智能调节系统
CN108939232A (zh) 邻近或结合二级气道压力治疗的转换的方法
AU2009200284B2 (en) A weaning and decision support system
CN114586105A (zh) 用于人工呼吸的专家模块和ecls
CN117045913B (zh) 一种基于呼吸变量监测的机械通气模式智能切换系统
Lellouche et al. Mechanical ventilation with advanced closed-loop systems
Al-Otaibi Adaptive Support Ventilation Version 1.1 State-of Art Literature Review
JPH11206884A (ja) ファジー理論制御を用いた人工呼吸器の自動ウィニングシステムおよび自動ウィニングプログラムを記録した記録媒体
Wang et al. A model-based decision support system for mechanical ventilation using fuzzy logic
CN114887169B (zh) 一种呼吸机智能控制决策方法与系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant