CN110777543B - Radiation refrigeration functional layer, radiation refrigeration fabric and preparation method thereof - Google Patents

Radiation refrigeration functional layer, radiation refrigeration fabric and preparation method thereof Download PDF

Info

Publication number
CN110777543B
CN110777543B CN201911075603.7A CN201911075603A CN110777543B CN 110777543 B CN110777543 B CN 110777543B CN 201911075603 A CN201911075603 A CN 201911075603A CN 110777543 B CN110777543 B CN 110777543B
Authority
CN
China
Prior art keywords
radiation refrigeration
resin
layer
functional
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911075603.7A
Other languages
Chinese (zh)
Other versions
CN110777543A (en
Inventor
黄安冲
杨剑
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Ruiling New Energy Technology Co ltd
Original Assignee
Ningbo Ruiling New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Ruiling New Energy Technology Co ltd filed Critical Ningbo Ruiling New Energy Technology Co ltd
Priority to CN201911075603.7A priority Critical patent/CN110777543B/en
Publication of CN110777543A publication Critical patent/CN110777543A/en
Priority to JP2020072967A priority patent/JP6944013B2/en
Priority to US16/968,600 priority patent/US12053962B2/en
Priority to MX2020009186A priority patent/MX2020009186A/en
Priority to PCT/CN2020/101230 priority patent/WO2021088398A1/en
Priority to SG11202007745WA priority patent/SG11202007745WA/en
Priority to AU2020217350A priority patent/AU2020217350B2/en
Priority to TW109126376A priority patent/TWI730863B/en
Priority to EP20020365.1A priority patent/EP3819425A1/en
Priority to PH12020551236A priority patent/PH12020551236A1/en
Priority to BR102020017718-4A priority patent/BR102020017718A2/en
Application granted granted Critical
Publication of CN110777543B publication Critical patent/CN110777543B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0063Inorganic compounding ingredients, e.g. metals, carbon fibres, Na2CO3, metal layers; Post-treatment with inorganic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/042Acrylic polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/06Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with polyvinylchloride or its copolymerisation products
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/121Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds
    • D06N3/123Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds with polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/128Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with silicon polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • D06N3/145Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes two or more layers of polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

The invention discloses a radiation refrigeration functional layer, a radiation refrigeration fabric and a preparation method thereof. Wherein radiation refrigeration surface fabric includes flexible substrate layer and sets up the radiation refrigeration functional layer on flexible substrate layer, and radiation refrigeration functional layer includes: the first functional layer is arranged on the flexible base material layer and comprises a first radiation refrigeration functional resin; and the second functional layer is formed by radiation refrigeration functional powder, the radiation refrigeration functional powder is laid on the surface of the first functional layer and is bonded with the first radiation refrigeration functional resin, and the particle size of the radiation refrigeration functional powder is 1-40 microns. The radiation refrigeration functional layer can obtain high radiation refrigeration efficiency under a lower thickness, and is applied to the radiation refrigeration fabric, so that the flexibility of the radiation refrigeration fabric is kept, the application range of the radiation refrigeration fabric is improved, and the cost of the radiation refrigeration fabric is reduced.

Description

Radiation refrigeration functional layer, radiation refrigeration fabric and preparation method thereof
Technical Field
The invention relates to the technical field of radiation refrigeration, in particular to a radiation refrigeration functional layer, a radiation refrigeration fabric and a preparation method thereof.
Background
The radiation refrigeration fabric is formed by coating radiation refrigeration coating on base cloth, and forming a radiation refrigeration functional layer on the base cloth after the coating is dried, in order to achieve a better radiation refrigeration effect, the thickness of the radiation refrigeration functional layer generally needs to be more than 100 micrometers, but the thicker radiation refrigeration functional layer can cause the flexibility of the fabric to be poor, and the coating is easy to crack, so that the application of the existing radiation refrigeration fabric is limited. In addition, a thicker radiation cooling functional layer also means a higher cost.
Disclosure of Invention
An object of the present invention is to provide a radiation refrigeration functional layer which is thin and has high radiation refrigeration efficiency.
Another object of the present invention is to provide a radiation refrigeration fabric which has good flexibility and high radiation refrigeration efficiency.
According to one aspect of the present invention, there is provided a radiation refrigerating functional layer adapted to be disposed on a substrate, comprising:
a first functional layer adapted to be disposed on the substrate, the first functional layer comprising a first radiation refrigerating functional resin; and
the second functional layer is formed by radiation refrigeration functional powder, the radiation refrigeration functional powder is fixedly laid on the surface of the first functional layer, the radiation refrigeration functional powder is bonded with the first radiation refrigeration functional resin, and the particle size of the radiation refrigeration functional powder is 1-40 microns.
In some embodiments, the thickness of the first functional layer is 10 μm to 30 μm, the particle size of the radiation refrigeration functional powder is 0.5 to 1.5 times of the thickness of the first functional layer, and the addition amount of the radiation refrigeration functional powder is 10g/m2~200g/m2The radiation refrigeration functional powder is spherical or ellipsoidal.
In some of these embodiments, the first radiation-cooling functional resin is selected from one or more of epoxy, polyester, polyurethane, acrylic, silicone; the radiation refrigeration functional powder is selected from one or more of ceramic powder, titanium dioxide, glass beads, silicon dioxide, coarse whiting powder, barium sulfate, talcum powder, zinc sulfate, aluminum silicate, coarse whiting powder, pearl powder, aluminum oxide, zinc oxide, zirconium oxide, cerium oxide, lanthanum oxide, rhodium oxide and magnesium oxide.
In some embodiments, the radiation refrigeration functional layer further comprises a third functional layer arranged on the second functional layer, the thickness of the third functional layer is 10 μm to 30 μm, the third functional layer comprises a second radiation refrigeration functional resin, the second radiation refrigeration functional resin is bonded with the radiation refrigeration functional powder, and the second radiation refrigeration functional resin is selected from one or more of epoxy resin, polyester, polyurethane, acrylic resin and organic silicon resin.
In some embodiments, the emissivity of the radiation refrigeration functional layer 200 in a wavelength band of 7-14 μm is not lower than 90%, and the reflectivity in a wavelength band of 300-2500 nm is not lower than 88%.
According to another aspect of the invention, a radiation refrigeration fabric is provided, which comprises a flexible substrate layer and the radiation refrigeration functional layer arranged on the flexible substrate layer, wherein the first functional layer is arranged on the flexible substrate layer.
In some embodiments, the flexible substrate layer comprises a fabric layer, the thickness of the fabric layer is 300-2000 μm, the fabric layer is formed by weaving one or more of terylene, chinlon, acrylic fiber, silk, cotton and hemp fiber, the flexible substrate layer further comprises a resin coating layer arranged on one side or two sides of the fabric layer, the thickness of the resin coating layer is 1-20 μm, and the material of the resin coating layer is selected from one or more of polyvinyl chloride, acrylic resin, epoxy resin, phenolic resin and polyurethane.
In some embodiments, the radiation refrigeration fabric further comprises a weather-resistant protective layer arranged on the radiation refrigeration functional layer, the weather-resistant protective layer is made of one or more of fluorine-containing resin, epoxy resin, polyester, polyurethane, acrylic resin and organic silicon resin, and the thickness of the weather-resistant protective layer is 10-50 μm.
According to another aspect of the invention, a preparation method of a radiation refrigeration fabric is provided, which comprises the following steps:
a1, arranging a first radiation refrigeration functional resin on a substrate, and uniformly spraying radiation refrigeration functional powder on the first radiation refrigeration functional resin before the first radiation refrigeration functional resin is dried or solidified;
and A2, drying or curing the first radiation refrigeration functional resin, so that the radiation refrigeration functional powder is bonded with the first radiation refrigeration functional resin.
In some embodiments, in step S1, the radiation refrigeration function powder is atomized by using a pneumatic spraying device, and then the atomized radiation refrigeration function powder is uniformly sprayed on the first radiation refrigeration function resin.
In some embodiments, the step S2 is followed by the following steps: s3, arranging a second radiation refrigeration function resin on the radiation refrigeration function powder, and then drying or solidifying the second radiation refrigeration function resin to form a third function layer.
In some embodiments, the step S3 is followed by the following steps: and S4, arranging weather-proof resin on the third functional layer to form a weather-proof protective layer.
Compared with the prior art, the invention has the beneficial effects that: the radiation refrigeration functional layer can obtain high radiation refrigeration efficiency under a lower thickness, and is applied to the radiation refrigeration fabric, so that the flexibility of the radiation refrigeration fabric is kept, the application range of the radiation refrigeration fabric is improved, and the cost of the radiation refrigeration fabric is reduced.
Drawings
FIG. 1 is a schematic view of a first embodiment of a radiation-cooled fabric of the present invention;
FIG. 2 is a schematic view of a second embodiment of a radiation-cooled fabric of the present invention;
FIG. 3 is a schematic view of a third embodiment of a radiation-cooled fabric of the present invention;
FIG. 4 is a schematic view of a fourth embodiment of a radiation-cooled fabric of the present invention;
in the figure:
100. a flexible substrate layer;
200. a radiation refrigeration functional layer;
210. a first functional layer;
220. a second functional layer; 221. powder with radiation refrigeration function
230. A third functional layer;
300. and (7) a weather-resistant protective layer.
Detailed Description
The present invention is further described below with reference to specific embodiments, and it should be noted that, without conflict, any combination between the embodiments or technical features described below may form a new embodiment.
In the description of the present invention, it should be noted that, for the terms of orientation, such as "central", "lateral", "longitudinal", "length", "width", "thickness", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inner", "outer", "clockwise", "counterclockwise", etc., the terms of orientation and positional relationship indicate that the orientation or positional relationship shown in the drawings is based on, and are only for convenience of describing the present invention and simplifying the description, but do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and should not be construed as limiting the specific scope of the present invention.
It is noted that the terms first, second and the like in the description and in the claims of the present application are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order.
The terms "comprises," "comprising," and "having," and any variations thereof, in the description and claims of this application, are intended to cover a non-exclusive inclusion, such that a process, method, system, article, or apparatus that comprises a list of steps or elements is not necessarily limited to those steps or elements expressly listed, but may include other steps or elements not expressly listed or inherent to such process, method, article, or apparatus.
The invention provides a radiation refrigeration fabric, which comprises a flexible substrate layer 100 and a radiation refrigeration functional layer 200 arranged on the flexible substrate layer 100, as shown in fig. 1 and 2. In some embodiments, the radiation-refrigerating face fabric further comprises a weather-resistant protective layer 300 disposed on the radiation-refrigerating functional layer 200, as shown in fig. 3 and 4.
As shown in fig. 1-4, the radiation refrigerating functional layer 200 includes a first functional layer 210 and a second functional layer 220.
The first functional layer 210 is disposed on the flexible substrate layer 100, and the first functional layer 210 includes a first radiation refrigerating functional resin. The first radiation refrigeration functional resin has high emissivity in a wave band of 7-14 mu m, and can be one or more of epoxy resin, polyester, polyurethane, acrylic resin and organic silicon resin. Preferably, the thickness of the first functional layer 210 is 10 μm to 30 μm.
The second functional layer 220 is formed by radiation refrigeration function powder 221, the radiation refrigeration function powder 221 is laid on the surface of the first functional layer 210, the radiation refrigeration function powder 221 is bonded with the first radiation refrigeration function resin, and the particle size of the radiation refrigeration function powder is 1-40 microns. Preferably, the particle size of the radiation refrigeration function powder 221 is 0.5-1.5 times of the thickness of the first functional layer 210, and the addition amount of the radiation refrigeration function powder is 10g/m2~200g/m2. The radiation refrigeration functional powder is used for improving the reflectivity of the radiation refrigeration functional layer 200 in a wave band of 300 nm-2500 nm. The radiation refrigeration functional powder material can be one or more selected from ceramic powder, titanium dioxide, glass beads, silicon dioxide, coarse whiting powder, barium sulfate, talcum powder, zinc sulfate, aluminum silicate, coarse whiting powder, pearl powder, aluminum oxide, zinc oxide, zirconium oxide, cerium oxide, lanthanum oxide, rhodium oxide and magnesium oxide. The shape of the radiation refrigeration functional powder is preferably spherical or ellipsoidal.
It is worth mentioning that the radiation refrigeration function powder forms a single layer of dry powder only on the surface of the first radiation refrigeration function resin, in other words, the thickness of the second function layer is less than or equal to the grain size of the radiation refrigeration function powder.
The second functional layer 220 can greatly improve the reflectivity of the radiation refrigeration functional layer 200, so as to improve the radiation refrigeration efficiency of the radiation refrigeration functional layer 200 in the daytime. The radiation refrigeration functional layer 200 can have a reflectivity of more than 88% in a wave band of 300 nm-2500 nm under the condition that the thickness is not more than 50 mu m, and the radiation refrigeration functional layer 200 is applied to a fabric, so that the radiation refrigeration fabric with good flexibility and high radiation refrigeration effect can be obtained.
In some embodiments of first functional layer 210, first functional layer 210 further comprises a first particulate filler dispersed in the first radiation refrigerating functional resin. The first particle filler can be selected from fillers with high emissivity in a wave band of 7-14 mu m and high reflectivity in a wave band of 300-2500 nm. Specifically, the first particulate filler is selected from one or more of ceramic powder, titanium dioxide, glass beads, silicon dioxide, coarse whiting powder, barium sulfate, talcum powder, zinc sulfate, aluminum silicate, coarse whiting powder, pearl powder, aluminum oxide, zinc oxide, zirconium oxide, cerium oxide, lanthanum oxide, rhodium oxide and magnesium oxide. The particle size of the first particulate filler may be 4 to 20 μm.
In some embodiments of the radiation refrigeration functional layer 200, the radiation refrigeration functional layer 200 further includes a third functional layer 230 disposed on the second functional layer 220, the third functional layer 230 has a thickness of 10 μm to 30 μm, and the third functional layer 230 includes a second radiation refrigeration functional resin bonded to the radiation refrigeration functional powder of the second functional layer 220. The second radiation refrigeration functional resin has high emissivity in a wave band of 7-14 mu m, and can be one or more of epoxy resin, polyester, polyurethane, acrylic resin and organic silicon resin.
In some embodiments of the third functional layer 230, the third functional layer 230 further comprises a third particulate filler dispersed in the second radiation refrigerating functional resin. The third particle filler can be selected from fillers with high emissivity in a wave band of 7-14 mu m and high reflectivity in a wave band of 300-2500 nm, and can be one or more selected from ceramic powder, titanium dioxide, glass beads, silicon dioxide, coarse whiting powder, barium sulfate, talcum powder, zinc sulfate, aluminum silicate, coarse whiting powder, pearl powder, aluminum oxide, zinc oxide, zirconium oxide, cerium oxide, lanthanum oxide, rhodium oxide and magnesium oxide. The particle size of the third particulate filler may be 4 to 20 μm.
It is worth mentioning that when the thickness of the third functional layer 230 is smaller than the particle size of the radiation refrigeration function powder 221, a part of the radiation refrigeration function powder 221 may protrude from the upper surface of the third functional layer 230, as shown in fig. 4.
In some embodiments, the emissivity of the radiation refrigeration functional layer 200 in the 7 μm-14 μm band is not less than 90%, and the reflectivity in the 300 nm-2500 nm band is not less than 88%.
In some embodiments of the flexible substrate layer 100, the flexible substrate layer 100 includes a fabric layer, the thickness of the fabric layer is 300 μm to 2000 μm, and the fabric layer may be formed by weaving one or more of polyester, nylon, acrylic, silk, cotton, hemp, and other fibers.
In other embodiments of the flexible substrate layer 100, the flexible substrate layer 100 includes a fabric layer and a resin coating layer disposed on one or both sides of the fabric layer, the thickness of the fabric layer is 300 μm to 2000 μm, and the thickness of the resin coating layer is 1 μm to 20 μm. The fabric layer can be formed by spinning one or more of terylene, chinlon, acrylon, silk, cotton, hemp and other fibers. The material of the resin coating layer may be selected from one or more of polyvinyl chloride, acrylic resin, epoxy resin, phenolic resin, polyurethane.
The material of the weather-resistant protective layer 300 may be one or more selected from fluorine-containing resin, epoxy resin, polyester, polyurethane, acrylic resin, and silicone resin. The transmissivity of the weather-proof protective layer is more than or equal to 80 percent. The thickness of the weather-resistant protective layer is 10-50 μm.
The invention also provides a preparation method of the radiation refrigeration fabric, which comprises the following steps:
s1, arranging a first radiation refrigeration functional resin on a base material, and uniformly spraying radiation refrigeration functional powder on the first radiation refrigeration functional resin before the first radiation refrigeration functional resin is dried or solidified;
and S2, drying or curing the first radiation refrigeration functional resin, so that the radiation refrigeration functional powder is bonded with the first radiation refrigeration functional resin.
It should be noted that the term "curing" in the present invention may be, but is not limited to, thermal curing, photo-curing, natural air-drying, etc. The first radiation refrigeration functional resin can be arranged on the base material by adopting a coating mode, a spraying mode, a brush coating mode and the like.
In some embodiments, in step S1, the radiation refrigeration functional powder is atomized by using a pneumatic spraying device, and then the atomized radiation refrigeration functional powder is uniformly sprayed on the first radiation refrigeration functional resin.
In some embodiments, step S2 is followed by the following steps: s3, arranging a second radiation refrigeration functional resin on the radiation refrigeration functional powder, and then drying or curing the second radiation refrigeration functional resin to form a third functional layer.
In some embodiments, step S3 is followed by the following steps: and S4, arranging weather-resistant resin on the third functional layer to form a weather-resistant protective layer.
[ example 1 ]
Preparing a radiation refrigeration fabric:
(1) providing a flexible base material which comprises polyester woven cloth and polyvinyl chloride resin coated on two sides of the polyester woven cloth, wherein the thickness of the polyester woven cloth is 1mm, and the thickness of resin coating layers on two sides of the polyester woven cloth is 10 micrometers;
(2) coating PET resin with the thickness of 20 microns on a flexible base material, uniformly spraying a layer of titanium dioxide with the average particle size of 10 microns on the surface of the PET resin before the resin is dried, and drying the PET resin;
(3) the PET resin was coated on the titanium dioxide powder to a thickness of 20 μm, and then the PET resin was dried.
[ example 2 ]
Preparing a radiation refrigeration fabric:
(1) providing a flexible base material which comprises polyester woven cloth and polyvinyl chloride resin coated on two sides of the polyester woven cloth, wherein the thickness of the polyester woven cloth is 1mm, and the thickness of resin coating layers on two sides of the polyester woven cloth is 10 micrometers;
(2) coating polyacrylic acid (PAA) resin with the thickness of 20 microns on a flexible base material, uniformly spraying a layer of talcum powder with the average particle size of 20 microns on the surface of the polyacrylic acid (PAA) resin before the resin is dried, and drying the polyacrylic acid (PAA) resin;
(3) polyacrylic acid (PAA) was coated on the talc powder to a thickness of 10 μm, and then the polyacrylic resin (PAA) resin was dried.
[ example 3 ]
Preparing a radiation refrigeration fabric:
(1) providing a flexible base material which comprises polyester woven cloth and polyvinyl chloride resin coated on two sides of the polyester woven cloth, wherein the thickness of the polyester woven cloth is 1mm, and the thickness of resin coating layers on two sides of the polyester woven cloth is 10 micrometers;
(2) coating polyurethane resin with the thickness of 20 microns on a flexible base material, uniformly spraying a layer of silicon dioxide with the average particle size of 30 microns on the surface of the polyurethane resin before the resin is dried, and drying the PET resin;
(3) a polyurethane resin was coated on the silica to a thickness of 10 μm, and then the polyurethane resin was dried.
[ example 4 ]
(1) Providing a flexible base material which comprises polyester woven cloth and polyvinyl chloride resin coated on two sides of the polyester woven cloth, wherein the thickness of the polyester woven cloth is 1mm, and the thickness of resin coating layers on two sides of the polyester woven cloth is 10 micrometers;
(2) coating a PET resin with the thickness of 20 microns on a flexible base material, mixing 10 volume percent of silicon dioxide with the average particle size of 10 microns in the PET resin layer, uniformly spraying a layer of titanium dioxide with the average particle size of 30 microns on the surface of the PET resin before the resin is dried, and drying the PET resin;
(3) coating PET resin with the thickness of 10 mu m on the titanium dioxide, mixing 5 percent of silicon dioxide with the volume fraction and the average grain diameter of 6 mu m into the PET resin layer, and then drying the PET resin.
[ example 5 ]
(1) Providing a flexible base material which comprises polyester woven cloth and polyvinyl chloride resin coated on two sides of the polyester woven cloth, wherein the thickness of the polyester woven cloth is 1mm, and the thickness of resin coating layers on two sides of the polyester woven cloth is 10 micrometers;
(2) coating PET resin with the thickness of 20 microns on a flexible base material, mixing titanium dioxide with the volume fraction of 15% and the average particle size of 10 microns in the PET resin, uniformly spraying a layer of silicon dioxide with the average particle size of 30 microns on the surface of the PET resin before the resin is dried, and drying the PET resin;
(3) a 10 μm thick PET resin mixed with 12% volume fraction of pearl powder was coated on the silica, and then the PET resin was dried.
Comparative example 1
Preparing a radiation refrigeration fabric:
(1) providing a flexible base material which comprises polyester woven cloth and polyvinyl chloride resin coated on two sides of the polyester woven cloth, wherein the thickness of the polyester woven cloth is 1mm, and the thickness of resin coating layers on two sides of the polyester woven cloth is 10 micrometers;
(2) a50 μm thick PET resin in which silica having an average particle diameter of 10 μm was dispersed and the volume fraction of silica in the resin was 20% was coated on a flexible substrate.
(3) The PET resin was then dried.
Comparative example 2
Preparing a radiation refrigeration fabric:
(1) providing a flexible base material which comprises polyester woven cloth and polyvinyl chloride resin coated on two sides of the polyester woven cloth, wherein the thickness of the polyester woven cloth is 1mm, and the thickness of resin coating layers on two sides of the polyester woven cloth is 10 micrometers;
(2) the flexible base material is coated with polyurethane resin with the thickness of 100 mu m, titanium dioxide with the average particle size of 10 mu m is dispersed in the polyurethane resin, and the volume fraction of the titanium dioxide in the resin is 15%.
(3) The PET resin was then dried.
The above examples and comparative examples were tested for emissivity in the 7 μm to 14 μm band and reflectivity in the 300nm to 2500nm band, and the test results are shown in Table 1.
TABLE 1
Emissivity of 7-14 mu m wave band Reflectivity of 300 nm-2500 nm wave band
Example 1 91.1% 89.2%
Example 2 92.4% 90.2%
Example 3 92.7% 93.5%
Example 4 93.6% 93.8%
Example 5 93.9% 93.4%
Comparative example 1 78.2% 75.1%
Comparative example 2 79.5% 76.6%
The foregoing has described the general principles, principal features, and advantages of the invention. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, which are merely illustrative of the principles of the invention, but that various changes and modifications may be made without departing from the spirit and scope of the invention, which fall within the scope of the invention as claimed. The scope of the invention is defined by the appended claims and equivalents thereof.

Claims (8)

1. The utility model provides a radiation refrigeration surface fabric which characterized in that, is in including flexible substrate layer and setting radiation refrigeration functional layer on the flexible substrate layer, radiation refrigeration functional layer includes:
the first functional layer is arranged on the flexible base material layer, the thickness of the first functional layer is 10-30 micrometers, and the first functional layer comprises first radiation refrigeration functional resin;
a second functional layer formed by radiation refrigeration functional powder, wherein the radiation refrigeration functional powder is sprayed on the first radiation refrigeration functional resin before the first radiation refrigeration functional resin is dried, so that the radiation refrigeration functional powder forms single-layer dry powder on the surface of the first radiation refrigeration functional resin, the radiation refrigeration functional powder is bonded with the first radiation refrigeration functional resin, and the particle size of the radiation refrigeration functional powder is 10-40 mu m; and
a third functional layer formed by: arranging a second radiation refrigeration function resin on the radiation refrigeration function powder, and drying the second radiation refrigeration function resin to obtain a third function layer, wherein the thickness of the third function layer is smaller than the grain diameter of the radiation refrigeration function powder, and a part of the radiation refrigeration function powder protrudes out of the upper surface of the third function layer;
the thickness of the radiation refrigeration functional layer is not more than 50 mu m, the emissivity of the radiation refrigeration functional layer in a wave band of 7-14 mu m is not less than 90%, the reflectivity in a wave band of 300-2500 nm is not less than 88%, and the addition amount of the radiation refrigeration functional powder is 10g/m2~200g/m2The radiation refrigeration functional powder is spherical or ellipsoidal.
2. The radiation refrigeration fabric according to claim 1, wherein the first radiation refrigeration functional resin is selected from one or more of epoxy resin, polyester, polyurethane, acrylic resin and silicone resin; the radiation refrigeration functional powder is selected from one or more of ceramic powder, titanium dioxide, glass beads, silicon dioxide, barium sulfate, talcum powder, zinc sulfate, aluminum silicate, heavy calcium powder, pearl powder, aluminum oxide, zinc oxide, zirconium oxide, cerium oxide, lanthanum oxide, rhodium oxide and magnesium oxide.
3. The radiation refrigeration fabric according to claim 1, wherein the second radiation refrigeration functional resin is one or more selected from epoxy resin, polyester, polyurethane, acrylic resin and silicone resin.
4. The radiation refrigeration fabric according to claim 1, wherein the flexible substrate layer comprises a fabric layer, the thickness of the fabric layer is 300-2000 μm, the fabric layer is formed by weaving one or more of terylene, chinlon, acrylic fiber, silk, cotton and hemp fiber, the flexible substrate layer further comprises a resin coating layer arranged on one side or two sides of the fabric layer, the thickness of the resin coating layer is 1-20 μm, and the material of the resin coating layer is selected from one or more of polyvinyl chloride, acrylic resin, epoxy resin, phenolic resin and polyurethane.
5. The radiation refrigeration fabric according to any one of claims 1 to 4, further comprising a weather-resistant protective layer arranged on the radiation refrigeration functional layer, wherein the weather-resistant protective layer is made of one or more materials selected from fluorine-containing resin, epoxy resin, polyester, polyurethane, acrylic resin and organic silicon resin, and the thickness of the weather-resistant protective layer is 10 μm to 50 μm.
6. The method for preparing a radiation refrigerating fabric as claimed in any one of claims 1 to 5, which is characterized by comprising the following steps:
a1, arranging a first radiation refrigeration functional resin on a flexible substrate, and uniformly spraying radiation refrigeration functional powder on the first radiation refrigeration functional resin before the first radiation refrigeration functional resin is dried;
a2, drying the first radiation refrigeration functional resin to enable radiation refrigeration functional powder to be bonded with the first radiation refrigeration functional resin;
and A3, arranging a second radiation refrigeration functional resin on the radiation refrigeration functional powder, and then drying the second radiation refrigeration functional resin to form a third functional layer.
7. The method for preparing a radiation refrigeration fabric according to claim 6, wherein in the step A1, the radiation refrigeration function powder is atomized by a pneumatic spraying device, and then the atomized radiation refrigeration function powder is uniformly sprayed on the first radiation refrigeration function resin.
8. The method for preparing a radiation refrigerating fabric as claimed in claim 6, wherein the step A3 is followed by the following steps: and a4, disposing a weather-resistant resin on the third functional layer to form a weather-resistant protective layer.
CN201911075603.7A 2019-11-06 2019-11-06 Radiation refrigeration functional layer, radiation refrigeration fabric and preparation method thereof Active CN110777543B (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201911075603.7A CN110777543B (en) 2019-11-06 2019-11-06 Radiation refrigeration functional layer, radiation refrigeration fabric and preparation method thereof
JP2020072967A JP6944013B2 (en) 2019-11-06 2020-04-15 Radiative cooling fabrics and products
AU2020217350A AU2020217350B2 (en) 2019-11-06 2020-07-10 Radiative cooling fabrics and products
MX2020009186A MX2020009186A (en) 2019-11-06 2020-07-10 Radiation refrigeration fabric and product.
PCT/CN2020/101230 WO2021088398A1 (en) 2019-11-06 2020-07-10 Radiation refrigeration fabric and product
SG11202007745WA SG11202007745WA (en) 2019-11-06 2020-07-10 Radiative cooling fabrics and products
US16/968,600 US12053962B2 (en) 2019-11-06 2020-07-10 Radiative cooling fabrics and products
TW109126376A TWI730863B (en) 2019-11-06 2020-08-04 Radiative cooling fabrics and products
EP20020365.1A EP3819425A1 (en) 2019-11-06 2020-08-11 Radiative cooling fabrics and products
PH12020551236A PH12020551236A1 (en) 2019-11-06 2020-08-12 Radiative cooling fabrics and products
BR102020017718-4A BR102020017718A2 (en) 2019-11-06 2020-08-31 radiant cooling fabrics and products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911075603.7A CN110777543B (en) 2019-11-06 2019-11-06 Radiation refrigeration functional layer, radiation refrigeration fabric and preparation method thereof

Publications (2)

Publication Number Publication Date
CN110777543A CN110777543A (en) 2020-02-11
CN110777543B true CN110777543B (en) 2021-09-14

Family

ID=69389356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911075603.7A Active CN110777543B (en) 2019-11-06 2019-11-06 Radiation refrigeration functional layer, radiation refrigeration fabric and preparation method thereof

Country Status (1)

Country Link
CN (1) CN110777543B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944013B2 (en) * 2019-11-06 2021-10-06 寧波瑞凌新能源科技有限公司Ningbo Radi−Cool Advanced Energy Technologies Co., Ltd. Radiative cooling fabrics and products
US11874073B2 (en) * 2020-04-09 2024-01-16 The Hong Kong University Of Science And Technology Radiative cooling structure with enhanced selective infrared emission
CN111609596B (en) * 2020-05-26 2021-12-14 宁波瑞凌新能源科技有限公司 Radiation refrigeration film, application thereof and radiation refrigeration product
CN112853522A (en) * 2021-01-07 2021-05-28 华中科技大学 Wet spinning radiation refrigeration fiber, preparation method and application thereof
CN112851945B (en) * 2021-02-07 2022-07-12 浙江理工大学 Organic silicon microsphere material for daytime passive radiation refrigeration and preparation method and application thereof
CO2021002728A1 (en) * 2021-02-26 2022-08-30 Proquinal S A S Multilayer composite material with cold effect
CN113561578B (en) * 2021-07-02 2023-02-14 浙江大学 Radiation refrigeration fabric and design method thereof
CN114541132B (en) * 2022-03-08 2023-04-14 哈尔滨工业大学(威海) High-flexibility stretch-resistant breathable radiation refrigeration fabric for bionic human skin and preparation method thereof
CN115572399B (en) * 2022-10-09 2023-07-25 南京特殊教育师范学院 Passive radiation cooling film and preparation method thereof
CN117385492B (en) * 2023-12-07 2024-02-23 天津包钢稀土研究院有限责任公司 Hollow cooling fiber modified by lanthanum and cerium natural distribution product and preparation method thereof
CN117567894B (en) * 2024-01-11 2024-04-05 中稀易涂科技发展有限公司 High-emission rare earth-based radiation refrigeration coating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968808A (en) * 2004-06-17 2007-05-23 郭尚运 Structure of preventing sticking and method of preparing the same
JP2011163715A (en) * 2010-02-12 2011-08-25 Kobe Steel Ltd Aluminum fin material for heat exchanger
CN207088643U (en) * 2017-08-07 2018-03-13 杭州星华反光材料股份有限公司 A kind of color reflective stretch fabric
CN108329726A (en) * 2018-04-10 2018-07-27 深圳瑞凌新能源科技有限公司 Scattering radiation cooling accumulates microballoon coating and preparation method thereof at random
CN109161241A (en) * 2018-08-21 2019-01-08 哈尔滨工业大学(威海) A kind of radiative cooling coating and preparation method thereof with self-cleaning function
CN109622343A (en) * 2018-12-19 2019-04-16 宁波瑞凌节能环保创新与产业研究院 A kind of radiation refrigeration curtain and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185340A (en) * 1988-01-18 1989-07-24 Hosokawa Micron Corp Production of far-infrared radiating surface
JP2001081408A (en) * 1999-09-10 2001-03-27 Nippon Paint Co Ltd Method of forming brilliant coat and automobile wheel
KR101689634B1 (en) * 2016-08-04 2016-12-26 노세윤 Surface Coating Method Exhibiting Solid Pattern Texture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968808A (en) * 2004-06-17 2007-05-23 郭尚运 Structure of preventing sticking and method of preparing the same
JP2011163715A (en) * 2010-02-12 2011-08-25 Kobe Steel Ltd Aluminum fin material for heat exchanger
CN207088643U (en) * 2017-08-07 2018-03-13 杭州星华反光材料股份有限公司 A kind of color reflective stretch fabric
CN108329726A (en) * 2018-04-10 2018-07-27 深圳瑞凌新能源科技有限公司 Scattering radiation cooling accumulates microballoon coating and preparation method thereof at random
CN109161241A (en) * 2018-08-21 2019-01-08 哈尔滨工业大学(威海) A kind of radiative cooling coating and preparation method thereof with self-cleaning function
CN109622343A (en) * 2018-12-19 2019-04-16 宁波瑞凌节能环保创新与产业研究院 A kind of radiation refrigeration curtain and preparation method thereof

Also Published As

Publication number Publication date
CN110777543A (en) 2020-02-11

Similar Documents

Publication Publication Date Title
CN110777543B (en) Radiation refrigeration functional layer, radiation refrigeration fabric and preparation method thereof
CN104553174A (en) Composite nonwoven material and preparation method thereof
CN109477267A (en) Binder system
CN106393941B (en) The production technology and automobile composite material of the automotive compounded fabric of non-woven fabrics double-dot coating
CN110205831A (en) A kind of fire-retardant, heat-insulated refrigeration, sun-proof, waterproof tarpaulin synthetic leather and preparation method thereof
KR101829175B1 (en) manufacturing method of air circulation type dustproof mesh for blocking fine dust using nano-fiber
KR101323618B1 (en) Aerogel coating solution, method of manufacturing aerogel sheet coated thereby, and aerogel sheet manufactured by the same method
CN201950858U (en) Waterproof dual-layer flocked fabric
CN107100011A (en) A kind of Synthetic Leather and preparation method thereof
CN203606525U (en) Breathable reflective cloth
CN209178283U (en) Scattering radiation cooling accumulates microballoon coating at random
CN111576044B (en) Preparation method of high-efficiency radiation cooling fiber
CN204679670U (en) Mesh breathable reflective tape
CN207177125U (en) A kind of wall paper
CN102127381A (en) Traceless adhesive, and traceless free sticker prepared from same
TW201729900A (en) Method for producing porous gel-containing liquid, porous gel-containing liquid, method for producing high-porosity layer, method for producing high-porosity porous body, and method for producing layered film roll
CN101263269A (en) Ceiling tile with non uniform binder composition
CN206314942U (en) A kind of non-woven fabrics pot holder
CN207388451U (en) A kind of anti-aging durable film
CN109487567A (en) A kind of manufacturing method of multicoat waterproof cloth
CN109177391B (en) Special waterproof and gas-insulating film for refrigeration house construction industry and preparation method and installation method thereof
CN203510856U (en) High-luminance reflective fabric for rainy night
CN202567667U (en) Carpet rubber mat
CN2599048Y (en) Packed structure cloth possessing far infrared ray ceramic powder mieed glue
CN110778057A (en) Wear-resistant PVC plastic floor structure and production process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant