CN110773138A - 一种树脂基负载铁氧化物复合除磷吸附剂的制备方法及其应用 - Google Patents

一种树脂基负载铁氧化物复合除磷吸附剂的制备方法及其应用 Download PDF

Info

Publication number
CN110773138A
CN110773138A CN201911162590.7A CN201911162590A CN110773138A CN 110773138 A CN110773138 A CN 110773138A CN 201911162590 A CN201911162590 A CN 201911162590A CN 110773138 A CN110773138 A CN 110773138A
Authority
CN
China
Prior art keywords
resin
iron oxide
oxide composite
phosphorus
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911162590.7A
Other languages
English (en)
Other versions
CN110773138B (zh
Inventor
刘广龙
李旭光
邴海健
王昌全
戢正华
李涛
闫仁凯
赵建伟
华玉妹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201911162590.7A priority Critical patent/CN110773138B/zh
Publication of CN110773138A publication Critical patent/CN110773138A/zh
Priority to US17/007,198 priority patent/US11529609B2/en
Application granted granted Critical
Publication of CN110773138B publication Critical patent/CN110773138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种树脂基负载铁氧化物复合除磷吸附剂的制备方法,以强碱性阴离子交换树脂为母体,以高铁酸钾为铁源,利用高铁酸根离子极易吸附于阴离子树脂表面的特性,通过一步法原位水解沉淀制备树脂基负载铁氧化物复合除磷吸附剂,与现有制备方法相比,本发明的制备过程相对更加简单,时间周期更短,生产成本更低。排除废水中其它阴离子的干扰能力强,对磷的吸附能力强、速度快、吸附量大,另外还具有再生能力强,重复使用次数多等优点。

Description

一种树脂基负载铁氧化物复合除磷吸附剂的制备方法及其 应用
技术领域
本发明属于环境治理领域,具体涉及一种树脂基负载铁氧化物复合除磷吸附剂的制备方法,本发明还涉及复合除磷吸附剂的应用以及一种含磷废水污染处理方法。
背景技术
水体富营养化引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,已成为危害人类健康、威胁饮用水安全的重要问题之一。过量磷输入是导致水体富营养化的重要因子,因此,开发有效的除磷剂是减少河流和湖泊水域中的磷输入的重要手段。
目前的除磷技术有化学沉淀法、生物法、膜分离法、吸附法等,但是单一技术往往难以适用于众多不同类型含磷废水的处理。因此,多技术组合使用则成为了优先选择。例如,在农田面源污染废水中磷的处理中,由于废水量大、含磷浓度低,导致化学沉淀法、膜分离法并不适用。生物法中的生态拦截沟渠是农田面源污染磷消减的有效技术之一,然而,生态拦截沟渠往往需要面临季节性问题,而将吸附法与生物法相结合,组建有别于传统的新型生态拦截沟渠,则可以有效解决这一问题。
构建新型生态拦截沟渠的核心则是吸附剂的筛选。传统的吸附剂主要包括活性炭、改性生物炭、赤泥、沸石、硅藻土、铁氧化物等。这些吸附剂尽管对废水中的磷具有一定的吸附能力,然而普遍在稳定性、吸附容量、选择性和实用性等方面存在一些问题。基于磷的去除与回收利用的思路,阴离子树脂被认为是一种理想的除磷材料。部分学者对其进行表面改性以降低阴离子树脂的选择性缺陷。铁(氢)氧化物因其环境友好、化学性质稳定、对磷吸附亲和力强而被认为理想的树脂改性材料。例如,潘炳才团队先后在 CN 1772370A和文章(Development of polymer-based nanosized hydrated ferric oxides (HFOs)forenhanced phosphate removal from waste effluents)中报道了阴离子树脂上负载羟基铁氧化物去除砷和磷的研究。
这些方法的核心是将正价的Fe3+以FeCl4 -的形式负载到阴离子树脂上,导致工艺过程复杂,极大的增加了树脂基载铁树脂复合出磷吸附剂的成本。因此,开发生产成本低廉、经济适用、除磷效率稳定的吸附剂材料仍是当前的迫切需求。高铁酸钾是一种集氧化、消毒、絮凝和助凝等多种功能于一体的水处理药剂,其还原产物可形成比铝盐、铁盐水解产物具有更大网状结构,更高正电荷的水解产物,且安全无毒,在低浓度、碱性条件下溶液较为稳定。利用高铁酸根易吸附于阴离子树脂上的特性,一步原位水解制备树脂基载铁复合除磷吸附剂,从而开发更为经济的含铁复合树脂。
发明内容
本发明的目的是提供一种吸附量大、稳定性强、重复利用率高、选择性好、易制备的复合除磷材料,
本发明的技术方案如下:
一种树脂基负载铁氧化物复合除磷吸附剂的制备方法,包括以下步骤:
将强碱性阴离子树脂加入到新鲜制备的碱性高铁酸钾溶液中,常温搅拌1-5小时,使高铁酸根与树脂上的阴离子发生交换反应,弃去上清液后加入清水,加热到50-70℃继续搅拌1-3小时,使交换到树脂上的高铁酸根完全水解成氢氧化铁,之后加入质量分数2-10%的氯化钠溶液,使阴离子树脂上结合的羟基转型为Cl-,最后将负载纳米级水合氧化铁后的复合树脂水洗至中性,干燥后即得。
优选地,所述强碱性阴离子树脂为D-201树脂、201×7树脂、201×4树脂、IRA-900树脂或IRA-402树脂。
优选地,所述碱性高铁酸钾溶液的浓度为0.03~0.2mol/L。
优选地,所述碱性高铁酸钾溶液的pH为9~12。
优选地,所述强碱性阴离子树脂的加入量为20~200g/L。
所述树脂基负载铁氧化物复合除磷吸附剂可用于含磷废水污染处理。
一种含磷废水污染处理方法,包括以下步骤:
1)将按权利要求1-5任何一项所述方法制备的树脂基负载铁氧化物复合除磷吸附剂装柱,将含磷废水上柱后控制温度20-40℃,流速10-30BV/h,进行洗脱;
2)洗脱完成后向树脂内加入质量浓度为2-5%NaCl和2-5%NaOH混合溶液进行树脂再生。
本发明所涉及得反应式:
(1)铁酸根交换到阴离子树脂上:
2R-N+(CH3)3Cl(s)+FeO4 2-(a)→(R-N+(CH3)3)2FeO4(s)+2Cl-(a)
(2)铁酸根在阴离子树脂上水解:
4(R-N+(CH3)3)2FeO4(s)+10H2O(a)→4Fe(OH)3(s)+3O2+8R -N+(CH3)3OH(s)
(3)质量分数5%的氯化钠溶液进行转型:
R-N+(CH3)3OH(s)+NaCl(a)→R-N+(CH3)3Cl(s)+NaOH(a)
与现有技术相比,本发明具有以下优点:
1)本发明以强碱性阴离子交换树脂为母体,以铁酸钾为铁源,利用铁酸根离子极易吸附于阴离子树脂表面的特性,通过一步法原位水解沉淀制备树脂基负载铁氧化物复合除磷吸附剂,与现有制备方法相比,本发明的制备过程相对更加简单,时间周期更短,生产成本更低。
2)本发明的吸附剂用于含磷废水污染处理时,排除废水中其它阴离子的干扰能力强,对磷的吸附能力强、速度快、吸附量大,另外还具有再生能力强,重复使用次数多等优点。
附图说明
图1为实施例7的生态沟立体示意图。图中1-水生植物茭白、2-砾石、3-第一取水点、4-100目尼龙网袋包裹载铁树脂、5-固定铁架、6-第二取水点、7-溢流堰。
具体实施方式
以下通过具体实施例进一步说明本发明。
