CN110806208B - 一种定位系统和方法 - Google Patents

一种定位系统和方法 Download PDF

Info

Publication number
CN110806208B
CN110806208B CN201911119130.6A CN201911119130A CN110806208B CN 110806208 B CN110806208 B CN 110806208B CN 201911119130 A CN201911119130 A CN 201911119130A CN 110806208 B CN110806208 B CN 110806208B
Authority
CN
China
Prior art keywords
angle
positioning
dimensional
imu
avalanche photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911119130.6A
Other languages
English (en)
Other versions
CN110806208A (zh
Inventor
牛冠冲
郭胜
张倩玉
潘文安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese University of Hong Kong CUHK
Original Assignee
Chinese University of Hong Kong CUHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese University of Hong Kong CUHK filed Critical Chinese University of Hong Kong CUHK
Priority to CN201911119130.6A priority Critical patent/CN110806208B/zh
Publication of CN110806208A publication Critical patent/CN110806208A/zh
Application granted granted Critical
Publication of CN110806208B publication Critical patent/CN110806208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Abstract

本发明提供了一种定位系统,包括发射端及接收端,所述发射端包括二自由度舵机及线性红外激光扫描器,所述激光头固定于所述二自由度舵机上,所述二自由度舵机带动激光头转动,所述激光头扫描二维或三维空间,所述激光头通过无线连接接收端;接收端包括雪崩光电二极管、窄带滤光片、放大电路、单片机及IMU定位,所述窄带滤光片设置在雪崩光电二极管前端,所述放大电路作用于雪崩光电二极管,通过所述单片机判断二极管的上升沿,结合所述发射端舵机的角度信息,获取接收角度第一角度及第二角度,所述第一角度及第二角度通过IMU定位计算出具体位置。

Description

一种定位系统和方法
技术领域
本发明涉及定位领域,尤其是指一种定位系统和方法。
背景技术
现有技术中,有许多定位系统和方法,其中有WB定位,激光雷达定位,深摄像头定位,超声波定位等,而WB定位用多个基站发送信号,接收端根据到达时间的不同估计位置,类似GPS的原理,点是技术成熟,检测距离远,但是成本高,所需设备安装复杂,需要多个基站协同,对多径及非直射的情况处理能理差,易产生较大偏移;激光雷达定位用激光雷达对周围环境扫描定位,光雷达的精度高,性能稳定,但是激光雷达的价格极其昂贵,且体积、重量较大,不适合无人机使用;深摄像头定位,使用机器视觉的方法,对目标进行估计,成本较低,但是定位效果有限,估计误差较大,且会产生积累误差;超声波器件扫描周围环境,通过反射获取定位信息,该方法成本较低,技术成熟,但是定位精度差,距离短,对于复杂环境容易失效。针对以上的定位缺点,因而需要新的技术方案。
发明内容
本发明所要解决的技术问题是:旨在解决在室内的环境中可以通过无人机精确定位问题。
为了解决上述技术问题,本发明采用的技术方案为:提供一种基于红外激光扫描器和IMU的定位系统,
包括发射端及接收端,所述发射端包括二自由度舵机及线性红外激光扫描器,所述激光头固定于所述二自由度舵机上,所述二自由度舵机带动激光头转动,所述激光头扫描二维或三维空间,所述激光头通过无线连接接收端;
接收端包括雪崩光电二极管、窄带滤光片、放大电路、单片机及IMU定位,所述窄带滤光片设置在雪崩光电二极管前端,所述放大电路作用于雪崩光电二极管,所述雪崩光电二极管进行上升沿,通过所述单片机的判断雪崩光电二极管进行上升沿,结合所述发射端舵机的角度信息,获取接收角度第一角度及第二角度,所述第一角度及第二角度通过IMU定位计算出具体位置。
进一步的,所述IMU的定位用于计算目标物体的运动距离和角度。
进一步的,所述IMU定位由加速度计,陀螺仪和磁力计组成,所述加速度计,陀螺仪和磁力计皆水平设置。
进一步的,所述线性红外激光扫描器的波长为808nm,所述窄带滤光片用于过滤除808nm红外光之外的杂光。
进一步的,所述雪崩光电二极管为三个。
进一步的,在二维中,高度h0已知,获取发射端的第一角度θ1、第二角度θ2及第四角度€1并将获取的角度传送出;
接收到获取的第一角度θ1、第二角度θ2及第四角度€1并获取接收端的位置信息d1和第三角度α;
通过获得的位置信息和各个角度计算出位置坐标。
进一步的,先水平扫描获得第一角度θ1及第二角度θ2,再竖直方向扫描获得第四角度€1,所述各个角度是通过PWM信号控制获取角度。
进一步的,对一个短区间时间内的移动距离进行计算,将时间分为K份,每份时间为△T,在每份极短时间内,其运动为匀加速运动,则测出其加速度为 ag(k),v0为此时间区间内的初始速度,初始为静态v0=0,则d1的计算公式如下:
Figure BDA0002274935050000021
通过计算测量直接得出第三角度α,
则,第五角度ψ=第三角度α-第一角度θ1。
进一步的,根据获取的位置信息d1及各个角度可得d2和d3:
d2=d1sin(ψ)/sin(θ1-θ2);
d3=d1sin((π-ψ-(θ1-θ2))/sin(θ1-θ2));
则,位置1坐标,(x1,y1)=(x0,y0)+d3(cosθ1,sinθ1);
位置2坐标,(x2,y2)=(x0,y0)+d2(cosθ2,sinθ2);
在三维中,高度未知,同二维情况相同,计算出二维坐标(x,y),则高度可确定为:h=d3/tan€1;
则,位置1的坐标为:(x0+d3cosθ1,y0+d3sinθ1,h0-d3/tan€1);
位置2的坐标为:(x0+d2cosθ2,y0+d2sinθ2,h0-d3/tan€1)。
本发明的有益效果:实现了精度高、抗干扰能力强、不依赖照明、成本低、体积小及重量轻的优点,而IMU结合激光扫描器系统可以达到厘米级精度,本系统使用红外滤光片过滤可见光,可以有效避免杂光和多径的干扰,本系统不依赖室内照明情况,更有利在室内封闭的环境下使用无人机的整套电子元器件非常容易获得,光敏接收器装在无人机上,体积小,重量轻,方便应用于无人机上。
附图说明
下面结合附图详述本发明的具体结构
图1为本发明的封闭空间示意图
图2为本发明的二维或三维计算示意图
图3为本发明的计算流程图
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
如图1和图2所示,包括发射端及接收端,所述发射端包括二自由度舵机及线性红外激光扫描器,所述激光头固定于所述二自由度舵机上,所述二自由度舵机带动激光头转动,所述激光头扫描二维或三维空间,所述激光头通过无线连接接收端;
接收端包括雪崩光电二极管、窄带滤光片、放大电路、单片机及IMU定位,所述窄带滤光片设置在雪崩光电二极管前端,所述放大电路作用于雪崩光电二极管,所述雪崩光电二极管进行上升沿,通过所述单片机的判断雪崩光电二极管进行上升沿,结合所述发射端舵机的角度信息,获取接收角度第一角度及第二角度,所述第一角度及第二角度通过IMU定位计算出具体位置。实现了精度高、抗干扰能力强、不依赖照明、成本低、体积小及重量轻的优点,而IMU结合激光扫描器系统可以达到厘米级精度,本系统使用红外滤光片过滤可见光,可以有效避免杂光和多径的干扰,本系统不依赖室内照明情况,更有利在室内封闭的环境下使用无人机的整套电子元器件非常容易获得,光敏接收器装在无人机上,体积小,重量轻,方便应用于无人机上。通过获取二维或三维图中物体的位置,即从位置一1运动到位置二2的距离,以及获取到各个角度,即可计算出具体位置。
实施例1
具体地,所述IMU的定位用于计算目标物体的运动距离和角度。通过IMU 计算两次角度测量之间的距离,进而计算出具体位置信息。
具体地,所述IMU定位由加速度计,陀螺仪和磁力计组成,所述加速度计,陀螺仪和磁力计皆水平设置。使用加速度计可以对一个短区间时间内的移动距离进行计算,陀螺仪和磁力计可以计算测量出角度信息。
具体地,所述线性红外激光扫描器的波长为808nm,所述窄带滤光片用于过滤除808nm红外光之外的杂光。线性红外激光扫描器发出固定波长,而波长通过无线连接将角度信息传输到接收端,使用红外滤光片过滤可见光,可以有效避免杂光和多径的干扰,而通过率为86%,截至波长为808±2nm。
具体地,所述雪崩光电二极管为三个。使用三个光电二极管可以避免机身对激光发射器的遮挡。
具体地,在二维中,高度h0已知,获取发射端的第一角度θ1、第二角度θ2及第四角度€1并将获取的角度传送出;
接收到获取的第一角度θ1、第二角度θ2及第四角度€1并获取接收端的位置信息d1和第三角度α;
通过获得的位置信息和各个角度计算出位置坐标。
具体地,先水平扫描获得第一角度θ1及第二角度θ2,再竖直方向扫描获得第四角度€1,所述各个角度是通过PWM信号控制获取角度。通过获取角度信息及位置信息,最终通过三角函数公式计算出位置信息。
具体地,对一个短区间时间内的移动距离进行计算,将时间分为K份,每份时间为△T,在每份极短时间内,其运动为匀加速运动,则测出其加速度为ag(k), v0为此时间区间内的初始速度,初始为静态v0=0,则d1的计算公式如下:
Figure BDA0002274935050000051
通过计算测量直接得出第三角度α,
则,第五角度ψ=第三角度α-第一角度θ1。先获取二维的角度信息,位置信息,然后计算出二维的具体位置信息,则三维位置信息即可获得。
具体地,根据获取的位置信息d1及各个角度可得d2和d3:
d2=d1sin(ψ)/sin(θ1-θ2);
d3=d1sin((π-ψ-(θ1-θ2))/sin(θ1-θ2));
则,位置1坐标,(x1,y1)=(x0,y0)+d3(cosθ1,sinθ1);
位置2坐标,(x2,y2)=(x0,y0)+d2(cosθ2,sinθ2);
在三维中,高度未知,同二维情况相同,计算出二维坐标(x,y),则高度可确定为:h=d3/tan€1;
则,位置1的坐标为:(x0+d3cosθ1,y0+d3sinθ1,h0-d3/tan€1);
位置2的坐标为:(x0+d2cosθ2,y0+d2sinθ2,h0-d3/tan€1)。
通过结合二维角度位置信息,计算出三维的具体位置信息。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.一种定位方法,其特征在于:在二维时,高度h0已知,获取发射端的第一角度θ1、第二角度θ2及第四角度€1并将获取的角度传送出;
接收到获取的第一角度θ1、第二角度θ2及第四角度€1并获取接收端的位置信息d1和第三角度α;
通过获得的位置信息和各个角度计算出位置坐标;
根据获取的位置信息d1及各个角度可得d2和d3:其中接收端的
位置信息d1,各个角度待求距离信息为d2和d3,
第五角度ψ=第三角度α-第一角度θ1;
d2=d1sin(ψ)/sin(θ1-θ2);
d3=d1sin((π-ψ-(θ1-θ2))/sin(θ1-θ2));
则,位置1坐标,(x1,y1)=(x0,y0)+d3(cosθ1,sinθ1);
位置2坐标,(x2,y2)=(x0,y0)+d2(cosθ2,sinθ2);
或者在三维高度未知时,同二维情况相同,计算出二维坐标(x,y),则高度可确定为:h=d3/tan€1;
则,位置1的坐标为:(x0+d3cosθ1,y0+d3sinθ1,h0-d3/tan€1);
位置2的坐标为:(x0+d2cosθ2,y0+d2sinθ2,h0-d3/tan€1)。
2.如权利要求1所述的定位方法,其特征在于:先水平扫描获得第一角度θ1及第二角度θ2,再竖直方向扫描获得第四角度€1,所述各个角度是通过PWM信号控制获取角度。
3.如权利要求1所述的定位方法,其特征在于:对一个短区间时间内的移动距离进行计算,将时间分为K份,每份时间为△T,在每份极短时间内,其运动为匀加速运动,则测出其加速度为ag(k),v0为此时间区间内的初始速度,初始为静态v0=0,则d1的计算公式如下:
Figure FDA0003063946660000011
通过计算测量直接得出第三角度α。
4.一种定位系统,其特征在于:所述定位系统利用如权利要求1所述的定位方法通过IMU定位计算出具体位置,包括发射端及接收端,所述发射端包括二自由度舵机及线性红外激光扫描器,激光头固定于所述二自由度舵机上,所述二自由度舵机带动激光头转动,所述激光头扫描二维或三维空间,所述激光头通过无线连接接收端;
接收端包括雪崩光电二极管、窄带滤光片、放大电路、单片机及IMU定位,所述窄带滤光片设置在雪崩光电二极管前端,所述放大电路作用于雪崩光电二极管,所述雪崩光电二极管进行上升沿,通过所述单片机的判断雪崩光电二极管进行上升沿,结合发射端舵机的角度信息,获取接收角度第一角度及第二角度,所述第一角度及第二角度通过IMU定位计算出具体位置,或者在三维高度未知时,同二维情况相同,计算出二维坐标及高度。
5.如权利要求4所述的定位系统,其特征在于:所述IMU的定位用于计算目标物体的运动距离和第三角度。
6.如权利要求5所述的定位系统,其特征在于:所述IMU定位由加速度计,陀螺仪和磁力计组成,所述加速度计,陀螺仪和磁力计皆水平设置。
7.如权利要求4所述的定位系统,其特征在于:所述线性红外激光扫描器的波长为808nm,所述窄带滤光片用于过滤除808nm红外光之外的杂光。
8.如权利要求4所述的定位系统,其特征在于:所述雪崩光电二极管为三个。
CN201911119130.6A 2019-11-15 2019-11-15 一种定位系统和方法 Active CN110806208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911119130.6A CN110806208B (zh) 2019-11-15 2019-11-15 一种定位系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911119130.6A CN110806208B (zh) 2019-11-15 2019-11-15 一种定位系统和方法

Publications (2)

Publication Number Publication Date
CN110806208A CN110806208A (zh) 2020-02-18
CN110806208B true CN110806208B (zh) 2021-07-02

Family

ID=69490111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911119130.6A Active CN110806208B (zh) 2019-11-15 2019-11-15 一种定位系统和方法

Country Status (1)

Country Link
CN (1) CN110806208B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196431A (zh) * 2019-07-09 2019-09-03 南京信息工程大学 基于arm的低成本室内3d激光扫描测距系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102177A (ja) * 1981-12-14 1983-06-17 Toshihiro Tsumura 移動物体の現在位置および方位測定装置
CN105157697B (zh) * 2015-07-31 2017-05-17 天津大学 基于光电扫描的室内移动机器人位姿测量系统及测量方法
CN205175416U (zh) * 2015-12-03 2016-04-20 西南科技大学 一种基于激光与惯性测量单元的移动机器人定位系统
CN107121666A (zh) * 2017-04-17 2017-09-01 南京航空航天大学 一种基于无人飞行器的临近空间运动目标定位方法
CN107346013B (zh) * 2017-06-01 2019-12-03 上海乐相科技有限公司 一种校准定位基站坐标系的方法及装置
CN109143214B (zh) * 2018-07-26 2021-01-08 上海乐相科技有限公司 一种采用激光扫描的目标定位方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196431A (zh) * 2019-07-09 2019-09-03 南京信息工程大学 基于arm的低成本室内3d激光扫描测距系统及方法

Also Published As

Publication number Publication date
CN110806208A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
US10371791B2 (en) Underwater positioning system
US9134339B2 (en) Directed registration of three-dimensional scan measurements using a sensor unit
CN109716157B (zh) 轴偏移估计装置
AU2017271003B2 (en) Accelerometers
CN105737852B (zh) 激光测距仪位置测量与校正系统及方法
WO2005085896A1 (en) Passive positioning sensors
KR20040016766A (ko) 원격 자세 및 위치 지시 장치
CN113168179A (zh) 检测自主设备的位置
JP7120723B2 (ja) レーザスキャナシステム
EP3998451A1 (en) Navigation method, mobile carrier, and navigation system
WO2020099855A2 (en) Locating system
CN111295567A (zh) 航向的确定方法、设备、存储介质和可移动平台
CN110806208B (zh) 一种定位系统和方法
WO2001077704A2 (en) Self-calibration of an array of imaging sensors
WO2007089664A1 (en) Determination of attitude and position of an object using a pattern produced by a stereographic pattern generator
CN103900603A (zh) 平面或曲面内无导轨二维运动物体的位移和姿态的非接触测量方法
Andreasson et al. Sensors for mobile robots
TWI570423B (zh) 定位方法
Kim et al. Experiments and analysis of MCL based localization for mobile robot navigation
KR100575108B1 (ko) 비전 센서를 이용하여 다수 비행체를 도킹시키는 방법
Browne et al. Localization of autonomous mobile ground vehicles in a sterile environment: a survey
WO2022126603A1 (en) Localization system and method for mobile equipment
JP2002131422A (ja) 二次元レーダ装置
Sun et al. Tightly-Coupled VLP/INS Integrated Navigation by Inclination Estimation and Blockage Handling
JP2023021726A (ja) 距離推定装置、アンテナ装置、給電システム、給電装置、及び給電方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant