CN110773739B - 一种诱导骨生长的梯度钛镁复合材料植入体及其成形方法 - Google Patents
一种诱导骨生长的梯度钛镁复合材料植入体及其成形方法 Download PDFInfo
- Publication number
- CN110773739B CN110773739B CN201911060091.7A CN201911060091A CN110773739B CN 110773739 B CN110773739 B CN 110773739B CN 201911060091 A CN201911060091 A CN 201911060091A CN 110773739 B CN110773739 B CN 110773739B
- Authority
- CN
- China
- Prior art keywords
- implant
- titanium
- magnesium
- alloy
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/06—Titanium or titanium alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
- B22F2003/206—Hydrostatic or hydraulic extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
- B22F2003/208—Warm or hot extruding
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
本发明公开一种诱导骨生长的梯度钛镁复合材料植入体及其成形方法,属于功能骨植入体制造领域。在选区激光熔化成形的钛合金多孔结构植入体孔内挤压充填具有缓释的镁合金和骨诱导生长的纳米羟基磷灰石复合材料,形成梯度钛镁复合材料植入体。本发明植在镁合金的缓释与羟基磷灰石的诱导共同作用下,极易诱导骨骼可控生长,具有良好的市场前景和应用价值。
Description
技术领域
本发明涉及一种诱导骨生长的梯度钛镁复合材料植入体及其成形方法,属于功能骨植入体制造领域。
背景技术
钛合金因具有较高的力学性能、良好的生物相容性以及在生理环境下较好的耐蚀性能等优良的综合性能被广泛用于临床介入性器械的首选材料之一。个性化治疗是21世纪的医学特征,因患者年龄和性别的差异,且多数人工骨植入体结构较复杂,常见的粉末冶金、铸造等成型方法已无法满足钛合金人工骨植入体的制造要求。基于“逐层累积”原理的3D打印技术具有独特的柔性制造特点,可成型结构较复杂的构件,尤其适应于小批量、个性化植入体的制造。可见,3D打印技术为钛合金植入的个性化制造提供了可靠的技术保障。
研究证实,钛合金属于生物惰性材料,缺乏生物活性,在生物体内与周围骨组织之间主要形成机械嵌合,不能形成骨性结合,在体内容易发生松动失效。故众多表面改性技术被用于提高医用钛合金的生物活性,如,通过物理气相沉积方法在医用钛合金表面沉积镁合金可降解涂层;采用微弧氧化或阳极氧化工艺在医用钛合金表面形成二氧化钛/羟基磷灰石活性涂层,一定程度上提高了医用钛合金的生物活性。然而,在人体复杂生理环境中活性涂层与钛合金基体间的界面易失效,主要归因于其界面结合强度不足。另一方面,可降解活性涂层随植入体服役时间的延长而逐渐降解,直至降解完全,骨组织仍依附于钛合金植入体表面生长,其结合能力有限。
发明内容
发明目的:针对本发明要解决的技术问题是提供一种导骨生长的梯度钛镁复合材料植入体,基于选区激光熔化3D打印技术,成形多孔钛合金植入体,并辅以静液挤压工艺,在多孔内充分充填可降解镁合金和骨诱导能力的羟基磷灰石,获得梯度钛镁复合材料植入体,以解决现有技术中人工钛合金植入体生物活性弱、与骨组织结合能力较弱等不足。
本发明还要解决的技术问题是提供上述诱导骨生长的梯度钛镁复合材料植入体的成形方法。
技术方案:为解决上述技术问题,本发明提供如下技术方案:
一种诱导骨生长的梯度钛镁复合材料植入体的成形方法,在选区激光熔化成形的钛合金多孔结构植入体孔内挤压充填具有缓释的镁合金和骨诱导生长的纳米羟基磷灰石复合材料,形成梯度钛镁复合材料植入体。
一种诱导骨生长的梯度钛镁复合材料植入体的成型方法,包括以下步骤:
(1)将球形医用钛合金粉末采用选区激光熔化技术成形钛合金多孔结构植入体;
(2)在高纯氩气保护下,将镁合金粉末和纳米羟基磷灰石粉末在高能球磨机中研磨混合,获得均匀混合的复合材料粉末;
(3)利用步骤(2)中的复合材料粉末包裹步骤(1)得到的钛合金多孔植入体,置入静液挤压机的陶瓷挤压筒内,进行抽真空至5×10-3~1×10-3Pa,对挤压筒进行加热至镁合金粉末熔化后保温,并在挤压筒外圈施加磁场;
(4)在挤压筒两侧循环施加压应力;
(5)待压应力施加结束后,挤压筒停止加热,镁合金熔体温度冷却至熔点时,将填充镁合金的钛合金多孔植入体取出至高纯氩气环境中冷却凝固,最终获得梯度钛镁复合材料植入体。
步骤(1)中,所述球形医用钛合金粉末为医用纯钛、Ti-Nb合金中的一种或两种的混合物;所述Ti-Nb合金粉末中Ti的质量分数为65~80%,Nb的质量分数为20~35%。
步骤(1)中,所述的选区激光熔化技术的的条件如下:激光功率120~250W、扫描速度800~2000mm/s、扫描间距70~110μm。
步骤(2)中,所述镁合金粉末的粒径为15~60μm,所述纳米羟基磷灰石粉末的粒径为10~100nm。
步骤(2)中,所述的镁合金粉末包括Mg-Zn合金粉末、Mg-Ca合金粉末、Mg-Zr合金粉末中一种或几种的混合物;
所述的Mg-Zn合金粉末中Zn的质量分数为3~8%,余量为Mg;优选Zn的质量分数为5%,余量为Mg;
所述的Mg-Ca合金粉末中Ca的质量分数为0.5-1.5%,余量为Mg;优选Ca的质量分数为1%;
所述的Mg-Zr合金粉末中Zr的质量分数为0.5-3.5%,余量为Mg;优选Zr的质量分数为2%。
步骤(2)中,所述的镁合金粉末和纳米羟基磷灰石粉末质量比为10:1~50:1,优选25:1。
步骤(3)中,所述的挤压筒加热温度为650~750℃,优选700℃,保温温度为740~750℃,保温时间为10~30min。
步骤(3)中,挤压筒外圈施加磁场强度为0.05~0.3T,优选0.3T。
步骤(4)中,所述的挤压筒两侧循环施加的压应力条件为:压应力大小为0.5~5MPa,优选4MPa,每施加压应力2~10min后停止5min,如此交替3~10个循环。
上述所述的诱导骨生长的梯度钛镁复合材料植入体的成形方法制备得到梯度钛镁复合材料植入体在本发明的保护范围制备。
发明原理:本发明依据钛合金植入体的生物活性及骨诱导能力等服役功能需求,采用选区激光熔化成形多孔钛合金骨植入体,将生物可降解镁合金和骨诱导功能的羟基磷灰石复合材料通过静液挤压工艺充填至植入体孔内,形成梯度钛镁复合材料植入体。在梯度钛镁复合材料植入体服役过程中,孔内羟基磷灰石可诱导植入体骨组织向孔内生长;同时,孔内镁合金不断降解,既可进一步促进骨骼钙磷沉积,也可为骨组织向孔内可控生长提供空间。在此共同作用下,骨组织能充分在植入体孔内生长,进而与植入体形成良好的结合,且能显著缩短患者的治愈周期。
有益效果:本发明与现有技术相比,具有如下显著性特点:
(1)在选区激光熔化成形钛合金多孔植入体的孔隙内采用静液挤压工艺充填至生物活性镁合金和羟基磷灰石,形成梯度钛镁复合材料,相比于现有钛合金多孔植入体而言,其生物活性得到显著增强,实现了诱导骨生长的梯度钛镁复合材料植入体的制造;
(2)钛合金多孔植入体的孔隙内具有较强骨诱导能力的羟基磷灰石能较好地诱导骨组织向孔内生长;另一方面,孔隙内可降解镁合金的不断降解,促进了孔内钙磷的沉积,为骨组织生成提供了条件,同时,也为骨组织向孔隙内部生长提供了通道,改变了现有植入体与骨组织间的机械结合方式,可显著增强骨组织与植入体间的结合强度。
(3)可通过改变医用可降解镁合金的成分、镁合金与羟基磷灰石的含量等途径,易于实现镁合金在人体复杂生理环境中降解速率的控制,从而实现对骨诱导能力和骨生长速率的调控,满足不同类型患者的病理需求。
附图说明
图1为实施例1成形的钛合金多孔植入体中孔隙形状图;
图2为实施例2成形的梯度钛镁复合材料植入体微观形貌图,其中,1-Mg-Ca合金,2-钛合金;
图3为实施例2成形的梯度钛镁复合材料植入体在37℃的人体模拟体液中浸泡1天后孔隙内部生长的类骨磷灰石形貌图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
本发明的一种诱导骨生长的梯度钛镁复合材料植入体的成形方法,包含下述步骤:
(1)将球形医用钛合金粉末采用选区激光熔化技术成形钛合金多孔结构植入体;
(2)在高纯氩气保护下,将质量比10:1~50:1的镁合金和纳米羟基磷灰石粉末在转速为40~100rpm的高能球磨工艺混合,获得均匀混合的复合材料粉末;
(3)将步骤(2)中的混合粉末包裹步骤(1)中钛合金多孔植入体,置入静液挤压试验机的陶瓷挤压筒内后进行抽真空至5×10-3~1×10-3Pa,对挤压筒进行加热650~750℃至镁合金粉末熔化后保温10~30min,并在挤压筒外圈施加0.05~0.3T的磁场,促进筒内镁合金熔体成分均匀;
(4)在挤压筒两侧循环施加压应力大小为0.5~5MPa,每施加压应力2~10min后停止施加5min,如此交替3~10个循环,促使镁合金熔体充分填充植入体孔内;
(5)待压应力施加结束后,挤压筒停止加热,镁合金熔体温度冷却至熔点时,将填充镁合金的钛合金多孔植入体取出至高纯氩气环境中冷却凝固,最终获得梯度钛镁复合材料植入体。
其中,镁合金粉末包括Mg-Zn合金、Mg-Ca合金和Mg-Zr合金中一种或多种。
实施例1:
(1)将球形医用钛合金粉末采用选区激光熔化技术成形钛合金多孔结构植入体;
(2)在高纯氩气保护下,将质量比10:1的Mg-Zn合金和纳米羟基磷灰石粉末在转速为40rpm的高能球磨工艺混合,获得均匀混合的复合材料粉末;
(3)将步骤(2)中的混合粉末包裹步骤(1)中钛合金多孔植入体,置入静液挤压试验机的陶瓷挤压筒内后进行抽真空至5×10-3Pa,对挤压筒进行加热650℃至Mg-Zn合金粉末熔化后保温10min,并在挤压筒外圈施加0.05T的磁场,促进筒内Mg-Zn合金熔体成分均匀;
(4)在挤压筒两侧循环施加压应力大小为0.5MPa,每施加压应力2min后停止施加5min,如此交替3个循环,促使Mg-Zn合金熔体充分填充植入体孔内;
(5)待压应力施加结束后,挤压筒停止加热,Mg-Zn合金熔体温度冷却至熔点时,将填充Mg-Zn合金的钛合金多孔植入体取出至高纯氩气环境中冷却凝固,最终获得梯度钛镁复合材料植入体。
实施例2:
(1)将球形医用钛合金粉末采用选区激光熔化技术成形钛合金多孔结构植入体;
(2)在高纯氩气保护下,将质量比30:1的Mg-Ca合金和纳米羟基磷灰石粉末在转速为80rpm的高能球磨工艺混合,获得均匀混合的复合材料粉末;
(3)将步骤(2)中的混合粉末包裹步骤(1)中钛合金多孔植入体,置入静液挤压试验机的陶瓷挤压筒内后进行抽真空至3×10-3Pa,对挤压筒进行加热700℃至Mg-Ca合金粉末熔化后保温20min,并在挤压筒外圈施加0.1T的磁场,促进筒内Mg-Ca合金熔体成分均匀;
(4)在挤压筒两侧循环施加压应力大小为3MPa,每施加压应力5min后停止施加5min,如此交替6个循环,促使Mg-Ca合金熔体充分填充植入体孔内;
(5)待压应力施加结束后,挤压筒停止加热,Mg-Ca合金熔体温度冷却至熔点时,将填充Mg-Ca合金的钛合金多孔植入体取出至高纯氩气环境中冷却凝固,最终获得梯度钛镁复合材料植入体。
图2为成形的梯度钛镁复合材料植入体微观形貌图,在钛合金孔隙中填充了具有骨诱导能力的Mg-Ca合金,从图中可看出,钛合金和Mg-Ca合金界面处无明显缺陷,具有良好的冶金界面结合,形成了梯度钛镁复合材料植入体。
实施例3:
(1)将球形医用钛合金粉末采用选区激光熔化技术成形钛合金多孔结构植入体,所述钛合金粉末为Ti-Nb合金粉末,所述Ti-Nb合金粉末中Ti的质量分数为65%,Nb的质量分数为35%;
(2)在高纯氩气保护下,将质量比50:1的Mg-Zr合金和纳米羟基磷灰石粉末在转速为100rpm的高能球磨工艺混合,获得均匀混合的复合材料粉末;
(3)将步骤(2)中的混合粉末包裹步骤(1)中钛合金多孔植入体,置入静液挤压试验机的陶瓷挤压筒内后进行抽真空至1×10-3Pa,对挤压筒进行加热750℃至Mg-Zr合金粉末熔化后保温20min,并在挤压筒外圈施加0.2T的磁场,促进筒内Mg-Zr合金熔体成分均匀;
(4)在挤压筒两侧循环施加压应力大小为3MPa,每施加压应力5min后停止施加5min,如此交替6个循环,促使Mg-Zr合金熔体充分填充植入体孔内;
(5)待压应力施加结束后,挤压筒停止加热,Mg-Zr合金熔体温度冷却至熔点时,将填充Mg-Zr合金的钛合金多孔植入体取出至高纯氩气环境中冷却凝固,最终获得梯度钛镁复合材料植入体。
实施例4:
(1)将球形医用钛合金粉末采用选区激光熔化技术成形钛合金多孔结构植入体,所述钛合金粉末为Ti-Nb合金粉末,所述Ti-Nb合金粉末中Ti的质量分数为80%,Nb的质量分数为20%;
(2)在高纯氩气保护下,将质量比50:1的Mg-Zr合金和纳米羟基磷灰石粉末在转速为100rpm的高能球磨工艺混合,获得均匀混合的复合材料粉末;
(3)将步骤(2)中的混合粉末包裹步骤(1)中钛合金多孔植入体,置入静液挤压试验机的陶瓷挤压筒内后进行抽真空至1×10-3Pa,对挤压筒进行加热700℃至Mg-Zr合金粉末熔化后保温30min,并在挤压筒外圈施加0.3T的磁场,促进筒内Mg-Zr合金熔体成分均匀;
(4)在挤压筒两侧循环施加压应力大小为5MPa,每施加压应力10min后停止施加5min,如此交替10个循环,促使Mg-Zr合金熔体充分填充植入体孔内;
(5)待压应力施加结束后,挤压筒停止加热,Mg-Zr合金熔体温度冷却至熔点时,将填充Mg-Zr合金的钛合金多孔植入体取出至高纯氩气环境中冷却凝固,最终获得梯度钛镁复合材料植入体。
实施例3和4成形的梯度钛镁复合材料植入体37℃的人体模拟体液中浸泡7天后孔隙内部沉积产物中Ca含量分别为25wt.%和45wt.%,可看出,沉积产物中Ca含量均较高,进一步说明本发明提供的诱导骨生长的梯度钛镁复合材料植入体能有效提升钛合金多孔植入体的骨诱导能力。
Claims (8)
1.一种诱导骨生长的梯度钛镁复合材料植入体的成形方法,其特征在于,在选区激光熔化成形的钛合金多孔结构植入体孔内挤压充填具有缓释的镁合金和骨诱导生长的纳米羟基磷灰石复合材料,形成梯度钛镁复合材料植入体;
梯度钛镁复合材料植入体的成形方法包括以下步骤:
(1)将球形医用钛合金粉末采用选区激光熔化技术成形钛合金多孔结构植入体;
(2)在高纯氩气保护下,将镁合金粉末和纳米羟基磷灰石粉末在高能球磨机中研磨混合,获得均匀混合的复合材料粉末;
(3)利用步骤(2)中的复合材料粉末包裹步骤(1)得到的钛合金多孔植入体,置入静液挤压机的陶瓷挤压筒内,进行抽真空至5×10-3~1×10-3 Pa,对挤压筒加热至镁合金粉末熔化后保温,并在挤压筒外圈施加磁场;
(4)在挤压筒两侧循环施加压应力;
(5)待压应力施加结束后,挤压筒停止加热,镁合金熔体温度冷却至熔点时,将填充镁合金的钛合金多孔植入体取出至高纯氩气环境中冷却凝固,最终获得梯度钛镁复合材料植入体;
步骤(1)中,所述球形医用钛合金粉末为医用纯钛粉末、Ti-Nb合金粉末中的一种或两种的混合物,所述Ti-Nb合金粉末中Ti的质量分数为65~80%,Nb的质量分数为20~35%。
2.根据权利要求1所述的诱导骨生长的梯度钛镁复合材料植入体的成形方法,其特征在于,步骤(1)中,所述的选区激光熔化技术的条件如下:激光功率120~250W、扫描速度800~2000mm/s、扫描间距70~110μm。
3.根据权利要求1所述的诱导骨生长的梯度钛镁复合材料植入体的成形方法,其特征在于,步骤(2)中,所述镁合金粉末的粒径为15~60μm,所述纳米羟基磷灰石粉末的粒径为10~100nm。
4.根据权利要求1所述的诱导骨生长的梯度钛镁复合材料植入体的成形方法,其特征在于,步骤(2)中,所述的镁合金粉末包括Mg-Zn合金粉末、Mg-Ca合金粉末和Mg-Zr合金粉末中一种或几种的混合物;
所述的Mg-Zn合金粉末中Zn的质量分数为3~8% ,余量为Mg和不可避免的杂质;
所述的Mg-Ca合金粉末中Ca的质量分数为0.5-1.5%,余量为Mg和不可避免的杂质;
所述的Mg-Zr合金粉末中Zr的质量分数为0.5-3.5%,余量为Mg和不可避免的杂质。
5.根据权利要求1所述的诱导骨生长的梯度钛镁复合材料植入体的成形方法,其特征在于,步骤(2)中,所述的镁合金粉末和纳米羟基磷灰石粉末质量比为10:1~50:1。
6.根据权利要求1所述的诱导骨生长的梯度钛镁复合材料植入体的成形方法,其特征在于,步骤(3)中,所述的挤压筒加热温度为650~750℃,保温温度为740~750℃,保温时间为10~30min;
步骤(3)中,挤压筒外圈施加磁场强度为0.05~0.3 T。
7.根据权利要求1所述的诱导骨生长的梯度钛镁复合材料植入体的成形方法,其特征在于,步骤(4)中,所述的挤压筒两侧循环施加的压应力条件为:压应力大小为0.5~5 MPa,每施加压应力2~10min后停止5min,如此交替3~10个循环。
8.权利要求1~7任一所述的诱导骨生长的梯度钛镁复合材料植入体的成形方法制备得到的梯度钛镁复合材料植入体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911060091.7A CN110773739B (zh) | 2019-11-01 | 2019-11-01 | 一种诱导骨生长的梯度钛镁复合材料植入体及其成形方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911060091.7A CN110773739B (zh) | 2019-11-01 | 2019-11-01 | 一种诱导骨生长的梯度钛镁复合材料植入体及其成形方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110773739A CN110773739A (zh) | 2020-02-11 |
CN110773739B true CN110773739B (zh) | 2022-04-12 |
Family
ID=69388340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911060091.7A Active CN110773739B (zh) | 2019-11-01 | 2019-11-01 | 一种诱导骨生长的梯度钛镁复合材料植入体及其成形方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110773739B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114749679A (zh) * | 2022-03-25 | 2022-07-15 | 重庆大学 | 一种多孔框架结构增强镁基复合材料及其制备方法 |
CN116765425B (zh) * | 2023-08-21 | 2023-11-03 | 吉林大学 | 一种医用植入异质金属复合结构的制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101407867B (zh) * | 2008-11-26 | 2010-12-29 | 华南理工大学 | 复合型轻质高强镍钛记忆合金基高阻尼材料制备方法 |
KR101186370B1 (ko) * | 2011-01-18 | 2012-09-26 | 순천향대학교 산학협력단 | 다층 구조의 생체 재료 다공질체 및 그 제조방법 |
CN103357063B (zh) * | 2012-04-10 | 2016-07-06 | 中国科学院金属研究所 | 一种可引导骨生长的金属复合材料及其应用 |
CN102747403B (zh) * | 2012-07-03 | 2014-10-29 | 淮阴工学院 | 在医用钛合金表面制备掺镁羟基磷灰石/二氧化钛活性膜层的方法 |
CN103599560B (zh) * | 2013-11-05 | 2015-04-15 | 上海交通大学 | 医用钛/镁复合材料及其制备方法 |
CN103599561B (zh) * | 2013-11-07 | 2015-08-19 | 同济大学 | 一种镁合金/羟基磷灰石复合材料的制备方法 |
CN104707169A (zh) * | 2015-03-16 | 2015-06-17 | 上海交通大学 | 半降解钛镁复合微球骨填充医用材料 |
-
2019
- 2019-11-01 CN CN201911060091.7A patent/CN110773739B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110773739A (zh) | 2020-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103357063B (zh) | 一种可引导骨生长的金属复合材料及其应用 | |
CN108273137A (zh) | 一种多孔仿生颅骨修复材料及个性化制作方法 | |
CN110773739B (zh) | 一种诱导骨生长的梯度钛镁复合材料植入体及其成形方法 | |
CN103599561B (zh) | 一种镁合金/羟基磷灰石复合材料的制备方法 | |
JP2011515145A (ja) | 生体分解性マグネシウム系合金で多孔性構造体の気孔が充填された複合材インプラントおよびその製造方法 | |
WO2011071299A2 (ko) | 임플란트 | |
CN108380891B (zh) | 一种钛基生物医用梯度复合材料的制备方法 | |
CN103599560B (zh) | 医用钛/镁复合材料及其制备方法 | |
CN101912635A (zh) | 一种生物医用多孔钛材料及其制备方法 | |
US20130150227A1 (en) | Composite Bio-Ceramic Dental Implant and Fabricating Method Thereof | |
CN102258806B (zh) | 一种可降解镁基骨科植入生物医用材料及制备方法 | |
CN106390207A (zh) | 一种多孔钛合金作为载体在医学上的应用 | |
CN102784017B (zh) | 一种由复合材料制成的人造骨的制备工艺 | |
CN106670464B (zh) | 一种双连通网状结构钛-镁双金属复合材料的制备方法 | |
CN108570578B (zh) | 孔径梯度分布的开孔结构生物医用锌材料及其制备方法 | |
CN100506292C (zh) | 一种多孔结构钛种植体及制备方法 | |
CN104368040A (zh) | 一种复合脱钙骨基质的3d打印多孔金属支架及其制备方法 | |
Yao et al. | Biodegradable porous Zn-1Mg-3βTCP scaffold for bone defect repair: In vitro and in vivo evaluation | |
Wang et al. | Progress in partially degradable titanium-magnesium composites used as biomedical implants | |
Elbadawi et al. | Progress in bioactive metal and, ceramic implants for load-bearing application | |
Chen et al. | Functional engineering strategies of 3D printed implants for hard tissue replacement | |
Abd-Elaziem et al. | Porous Titanium for Medical Implants | |
He et al. | Research progress in degradable metal‐based multifunctional scaffolds for bone tissue engineering | |
Bai et al. | Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering | |
CN115414526B (zh) | 一种仿生学结构的生物降解锌合金承重骨支架及加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20200211 Assignee: Jiangsu Huichuang science and Education Development Co.,Ltd. Assignor: HUAIYIN INSTITUTE OF TECHNOLOGY Contract record no.: X2022320000370 Denomination of invention: A gradient titanium magnesium composite implant inducing bone growth and its forming method Granted publication date: 20220412 License type: Common License Record date: 20221213 |