实施例1
取7.14g高铁酸钾溶于400ml、pH=10的水溶液中,配置成浓度为0.09mol/L的高铁酸钾溶液,立即将20g IRA-402树脂加入到高铁酸钾溶液中,磁力搅拌2h,使高铁酸根与树脂上的阴离子发生交换,而后将上清液倒去并加入清水200mL,50℃下搅拌1 小时,使树脂上的高铁酸根完全水解成氢氧化铁,之后用质量分数5%的氯化钠溶液使阴离子树脂上结合的羟基转型为Cl-,最后将负载了纳米级水合氧化铁的复合树脂水洗至中性,于阴凉处风干或烘干,即获得复合除磷吸附剂,其Fe(Ⅲ)的固载量为25.7mg/g。
实施例2
取13.85g高铁酸钾溶于1000ml、pH=12的水溶液中,配置成浓度为0.07mol/L的高铁酸钾溶液,立即将100g IRA-900树脂加入到高铁酸钾溶液中,机械搅拌2h,使高铁酸根与树脂上的阴离子发生交换,而后将上清液倒去并加入清水500mL,70℃下搅拌 1小时,使树脂上的高铁酸根完全水解成氢氧化铁,之后用质量分数2%的氯化钠溶液使阴离子树脂上结合的羟基转型为Cl-,最后将负载了纳米级水合氧化铁的复合树脂水洗至中性,于阴凉处风干或烘干,即得复合除磷吸附剂,其Fe(Ⅲ)的固载量为24.5mg/g。
实施例3
取5.94g高铁酸钾溶于200ml、pH=9的水溶液中,配置成浓度为0.15mol/L的高铁酸钾溶液,立即将40g D-201树脂加入到高铁酸钾溶液中,磁力搅拌3h,使高铁酸根与树脂上的阴离子发生交换,而后将上清液倒去并加入清水100mL,60℃下搅拌2小时,使树脂上的高铁酸根完全水解成氢氧化铁,之后用质量分数8%的氯化钠溶液使阴离子树脂上结合的羟基转型为Cl-,最后将负载了纳米级水合氧化铁的复合树脂水洗至中性,于阴凉处风干或烘干,即得复合除磷吸附剂,其Fe(Ⅲ)的固载量为39.2mg/g。
实施例4
在100mL含有不同硫酸根浓度(0~15mM)的磷酸盐溶液(0.1mM P-PO4 3-)中分别加入实施例1~3制得的复合树脂(0.5g/L)进行吸附实验,溶液初始pH为7(吸附过程无调整),恒温震荡吸附24h,检测悬液中的剩余磷含量,计算除磷率,并与原始树脂对比,结果见表1。
表1不同硫酸根浓度测得的除磷率(%)
SO<sub>4</sub><sup>2-</sup>(mM) 0 0.15 0.3 0.6 1 3 5 10 15
实施例1 99 99 97 69 42 30 28 26 25
实施例2 93 90 78 54 32 21 19 18 18
实施例3 96 92 84 44 26 24 22 19 17
IRA-402 90 76 69 19 6 5 1 0 0
IRA-900 85 68 30 15 2 0 0 0 0
D-201 88 73 42 24 10 4 0 0 0
从以上结果可以看出,随着硫酸根浓度升高,树脂的除磷率相应下降,但是负载纳米水合氧化铁的树脂除磷率明显高于未处理的树脂。尤其是实施例1直到硫酸根浓度达到0.3mM时,除磷率仍未见明显下降,因此对磷的吸附选择性最高,抗干扰能力最强。
实施例5
将实施例1~3制得的复合树脂加入到初始pH=7,磷酸根浓度为10mg/L的溶液中,复合树脂的投加量为0.5g/L,然后于10、20、30、45、60、80、100、120min不同时间点取样,检测悬液中的剩余磷含量,计算除磷率,并与原始树脂对比,结果见表2。
表2不同时间点测得的除磷率(%)
时间(min) 10 20 30 45 60 80 100 120
实施例1 10 19 26 39 45 54 62 69
实施例2 9 21 30 39 51 64 69 73
实施例3 11 24 29 41 52 63 67 72
IRA-402 5 13 22 31 38 47 52 56
IRA-900 5 14 20 25 33 41 45 52
D-201 7 11 18 26 33 42 46 54
从以上结果可以看出,随着时间延长,树脂的除磷率相应增加,但是负载纳米水合氧化铁的树脂除磷率明显高于未处理的树脂,因此本发明对磷的吸附能力更强,速度更快。
实施例6
分别将实施例1、2、3制得的复合树脂5mL加入到内径12mm,长25mm的有机玻璃吸附柱中,将含磷废水(P=2mg/L,及SO4 2-=120mg/L、Cl-=HCO3 -=100mg/L、 NO3 -=40mg/L,pH=7)自上而下顺流通过吸附柱,温度=30℃,控制流速15BV/h,三个实施例出水P浓度控制在0.5mg/L以下的处理量分别见表3。吸附穿透后,用50mL质量百分比均为4%的NaCl和NaOH混合溶液在20℃下以10mL/h的流量通过吸附柱进行树脂再生,再生率分别见表3,再生树脂用清水冲洗至中性即可继续使用。
废水处理量 树脂再生率(>)
实施例1 630BV 98%
实施例2 650BV 98%
实施例3 550BV 97%
IRA-402 350BV 99%
IRA-900 360BV 99%
D-201 310BV 99%
从以上结果可以看出,负载纳米水合氧化铁的树脂对含磷废水的处理量远高于未处理的树脂,而且处理后的树脂具有很强的再生能力。
实施例7
将实施例1制得的复合树脂加入到硬质生态沟渠中,具体结构见附图1。处理约6亩水田所产生的农田径流,在连续监测的54天里,第二取样点与第一取样点相比,农田径流中PO3 4-平均消减量为34.4%。

Claims (7)

1.一种树脂基负载铁氧化物复合除磷吸附剂的制备方法,其特征在于包括以下步骤:
将强碱性阴离子树脂加入到新鲜制备的碱性高铁酸钾溶液中,常温搅拌1-5小时,使高铁酸根与树脂上的阴离子发生交换反应,弃去上清液后加入清水,加热到50-70℃继续搅拌1-3小时,使交换到树脂上的高铁酸根完全水解成氢氧化铁,之后加入质量分数2-10%的氯化钠溶液,使阴离子树脂上结合的羟基转型为Cl-,最后将负载纳米级水合氧化铁后的复合树脂水洗至中性,干燥后即得。
2.如权利要求1所述树脂基负载铁氧化物复合除磷吸附剂的制备方法,其特征在于:所述强碱性阴离子树脂为D-201树脂、201×7树脂、201×4树脂、IRA-900树脂或IRA-402树脂。
3.如权利要求1所述树脂基负载铁氧化物复合除磷吸附剂的制备方法,其特征在于:所述碱性高铁酸钾溶液的浓度为0.03~0.2mol/L。
4.如权利要求1所述树脂基负载铁氧化物复合除磷吸附剂的制备方法,其特征在于:所述碱性高铁酸钾溶液的pH为9~12。
5.如权利要求1所述树脂基负载铁氧化物复合除磷吸附剂的制备方法,其特征在于:所述强碱性阴离子树脂的加入量为20~200g/L。
6.树脂基负载铁氧化物复合除磷吸附剂在含磷废水污染处理中的应用,其特征在于:所述树脂基负载铁氧化物复合除磷吸附剂是按权利要求1-5任何一项所述方法制备的。
7.一种含磷废水污染处理方法,其特征在于包括以下步骤:
1)将按权利要求1-5任何一项所述方法制备的树脂基负载铁氧化物复合除磷吸附剂装柱,将含磷废水上柱后控制温度20-40℃,流速10-30BV/h,进行洗脱;
2)洗脱完成后向树脂内加入质量浓度为2-5%NaCl和2-5%NaOH混合溶液进行树脂再生。
CN201911162590.7A 2019-11-25 2019-11-25 一种树脂基负载铁氧化物复合除磷吸附剂的制备方法及其应用 Active CN110773138B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911162590.7A CN110773138B (zh) 2019-11-25 2019-11-25 一种树脂基负载铁氧化物复合除磷吸附剂的制备方法及其应用
US17/007,198 US11529609B2 (en) 2019-11-25 2020-08-31 Preparation method and application for a resin-based iron oxide-containing composite phosphate removal adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911162590.7A CN110773138B (zh) 2019-11-25 2019-11-25 一种树脂基负载铁氧化物复合除磷吸附剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110773138A true CN110773138A (zh) 2020-02-11
CN110773138B CN110773138B (zh) 2020-09-15

Family

ID=69392353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911162590.7A Active CN110773138B (zh) 2019-11-25 2019-11-25 一种树脂基负载铁氧化物复合除磷吸附剂的制备方法及其应用

Country Status (2)

Country Link
US (1) US11529609B2 (zh)
CN (1) CN110773138B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945018A (zh) * 2020-09-15 2020-11-17 昆明理工大学 一种利用阴离子树脂和赤泥处理含砷溶液中砷的方法
CN112108132A (zh) * 2020-09-18 2020-12-22 扬州大学 一种同步脱氮除磷的复合纳米材料、制备方法及应用
CN112397698A (zh) * 2020-11-16 2021-02-23 合肥国轩高科动力能源有限公司 一种复合导电剂包覆磷酸铁锂材料及其制备方法和应用
CN113087063A (zh) * 2020-10-26 2021-07-09 南京水滴智能环保装备研究院有限公司 一种高盐度废水中深度除磷的方法
CN114229944A (zh) * 2021-12-15 2022-03-25 上海市政工程设计研究总院(集团)有限公司 一种用于农田灌溉渠的控制磷扩散的装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646432B (zh) * 2022-10-24 2024-05-24 西南科技大学 一种管状镨基氧化物复合除磷剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435256A (en) * 1981-03-23 1984-03-06 Olin Corporation Process for making potassium ferrate [Fe(VI)] by the electrochemical formation of sodium ferrate
JPS63161967A (ja) * 1986-12-26 1988-07-05 ライオン株式会社 消臭剤組成物
CN101343093A (zh) * 2008-09-03 2009-01-14 南京大学 复合树脂深度净化水体中微量磷的方法
CN101643289A (zh) * 2009-08-28 2010-02-10 南京大学 一种水体中微量硒的深度去除方法
CN103648611A (zh) * 2011-06-23 2014-03-19 塞尔瑞星技术有限公司 具有吸收能力的材料如薄膜、纤维、纺织物和无纺织物
CN103803693A (zh) * 2013-11-07 2014-05-21 西京学院 多孔淀粉微球负载高铁酸钾污水处理复合剂的制备方法
CN107262071A (zh) * 2017-08-17 2017-10-20 南京大学 一种氧化铁树脂复合吸附剂的工业制备方法
CN107930702A (zh) * 2017-11-14 2018-04-20 北京科技大学 一种纳米金属氢氧化物的树脂复合材料的通用制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923665A (en) * 1969-12-03 1975-12-02 Univ Kansas State Demand bactericide for disinfecting water and process of preparation
US4276177A (en) * 1979-08-13 1981-06-30 Vaponics Inc. High efficiency filtration with impurity concentration and ultrafiltration rejection flow recirculation
JPS6230791A (ja) * 1985-08-02 1987-02-09 Showa Denko Kk L−アスコルビン酸−2−リン酸エステルの精製法
US7291578B2 (en) * 2004-01-21 2007-11-06 Arup K. Sengupta Hybrid anion exchanger for selective removal of contaminating ligands from fluids and method of manufacture thereof
CN100344365C (zh) 2005-11-02 2007-10-24 南京大学 一种树脂基除砷吸附剂的制备方法
US8663607B2 (en) * 2007-03-09 2014-03-04 Battelle Memorial Institute Ferrate(VI)-containing compositions and methods of using ferrate(VI)
US10759681B2 (en) * 2018-06-28 2020-09-01 Board Of Trustees Of The University Of Arkansas Water purification compositions and the method of producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435256A (en) * 1981-03-23 1984-03-06 Olin Corporation Process for making potassium ferrate [Fe(VI)] by the electrochemical formation of sodium ferrate
JPS63161967A (ja) * 1986-12-26 1988-07-05 ライオン株式会社 消臭剤組成物
CN101343093A (zh) * 2008-09-03 2009-01-14 南京大学 复合树脂深度净化水体中微量磷的方法
CN101643289A (zh) * 2009-08-28 2010-02-10 南京大学 一种水体中微量硒的深度去除方法
CN103648611A (zh) * 2011-06-23 2014-03-19 塞尔瑞星技术有限公司 具有吸收能力的材料如薄膜、纤维、纺织物和无纺织物
US20180043331A1 (en) * 2011-06-23 2018-02-15 Cellresin Technologies, Llc Material such as film, fiber, woven and nonwoven fabric with adsorbancy
CN103803693A (zh) * 2013-11-07 2014-05-21 西京学院 多孔淀粉微球负载高铁酸钾污水处理复合剂的制备方法
CN107262071A (zh) * 2017-08-17 2017-10-20 南京大学 一种氧化铁树脂复合吸附剂的工业制备方法
CN107930702A (zh) * 2017-11-14 2018-04-20 北京科技大学 一种纳米金属氢氧化物的树脂复合材料的通用制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZONGCHENG MIAO ET AL: ""Removal Effect of Potassium Ferrate to COD in Different Wastewater"", 《ADVANCED MATERIALS RESEARCH》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945018A (zh) * 2020-09-15 2020-11-17 昆明理工大学 一种利用阴离子树脂和赤泥处理含砷溶液中砷的方法
CN111945018B (zh) * 2020-09-15 2022-11-11 昆明理工大学 一种利用阴离子树脂和赤泥处理含砷溶液中砷的方法
CN112108132A (zh) * 2020-09-18 2020-12-22 扬州大学 一种同步脱氮除磷的复合纳米材料、制备方法及应用
CN112108132B (zh) * 2020-09-18 2021-06-04 扬州大学 一种同步脱氮除磷的复合纳米材料、制备方法及应用
CN113087063A (zh) * 2020-10-26 2021-07-09 南京水滴智能环保装备研究院有限公司 一种高盐度废水中深度除磷的方法
CN112397698A (zh) * 2020-11-16 2021-02-23 合肥国轩高科动力能源有限公司 一种复合导电剂包覆磷酸铁锂材料及其制备方法和应用
CN114229944A (zh) * 2021-12-15 2022-03-25 上海市政工程设计研究总院(集团)有限公司 一种用于农田灌溉渠的控制磷扩散的装置

Also Published As

Publication number Publication date
US11529609B2 (en) 2022-12-20
US20210154643A1 (en) 2021-05-27
CN110773138B (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
CN110773138B (zh) 一种树脂基负载铁氧化物复合除磷吸附剂的制备方法及其应用
Fu et al. Removal of heavy metal ions from wastewaters: a review
Fu et al. Chromium removal using resin supported nanoscale zero-valent iron
Vu et al. Magnetic porous NiLa-Layered double oxides (LDOs) with improved phosphate adsorption and antibacterial activity for treatment of secondary effluent
US20100243571A1 (en) Method for adsorption of phosphate contaminants from water solutions and its recovery
CN109317091B (zh) 一种改性海泡石重金属吸附材料及制备方法
Ahmed et al. Recent progress on adsorption materials for phosphate removal
US20130098840A1 (en) Porous Composite Media for Removing Phosphorus from Water
CN103464091A (zh) 一种改性膨润土负载纳米铁材料及其制备方法
CN103785855B (zh) 一种多组分有机改性的膨润土嵌载纳米零价铁的制备方法
Abo Markeb et al. Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer
CN101696066A (zh) 饮用水强化处理去除水中有机污染物的方法
Vishnu et al. Comparison of surface-engineered superparamagnetic nanosorbents with low-cost adsorbents of cellulose, zeolites and biochar for the removal of organic and inorganic pollutants: a review
Zeng et al. Adsorption of heavy metal ions in water by surface functionalized magnetic composites: a review
CN103241890A (zh) 一种磁性混凝法处理含铬制革废水的方法
CN104587956A (zh) 一种以多层活性炭包覆氧化石墨烯复合粉体为载体的包裹型纳米零价铁的制备方法
Teng et al. Carboxymethyl β-cyclodextrin immobilized on hydrated lanthanum oxide for simultaneous adsorption of nitrate and phosphate
CN115041152B (zh) 一种基于树脂基载钕纳米复合材料及其制备方法和在深度去除水中磷酸根的应用
CN109847718B (zh) 一种水合氧化锆/海藻酸锶复合凝胶珠及其制法和应用
Fang et al. Highly efficient in-situ purification of Fe (II)-rich high-arsenic groundwater under anoxic conditions: Promotion mechanisms of PMS on oxidation and adsorption
Wu et al. Facile synthesis of novel tremella-like Mn0@ Mn2O3 and its exceptional performance on removal of phosphate
CN107442071A (zh) 一种同步选择性吸附磷和硝酸盐的纳米复合材料及应用
Wang et al. Byproducts of the anammox-hydroxyapatite coupling process—characterization and its adsorption capacity for Cd (II)
Yu et al. Cr (VI) removal by biogenic schwertmannite in continuous flow column
CN111250052B (zh) 一种多基团螯合型磁性菌丝净水剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant