CN110770574B - 电极断裂检测 - Google Patents

电极断裂检测 Download PDF

Info

Publication number
CN110770574B
CN110770574B CN201880037737.7A CN201880037737A CN110770574B CN 110770574 B CN110770574 B CN 110770574B CN 201880037737 A CN201880037737 A CN 201880037737A CN 110770574 B CN110770574 B CN 110770574B
Authority
CN
China
Prior art keywords
electrode
peripheral
biosensor
impedance
proximal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880037737.7A
Other languages
English (en)
Other versions
CN110770574A (zh
Inventor
T.A.贝蒂
M.H.惠勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN110770574A publication Critical patent/CN110770574A/zh
Application granted granted Critical
Publication of CN110770574B publication Critical patent/CN110770574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3274Corrective measures, e.g. error detection, compensation for temperature or hematocrit, calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3273Devices therefor, e.g. test element readers, circuitry

Abstract

公开了一种用于确定具有两个周边电极、远端电极和近端电极的生物传感器的故障安全值的方法和系统。将液体测量介质施加到生物传感器的毛细管通道。该方法包括向周边电极和近端电极施加交流电压,测量电导率以确定周边电极和近端电极之间的第一阻抗,向周边电极和远端电极施加交流电压,测量电导率以确定周边电极和远端电极之间的第二阻抗,使用第一阻抗和第二阻抗来确定一值,以及如果该值超出容差,则向用户提供错误消息。如果该值超出容差,则在反应区域中的电极和/或试剂中存在缺陷或断裂,并且该方法拒绝承认测试结果。

Description

电极断裂检测
技术领域
本专利申请总体上涉及工程和医学诊断,并且更特别地,本专利申请涉及具有多个电极的电化学生物传感器,所述多个电极被布置成比较这些多个电极之间的阻抗测量值以检测电极断裂和/或试剂缺陷。
背景技术
廉价的一次性电化学生物传感器通常采用在柔性或半刚性基板上形成的一个或两个薄导电层。导电层在生物传感器上形成为电极、迹线(trace)和接触垫,其中,使所述生物传感器的反应区连接到测试仪中的电子电路的导电迹线的电阻率可以测量几百欧姆或更多。该电阻导致沿着迹线的长度的电势下降,使得在反应区中呈现给测量电极的电势小于测试仪施加到生物传感器的接触区中的生物传感器的接触垫的电势。这些基板易受多种物理应力的影响,这些应力可能会施加应力到导电迹线或使导电迹线断裂。应力可能在制造,运输,用户处理或极端存放条件下发生。应力可能是一系列破裂或局部破坏,从而产生了意想不到的高迹线阻抗。严重的应力可能会造成一个或多个电极中的开路或断裂。可以通过确认完整的环路电阻或测量开路来检测连接迹线中的电极断裂。有效反应区域中的电极断裂可能难以检测,并且会对生物传感器的正常操作产生不利影响,从而在报告的结果中引入错误。
电化学生物传感器的制造过程还可包括连续施加试剂膜的薄层,该薄层在干燥后可能易于破裂。在各种情况中的任何一种情况下,在制造过程期间都可能发生试剂膜中的破裂。例如,当在试剂附近机械切割或机械切穿试剂时,可能会产生破裂。作为另一示例,由于在制造期间基础基板的扭曲,弯曲,拉伸或挠曲之类的物理应力而可能发生破裂。作为又一个示例,在电化学生物传感器的制造过程期间,当将基础基板压缩或夹在导辊上的碎屑或点缺陷上时,可能发生破裂。
另外,随着时间的流逝,特别是在短暂的重复或单次长时间暴露于高相对湿度下后,也可能形成试剂膜破裂。干燥的试剂膜在设计上有些亲水,因为它倾向于吸收水分。随着暴露时间或相对湿度的增加,试剂膜可能会部分水化,并在干燥后发生物理重排。重组的试剂膜可能不如预期的均匀,并且更易于分离和/或破裂。破裂的试剂膜可能会延伸到下面的导电迹线和非导电支撑基材中,这取决于相对的附着力,弹性和厚度。如果严重,试剂破裂可能导致生物传感器的有效反应区域中的电极断裂。电极断裂可能会导致功能丧失,包括多个恶劣的开路,或者更精细地改变有效电极或工作电极到对电极的阻抗的面积,从而不可检测地和不期望地影响所需分析物浓度的准确校正或计算。
在电化学生物传感器的某些制造过程中,最常见的问题是外部对电极断裂,这可能是由于在切穿试剂和柔性底座时,在毛细管入口附近产生的加剧的试剂破裂。例如,在反应区域中有两个对电极段时,对电极面积至少是工作电极面积的1.5倍。仅外部对电极中的缺陷或断裂将对生物传感器的DC响应产生最小的影响,该DC响应应与工作电极的面积成比例。影响其功能区域的工作电极完整性中的任何缺陷都会对DC响应产生线性负面影响,并可能无意间增加工作电极到对电极的阻抗。有缺陷的对电极段可能不会不利地影响DC响应,但可能导致工作电极到对电极的阻抗看起来明显高于预期,从而导致分析物浓度过度校正。
因此,需要对该领域进行改进。
发明内容
公开了一种识别生物传感器中的检测表面或反应区的中的偏差以减少或消除错误值的产生的方法。生物传感器包括位于毛细管通道内或附近的试剂,以及在检测区和反应区中电极结构的任何合适布置。这些可以包括但不限于工作电极,一个或多个对电极以及一个或多个相应的样品充足(sample sufficiency)电极。
在操作中,在周边电极和最近端电极之间施加低幅度的高频AC信号,并测量第一阻抗。在相同的周边电极和较远端电极之间施加相似的AC信号,并测量相应的第二阻抗。由于它们的空间关系,周边电极和近端电极之间的阻抗应小于周边电极和远端电极之间的阻抗。比较这两个阻抗的实部,可在广泛的测试和材料条件下提供有效的近端或远端电极断裂缺陷检测。通过使用第二周边电极来复制序列来增强电极断裂检测功能。
故障安全提供了一种方法或手段来识别在反应区域中具有一个或多个损坏电极的生物传感器。通过比较一个电极与其两个最近电极之间的阻抗,可以评估对较近电极的完整性的合理评估。如果基础(周边)电极和最近端电极之间的阻抗高于相同基础电极和较远电极之间的阻抗,则近端电极很可能有缺陷。这些电阻的比应接近一(unity),并且对材料,制造,环境条件或测试溶液的正常变化基本不敏感。利用低幅度、高频AC信号最小化了极化或干扰用于评估分析物浓度的电化学电池的电势。
该方法还包括提供具有电极支撑基板的生物传感器,在该电极支撑基板上设置有第一电极。第一电极包括第一主体部分和从第一主体部分延伸的连接颈。电极支撑基板还具有布置在其上的第二电极,其中第二电极包括第二主体部分和相对的一对连接颈。相对的一对连接颈中的每一个均从第二主体部分的相应端延伸。另外,在电极支撑基板上提供至少两个样品充足电极,每个样品充足电极沿着电极支撑基板的相应侧边缘定位,样品充足电极在其之间限定间隙。间隔器也设置在电极支撑基板上,其中间隔器包括至少一个边缘,该至少一个边缘限定了在盖和电极支撑基板之间形成的毛细管通道的边界。此外,至少两个样品充足电极在毛细管通道中围绕第一电极,从而在第一电极周围形成回路。第二电极的第二主体部分和相对的一对连接颈在毛细管通道中围绕第一电极,从而在第一电极周围形成回路。可替代的生物传感器包括其他电极图案,包括具有三个或四个电极的生物传感器,其中可以确定故障安全。
方面1涉及一种用于对生物传感器进行错误检查的方法,该方法包括:将液体测量介质施加到生物传感器上的周边电极,近端电极和远端电极;将交流电压施加到周边电极和近端电极,测量电导率,该电导率用于确定周边电极和近端电极之间的第一阻抗,将所述交流电压施加到周边电极和远端电极,测量电导率,该电导率用于确定周边电极和远端电极之间的第二阻抗,使用第一阻抗和第二阻抗来确定一值,以及如果该值超出容差则提供错误消息。
方面2涉及方面1的方法,其中周边电极是样品充足对电极。
方面3涉及根据方面1的方法,其中周边电极是样品充足工作电极。
方面4涉及根据方面1-3中任一项的方法,其中,近端电极是工作电极或对电极中的一个,并且远端电极是工作电极或对电极中的另一个。
方面5涉及根据方面1-4中任一项的方法,还包括检测近端电极中的缺陷。
方面6涉及根据方面1-5中任一项的方法,还包括检测远端电极中的缺陷。
方面7涉及根据方面1-6中任一项的方法,其中,该值是在第一阻抗和第二阻抗之间形成的比率。
方面8涉及根据方面7的方法,其中如果该值小于1.0,则提供错误消息发生,周边电极是样品充足的工作电极,近端电极是工作电极,并且远端电极是对电极。
方面 9涉及根据方面7的方法,其中如果该值大于1.0,则提供错误消息发生,周边电极是样品充足对电极,近端电极是工作电极,并且远端电极是对电极。
方面10涉及方面1-9中任一项的方法,其中该值是比率ZREAL(周边电极-近端电极)/ZREAL(周边电极-远端电极),其中值小于1.0表示远端电极有缺陷。
方面11涉及方面1-10中任一项的方法,其中该值是比率ZREAL(周边电极- 近端电极)/ZREAL(周边电极-远端电极),其中该值大于1.0表示该近端电极有缺陷。
方面12涉及方面1-9中任一项的方法,还包括将交流电压施加到第二周边电极和近端电极,测量电导率,该电导率用于确定第二周边电极和近端电极之间的第三阻抗,将交流电压施加到第二周边电极和远端电极,测量电导率,该电导率用于确定第二周边电极和远端电极之间的第四阻抗,使用第三阻抗和第四阻抗确定第二值,以及如果第二值超出容差,则提供第二错误消息。
方面13涉及一种用于对生物传感器进行错误检查的测量仪器,该仪器包括:电连接至生物传感器上的第一周边电极,第二周边电极,近端电极和远端电极的接触部,产生测试电压并检测来自第一周边电极,第二周边电极,近端电极和远端电极的传感器信号的电子器件,处理器,其被编程为向生物传感器的两个电极施加交流电压并测量电导率,其中一个电极是第一周边电极或第二周边电极,并且第二个电极是近端电极或远端电极,该电导率用于确定两个电极之间的第一阻抗;向生物传感器的其余两个电极施加交流电压并测量电导率,该电导率用于确定其余两个电极之间的第二阻抗;使用第一阻抗和第二阻抗来确定一值, 以及如果该值超出容差则提供错误消息,以及输出单元,其提供错误消息。
方面14涉及方面13的仪器,其中该值是在第一阻抗和第二阻抗之间形成的比率。
方面15涉及方面13-14中 任一项的仪器 ,其中,如果该值小于1.0,则提供错误消息发生,第一周边电极是样品充足工作电极,近端电极是工作电极,以及远端电极是对电极。
方面16涉及方面13-14中任一项的仪器,其中如果该值大于1.0,则提供错误消息发生,第二周边电极是样品充足对电极,近端电极是工作电极,并且远端电极是对电极。
本发明的其他形式,目的,特征,方面,益处,优点和实施例将从本文提供的详细描述和附图而变得显而易见。
附图说明
图1是图示了识别生物传感器中检测或反应区表面中的偏差的方法的一个示例的流程图;
图2是示例性生物传感器的透视图;
图3是图2所示的生物传感器的平面图;
图4是图2所示的生物传感器的一部分的平面图,其示出了示例性的电极布置;
图5是图4所示的生物传感器的一部分的平面图,其示出了样品应用;
图6是配置为使用图2所示的生物传感器的测试仪或其他装置中的模拟开关矩阵的平面图;
图7是图4所示的生物传感器的一部分的平面图,其示出了从SSCE到对电极的阻抗测量以及从SSWE到正在被测量的对电极的阻抗测量;
图8是图4中所示的在对电极中有缺陷的生物传感器的一部分的平面图,其示出了从SSCE到对电极的阻抗测量和从SSWE到正在被测量的对电极的阻抗测量;
图9绘制了对于图4所示的生物传感器的以欧姆为单位所测量的沿y轴绘制的|Z|SSWE-CE和以欧姆为单位测量的沿x轴绘制的|Z|SSCE-CE的测试结果;
图10绘制了对于图4所示的生物传感器的以欧姆为单位所测量的沿y轴绘制的|Z|SSWE-WE以及以欧姆为单位测量的沿的x轴绘制的|Z|SSCE-WE的测试结果;
图11 绘制了构造有各种电极断裂的来自图9的具有x±5σ极限的测试结果和来自图4所示的生物传感器的测试结果;
图12A是图4所示的在对电极中有缺陷的生物传感器的一部分的平面图;
图12B是测量图12A的对电极中的缺陷的平面图;
图12C是表示图4所示的生物传感器的对电极和/或工作电极中的缺陷的不同位置的用以模拟这些电极中的任何一个的0%,25%,50%,75%或95%的缺失的曲线图;
图13 示出了用于图2的生物传感器的周边电极和近端电极以及相同的周边电极和相似但较远端的副电极之间的单侧(one-sided)比较;
图14A绘制了图13的生物传感器的单侧ZREAL关系;
图14B绘制了图13的生物传感器的单侧ZREAL关系;
图15绘制了来自图14A的单侧ZREAL关系以及使用带有标称电极的约2200个生物传感器的水性测试溶液和血液样品的阻抗比,以及使用带有故意有缺陷的电极的约200个生物传感器进行的类似测量;
图16 绘制了来自图14B的单侧ZREAL关系以及大约200线性度的阻抗比和来自第一测试试点(pilot)的两个故意缺陷中的每一个的和血液样品;
图17绘制了图2所示的未损坏的生物传感器和图2所示的生物传感器的外部对电极和/或工作电极中的感应电极断裂的单侧ZREAL比;
图18绘制了图2所示的未损坏的生物传感器以及图2所示的生物传感器的外部对电极和/或工作电极中的感应电极断裂的单侧ZREAL比。
具体实施方式
为了促进对本发明原理的理解,现在将参考在附图中所图示的实施例,并且将使用特定语言来描述所述实施例。然而,将理解的是,不意图由此限制本发明的范围。在所描述的实施例中的任何改变和进一步的修改,以及本文所描述的本发明的原理的任何进一步的应用都被认为是本发明所属领域的技术人员通常会想到的。尽管详细地示出了本发明的一个实施例,但是对于相关领域的技术人员将显而易见的是,为了清楚起见,可能未示出与本发明不相关的一些特征。
本申请描述了一种方法,该方法能够识别生物传感器的反应区域中的损坏电极,从而防止错误测量值的产生。为实现此结果而采取的措施如图1所图示。生物传感器的毛细管通道中装有液体测量介质(在100处)。液体测量介质的一些示例包括体液,例如血液,血清,血浆,唾液,水性环境样品,处理液,水性对照液或校准液。
在110处,在周边电极和近端电极之间施加交流电压,并且在120处测量样品上的交流电压(阻抗),从而给出第一阻抗测量结果。在130处,还在周边电极和远端电极之间施加交流电压,并且在步骤140中测量样品上的第二阻抗测量结果。在150处确定并比较这些第一和第二阻抗的实部。如果来自步骤150的值超出容差,则在160处向用户提供输出错误或故障安全错误。如下文所讨论的,该容差可以是任何合适的值,例如大于约1.0,大于约1.043,大于约1.100或更大的值。在1.0到大约1.1之间的值可以认为是标称的,而小于大约1.0或小于大约0.097的值也可以表示失败。
通过为生物传感器中的多个不同电极中的任何一个复制此通用序列,可以增强电极断裂检测功能。在170处,在第二周边电极和近端电极之间施加交流电压,并且在180处测量样品上的交流电压(阻抗),从而给出第三阻抗测量结果。在190处,在第二周边电极与远端电极之间施加交流电压,并且在200处测量样品上的阻抗,从而产生第四阻抗测量结果。在210处确定并比较这两个阻抗的实部。如果来自210的值超出容差,则在220处向用户提供输出错误或故障安全错误。如本文所讨论的,该容差可以是任何合适的值,例如大于1.0或小于1.0的值,这取决于正在测试哪个电极有缺陷。
图1图示了可对生物传感器电极中的不规则采取的动作的一个示例。所公开的阻抗测量和比较可以如图1所示或以任何其他合适的顺序执行。例如,可以在测量周边电极和近端电极之间的阻抗之前测量周边电极和远端电极之间的阻抗。类似地,可以在测量第二周边电极和近端电极之间的阻抗之前测量第二周边电极和远端电极之间的阻抗。而且,可以测量具有额外电极的生物传感器中可能存在的电极之间的额外阻抗。在其他情况下,生物传感器可以具有较少的电极,因此可以相应地省略图1所示的某些动作。
用于执行根据本申请图1的方法的系统包括生物传感器和测量仪器。该测量仪器包括至少一个交流电压源和用于连接至生物传感器中的电极的接触部。该测量仪器还包括用以在接触部上产生电压并检测传感器信号的控制和测量电子器件,以及用以基于用于执行根据本申请的方法的程序来比较和关联传感器信号的至少一个处理器。测量仪器还包括输出单元,例如灯,发光二极管,显示器,数据接口,打印机,打印机连接等,用于在值超出容差时提供错误消息。可以向测量仪器提供软件更新,以微调容差和测量过程的其他方面。
图2示出了在10处的示例性生物传感器的透视图。图2是图2所示的生物传感器10的平面图。图3是图2所示的生物传感器10的一部分的平面图,其示出了示例性电极布置。在示例性实施例中,生物传感器10包括电极支撑基板12、形成在电极支撑基板12上的定义多个电极迹线16、18、19、20、21和22的电导体14、位于电极支撑基板12上的间隔器23和位于间隔器23上的盖24。在一些实例中,电导体14可形成任何数量的电极迹线,所述任何数量的电极迹线使生物传感器10能够如本文所述那样起作用。然而,在图2和3中,为了清楚起见,未示出间隔器23。
如图1和图2所示,生物传感器10可以具有基本上矩形的形状;然而,也考虑了使生物传感器10能够如本文所述起作用的多种形式中的任何一种。另外,根据本公开的原理,生物传感器10可以是由材料卷,材料片或任何其他材料原料制成的多个中的任何一个。通常,用于制造生物传感器10的材料选择包括对于卷加工具有足够柔性,但是足够坚硬以给完成的生物传感器10提供有用的硬度的任何材料。
在示例性实施例中,生物传感器10的电极支撑基板12包括面对间隔器23的第一表面42和与第一表面42相对的第二表面44。另外,电极支撑基板12具有相对的第一和第二端46、48以及在第一和第二端46、48之间延伸的相对的侧边缘50、52。在一些实例中,电极支撑基板12的第一端46和第二端48以及相对的侧边缘50、52形成大致矩形的形状。替代地,第一端46和第二端48以及相对的侧边缘50、52可以被布置成形成使生物传感器10能够如本文所述那样起作用的各种形状和尺寸中的任何一种。在一些实例中,电极支撑基板12可以由柔性聚合物制成,该柔性聚合物包括但不限于聚酯或聚酰亚胺,例如聚萘二甲酸乙二醇酯(PEN)。替代地,电极支撑基板12能够由使电极支撑基板12能够如本文所述那样起作用的任何其它合适的材料制成。
在示例性实施例中,形成电极迹线16、18、19、20、21和22的电导体14被提供在电极支撑基板12的第一表面42上。电导体14可以由包括但不限于铝,碳(例如,石墨),钴,铜,镓,金,铟,铱,铁,铅,镁,汞(如汞合金),镍,铌,锇,钯,铂,铼,铑,硒,硅(例如高掺杂的多晶硅),银,钽,锡,钛,钨,铀,钒,锌,锆及其组合的材料制成。在一些实例中,电极迹线16、18、19、20、21和22通过激光烧蚀或激光划线与电导体14的其余部分隔离,这两者都是本领域众所周知的。以此方式,可以通过从在电极周围延伸的区域宽广地(诸如,通过宽场烧蚀)或最低限度地(诸如,通过划线)去除电导体14来制造电极迹线16、18、19、20、21和22。替代地,可通过其它技术(诸如例如层叠、丝网印刷、光刻法等)来制造电极迹线16、18、19、20、21和22。
在示例性实施例中,生物传感器10是全宽端剂量(“FWED”;具有在一侧上有界限的毛细管通道)生物传感器,其在电极支撑衬底的第一端46处具有毛细管通道26或入口。然而,可以预期的是,毛细管通道26也可以是常规的毛细管通道(即,在多于一侧上有界限)。在FWED生物传感器中,间隔器23在电极支撑基板12的相对的侧边缘50、52之间延伸,以部分地与盖形成毛细管通道。设想间隔器23可由单个部件或甚至多个部件制成。无论如何,间隔器23应包括端边缘28,其基本上平行于并且面对电极支撑基板12的第一端46,由此限定跨电极支撑基板12的整个宽度延伸的毛细管通道26的边界。替代地,并且如上所述,端部边缘28可以包括位于第一和第二端部46、48与电极支撑基板12的相对的侧边缘50、52之间的多个部分,以形成通常的U形图案以限定在生物传感器10的第一端46处具有样品入口(未示出)的毛细管通道26的边界。其它合适的实施例设想形成半卵形、半圆形或其它形状毛细管通道的端边缘28,并且端边缘28的所述一个或多个部分可包括沿着其长度的全部或一部分的线性或非线性边缘(未示出)。
间隔器23由绝缘材料制成,所述绝缘材料诸如例如包括粘合剂涂覆的聚对苯二甲酸乙二醇酯(PET)-聚酯的柔性聚合物。合适的材料的一个特定非限制性示例包括其两侧涂覆有压敏粘合剂的白色PET膜。间隔器23可由各种材料构成并且包括内表面25,该内表面25可使用各种各样可商购获得的粘合剂中的任何一种或其组合而耦合到电极支撑基板12的第一表面42。另外,当支撑基板12的第一表面42被暴露并且未被电导体14覆盖时,盖24可以被耦合以通过诸如加热或超声焊接之类的焊接来支撑电极基板12。还设想的是,电极支撑基板12的第一表面42可印有例如供生物传感器10使用的产品标记或指令(未示出)。
此外,在示例性实施例中,盖24在电极支撑基板12的相对的侧边缘50、52之间延伸,并且延伸至电极支撑基板12的第一端46。替代地,盖24可以延伸超出第一端46预定距离,这使得生物传感器10能够如本文所述地起作用。在示例性实施例中,毛细管通道26因此被定义为盖24和电极支撑基板12之间的空间,所述空间由第一端46和电极支撑基板12的相对的侧边缘50、52和间隔器23的端边缘28限定边界。
盖24可以由绝缘材料制成,所述绝缘材料诸如例如包括PET聚酯的柔性聚合物。合适材料的一个特定的非限制性示例包括透明或半透明的PET膜。盖24可由各种材料构成并且包括下表面27,该下表面27可使用各种各样可商购获得的粘合剂中的任何一种或其组合耦合到间隔器23。另外,盖24可通过焊接(诸如,热焊或超声焊)而耦合到间隔器23。
在示例性实施例中,生物传感器10包括跨毛细管通道26延伸并耦合至电极迹线18和19的外部对电极30和内部对电极32。此外,生物传感器10包括工作电极34,该工作电极34位于对电极30、32之间的毛细管通道26中。工作电极34耦合到迹线20和21。此外,生物传感器10还包括耦合到电极迹线22的样品充足工作电极(SSWE)36和耦合到位于毛细管通道26中的电极迹线16的样品充足对电极(SSCE)38。SSWE 36和SSCE 38位于电极支撑基板12的边缘附近。
在示例性实施例中,SSCE 36通过电极迹线22耦合到接触垫SSE1,并且SSCE 38通过电极迹线16耦合到接触垫SSE2。同样,外部对电极30和内部对电极32耦合到电极迹线18、19。如图3所示,电极迹线18耦合到接触垫CE,并且电极迹线19耦合到接触垫CS,B和A。此外,工作电极34耦合到电极迹线20和21,其中电极迹线20耦合到接触垫WE,并且电极迹线21耦合到接触垫WS。一旦生物传感器10被插入到测试仪表(未示出)中,这些接触垫就提供将要由测试仪表的连接器接触部接触的生物传感器10上的导电区域。进一步考虑到,根据本公开,电极的配置,电极的数量以及电极之间的间隔可以变化。因此,生物传感器10可以包括比在此图示出的电极数量更多或更少的电极。
在示例性实施例中,工作电极34在毛细管通道26中限定有效的工作电极面积。有效的工作电极面积是当毛细管通道26包括足够体积的流体样品以启动测量序列时与毛细管通道26中的流体样品接触的工作电极的面积。如图4中所见,工作电极34包括在电极支撑基板12的相对侧边缘50、52之间横向延伸的主体部分60,以及从主体部分60跨毛细管通道26的边缘28延伸的连接颈62(即,从主体部分60横向朝向生物传感器10的与毛细管通道26相对的端部48)。连接颈62被耦合到沿着电极支撑基板12的一侧延伸的电极迹线20、21。定位间隔器23使得边缘28跨连接颈62延伸,并且使得主体部分60完全位于毛细管通道26内。电化学检测试剂可以位于工作电极34上,该工作电极为特定的分析物提供电化学探针。具体试剂的选择取决于待测量的(一种或多种)分析物,这是本领域众所周知的。可以在生物传感器10中使用的检测试剂的示例是用于从诸如全血样品的体液样品中测量葡萄糖的试剂。
在示例性实施例中,内部对电极32和外部对电极30连接至沿着电极支撑基板12的一侧延伸的电极迹线18、19。外部对电极30在电极支撑基板12的相对的侧边缘50、52之间横向地延伸,并且包括延伸迹线68和连接颈62,其各自从主体部分70跨毛细管通道的边缘28而延伸(即,从主体部分70横向朝向生物传感器10的与毛细管通道26相对的端部48)。此外,毛细管通道26的边缘28沿着内部对电极32延伸并部分重叠。在一些实例中,电化学检测试剂可以位于内部对电极32和外部对电极30上。如上所述,检测试剂提供用于特定分析物的电化学探针,并且在本领域中是众所周知的,尤其是用于测量葡萄糖。
生物传感器10在图3和图4中图示了利用合理对称的几何形状的有效电极面积。如图5所图示,首先通过快速测量外部对电极30与工作电极34之间的阻抗来检测样品的施加。一旦超过最小电导率,则随后通过快速测量SSCE 38和SSWE 36之间的阻抗来类似地确定样品充足。如果SSCE 38和SSWE 36之间的电导率在可编程的超时间隔内超过可编程的阈值,则认为生物传感器10是可接受的剂量(图5),并且分析物浓度测量序列可以开始。如果在允许的时间内没有超过最小的样品充足电导率,则将指示错误并中止序列。SSCE 38和SSWE36主要旨在确保外部对电极30和工作电极34被充分覆盖以可靠地进行分析物测量。
图2-4中的生物传感器10仅图示了用于特定分析物的电化学检测的电极的许多可能布置的一个示例。然而,所讨论的原理适用于生物传感器中电极的任何合适的几何形状。例如,该方法可以应用于具有多个工作电极和单个对电极的生物传感器或者具有近端,远端和周边电极的任何合适配置的生物传感器。类似地,所公开的方法对于具有一个或多个对电极,一个或多个工作电极以及执行与所公开的SSCE和SSWE电极相似的功能的电极的任何合适的布置的生物传感器可以是有效的。不应基于所公开示例中使用的电极的特定命名约定而暗示任何限制。术语“远端”,“近端”,“工作”以及诸如“ SSWE”和“ SSCE”的缩写是示例性的,而不是限制性的。其他生物传感器和测量设备可能对各种电极使用不同的名称,但是此处公开的原理仍然适用。
被配置为使用生物传感器10的测试仪或其他设备包括模拟开关矩阵80,该模拟开关矩阵80允许将单个或多个电极接触部可编程地连接至期望的稳压器功能(图6)。开关矩阵80与交叉点开关相似,允许稳压器的激励和响应功能与校准负载(RCAL)或多达七个生物传感器接触部的任意组合的可重新配置连接。一个或多个传感器接触部可以连接在一起以加入或扩展所需的功能。仪表放大器的输入选择正和负激励反馈(感测)输入。这些输入可以通过闭合适当的P和/或N开关从生物传感器接触部中选择,或通过闭合图6中的一个或两个垂直开关作为开关阵列后面的局部反馈。开关矩阵80使稳压器通过工作感测和对感测连接询问外部对电极30和工作电极34以进行远程激励感测检测,然后连接到SSWE 36和 SSCE38。开关矩阵80允许多个替代电极连接的可编程选择,用于检测意外的生物传感器连接(短路)或测量在电极支撑基板12上形成的其他网络。被配置为使用生物传感器10的测试仪或其他设备被配置为向生物传感器10施加诸如例如AC信号之类的信号,以在使用生物传感器10分析生物流体之前检查沿外部对电极30和/或工作电极34的电连续性。沿着外部对电极30和/或工作电极34的不连续导致指示生物传感器10可能受到了物理损坏。因此,测试仪可以警告用户生物传感器10已完整性检查失败,并且因此应将其丢弃(即测试结果故障安全)。如果生物传感器10通过完整性检查(即,测试仪确认沿外部对电极30和/或工作电极34的连续性),则该测试仪可以使用户意识到生物传感器10可以安全使用。
在第一故障安全中,一种方法使用有效电极的空间对称性来检测外部对电极30中的断裂。通常,由于外部对电极30与SSWE 36和SSCE 38中的任一个的靠近或邻近,SSWE 36或SSCE 38与外部对电极30 之间的阻抗应受到外部对电极30的更大影响。由于两种阻抗均相当受试剂流速,溶液电导率,环境条件和金属电阻率的影响,因此|Z|SSWE-CE与|Z|SSCE-CE的比率应该跟踪这些情况。在一个实施例中,幅度的AC信号显着小于DC电势差,如下所述,该DC电势差甚至将部分地产生葡萄糖依赖性电流。在外部对电极30和诸如SSWE 36之类的周边电极之间施加一个低幅度的高频AC信号,并测量阻抗作为|Z|SSWE-CE的绝对值。接下来,在外部对电极30和诸如SSCE 38之类的周边电极之间施加低幅度高频AC信号,并且测量阻抗作为|Z|SSCE-CE的绝对值。比较从SSCE 38到外部对电极30的阻抗和从SSWE 36到外部对电极30的阻抗。如果外部对电极30中没有断裂或缺陷,则外部对电极30与周边电极(例如SSWE36)之间的阻抗应非常类似于或大约等于具有相等面积和间隔的另一个周边电极(例如SSCE 38)和外部对电极30之间,如图7所图示。如果|Z|SSWE-CE和|Z|SSCE-CE相等或近似相等,并且外部对电极30,内部对电极32,工作电极34,试剂和样品共同相对于SSWE36和SSCE 38对称出现,则可以假定外部对电极30是完整的。换句话说,外部对电极30没有任何断裂或缺陷,并且没有故障安全。
图8描绘了与图7等效的耦合,但是图示了外部对电极30在外部对电极30的中间部分31附近的某处断裂。从图8中的SSCE 38到外部对电极30 的阻抗可以与图7中的类似测量结果相比较,但是从图8中的SSWE 36到外部对电极30的阻抗将更高,因为现在SSWE 36的位置更远离内部对电极32(的一部分)。如果对电极仅具有一个外部对电极30并且不包括内部对电极32,则效果将更加明显。如果|Z|SSWE-CE大于|Z|SSCE-CE,则很可能外部对电极30被损坏或断裂,并且已形成开路且向用户提供了故障安全。
在第二故障安全中,一种方法使用有效电极的空间对称性来检测工作电极34中的断裂。在一个实施例中,如下所述施加幅度大大小于甚至会部分地产生葡萄糖依赖性电流的DC电势差的AC信号。在工作电极34和诸如SSWE 36之类的周边电极之间施加一个低幅度的高频AC信号,并且该阻抗被测量为|Z|SSWE-WE。接下来,在工作电极34和诸如SSCE 38的周边电极之间施加低幅度高频AC信号,并且将阻抗测量为|Z|SSCE-WE。比较从SSCE 38到工作电极34的阻抗和从SSWE 36到工作电极34的阻抗的绝对值。工作电极34和周边电极(例如SSWE36)之间的边对边(side to side)阻抗应与工作电极34和具有相似的面积和间距的另一个周边电极(例如SSCE 38)相当。如果|Z|SSWE-WE等于或近似等于|Z|SSCE-WE,则可以假定工作电极34是完整的。换句话说,工作电极34没有任何断裂或缺陷,并且没有故障安全。如果|Z|SSCE-WE大于|Z|SSWE-WE,则很可能工作电极34被损坏或断裂,并且已形成开路且向用户提供了故障安全。
图9描绘了在大范围的样品电导率,碱金属厚度,试剂膜厚度,试点寿命,储存条件,制造差异和测试温度下对假定未损坏的正常生物传感器10以欧姆为单位测量的沿y轴绘制的|Z|SSWE-CE和以欧姆为单位测量的沿x轴绘制的|Z|SSCE-CE的测试结果。发现阻抗比大约等于1,并且在一种形式中大约为0.987。
图10描绘了在大范围的样品电导率,碱金属厚度,试剂膜厚度,试点寿命,储存条件,制造差异和测试温度下对假定未损坏的正常生物传感器10以欧姆为单位测量的沿y轴绘制的|Z|SSWE-WE和以欧姆为单位测量的沿x轴绘制的|Z|SSCE-WE的测试结果。发现阻抗比大约等于1,并且在一种形式中大约为0.973。
关于图9和图10,两组测试结果的接近1:1关系是相当有噪声的。图10绘制了针对图9中用x±5σ极限测试的相同生物传感器10的|Z|SSWE-CE与|Z |SSCE-CE的比率。图10还绘制了来自构造有在图12C中图示出的各种电极断裂的生物传感器10的测试结果,如下所述。有效故障安全的目标将是可靠地识别出超出这些限制的所有或几乎所有损坏的传感器。
测试结果
利用生物传感器10进行了第一测试试点,其中每个生物传感器在工作电极34和/或外部对电极30中的任何一个中都包含故意的缺陷的不同位置。故意的缺陷包括工作电极34和/或外部对电极30中的电极断裂或间隙G,其宽度约为30μm。在图12A,12B和12C中图示出了在电极结构中的总共15个不同的故意缺陷或电极断裂的位置。设计变化或电极断裂以模拟图12C所图示的工作电极34和/或外部对电极30的0%,25%,50%,75%和95%的缺失。图12A还包括以放大示图示出的一个示例(标记为卷4)。在图10中绘制了针对从图12C测试的生物传感器10的工作电极34和/或外部对电极30中的电极断裂的十种变化的|Z|SSWE-CE与|Z|SSCE-CE的阻抗比,并标记为卷3,卷4,卷5,卷6,卷9,卷10,卷11,卷15,卷16和卷17。测试溶液包括在室温下的多种葡萄糖浓度的水性线性度溶液和标称血液,并将其使用和施加于标记为卷3,卷4,卷5,卷6,卷9,卷10,卷11,卷15,卷16和卷17的生物传感器10。从图10总结,82.3%的测试试点|Z| SSWE-CE对|Z| SSCE-CE的比率在x±5σ极限内,或不优于17.7%的有效故障安全。
测试表明|Z|SSWE-CE与|Z| SSCE-CE的比率的双侧比较比率不提供针对SSCE 38和SSWE36在等效覆盖,接触电阻和电极完整性方面的不规则之处的充分警告。因此,如图13所图示,电极断裂检查仅限于单侧比较。此修改后的故障安全比较了周边电极(SSCE 38或SSWE36)与近端电极(例如主电极(外部对电极30)(图13))以及相同的周边电极与相似但较远端的副电极(工作电极34)(图13)之间的阻抗。“左侧”检查询问SSWE 36阻抗,并且“右侧”检查询问SSCE 38阻抗。通过设计,SSWE 36和较远的工作电极34之间的阻抗应大于SSWE 36和更近的(外部)对电极30之间的阻抗。SSWE 36与任一未损坏的副电极(外部对电极30或工作电极34)之间的阻抗受样品电导率,温度,电极面积和金属板电阻的影响很大。
但是,这些效果对于给定的样品充足电极(SSCE 38或SSWE 36)应该是确定的,而与选择的副电极无关。ZREAL(SSWE-WE)/ZREAL(SSWE-CE)远端/近端阻抗比率应不受这些因素的影响,并且在广泛的样品和测试条件下保持略大于一。因此,如果ZREAL(SSWE-WE)/ZREAL(SSWE-CE)远端/近端阻抗比小于约1.005,则可能是因为外部对电极30断裂或有缺陷并且不会如所期望的连续地不受干扰地延伸。
右侧检查类似地询问SSCE 38。如果比率ZREAL(SSCE-WE)/ZREAL(SSCE-CE)在大约1.043和大约1.100之间,则很可能是因为外部对电极30断裂或有缺陷。如果ZREAL(SSCE-WE)/ZREAL(SSCE-CE)远端/近端阻抗比大于约1.100,则很可能是由于大的ZREAL(SSCE-WE)阻抗,这指示工作电极34断裂或有缺陷。图14A和14B示出了针对标称生物传感器10的单侧ZREAL关系在生物传感器寿命,试剂厚度,制造极限,金属化厚度,测试环境以及溶液类型和电导率(HCT)上是极其可预测的。
为了确定缺陷检测能力,将大约2,200个标称生物传感器10的图14A和14B阻抗数据绘制为阻抗比,在图15中标记为A,并且在图16中标记为B。图15和16包括每个单侧比的标称平均x±5σ极限。已经发现,尽管在图17A和17B中不明显,但是SSCE侧比率(图16)的变化小于SSWE侧比率(图15)。与图15和16中绘制的正常生物传感器10的变化相邻,绘制了200线性度的单侧SSWE和SSCE阻抗比以及来自测试试点的两个故意缺陷的血液样品:缺少工作电极34的50%的卷17和缺少外部对电极30的25%的卷5。从图15中发现,单侧SSWE阻抗比不能可靠地将测试试点卷17的工作电极34中的中点断裂与标称材料区分开,但是容易地检测出测试试点卷5的25%断裂的对电极。换句话说,在所有测试结果中,单侧SSWE阻抗比均小于1,这表明外部对电极30中存在电极断裂或缺陷。从图16发现,单侧SSCE阻抗比不能有效地将卷5的外部对电极30中的断裂与标称材料区分开,但是可靠地检测了测试试点卷17的工作电极34中的中点断裂的每种情况。换句话说,在所有测试结果中,单侧SSCE阻抗比大于1,这表明工作电极34中存在电极断裂或缺陷。
图17和13示出了针对线性度的单侧ZREAL比率和在未损坏的生物传感器10上的血液样品,具有在卷3、4、5、6、9、10、11、15、16和17中所有测试试点引起的电极断裂,如前面讨论的。图17绘制了比率ZREAL(SSWE-WE)/ZREAL(SSWE-CE),该比率旨在检测外部对电极30中的断裂。该单侧比率可靠地检测到每个外部对电极30的缺陷,但是不能将具有完整的外部对电极30和生物传感器10中的工作电极34中的中点断裂的卷17与不具有任何电极断裂的正常生物传感器10区分开。图13是检测工作电极34中的断裂或缺陷的比率ZREAL(SSCE-WE)/ZREAL(SSCE-CE)。该比率ZREAL(SSCE-WE)/ZREAL(SSCE-CE)可靠地检测卷17的工作电极34中的由在图17中的比率ZREAL(SSWE-WE)/ZREAL(SSWE-CE)“错过”的中点断裂。比率ZREAL(SSCE-WE)/ZREAL(SSCE-CE)了解了所评估的卷3、4、5、6、9、10、11、15、16和17的工作电极34中的大部分剩余断裂,但是不能将来自卷3、4和5的完整的工作电极34与正常生物传感器10区分开。比率ZREAL(SSCE-WE)/ZREAL(SSCE-CE)在区分卷15(工作电极34中的中点断裂和生物传感器10上存在的外部对电极30的5%)与不具有任何电极断裂的正常生物传感器10时也无效,由于外部对电极30的小末节(stub)产生高的ZREAL(SSCE-CE),从而抵消了由于工作电极34中点断裂而导致的升高的ZREAL(SSCE-WE)。比率ZREAL(SSWE-WE)/ZREAL(SSWE-CE)很容易将卷15识别为有缺陷。针对卷9的完整工作电极34,比率ZREAL(SSCE-WE)/ZREAL(SSCE-CE)检测规则失败。针对卷9的比率ZREAL(SSCE-WE)/ZREAL(SSCE-CE)小于1,因为分子ZREAL(SSCE-WE)相对正常,但是分母ZREAL(SSCE-CE)由于很大程度上未连接的外部对电极30而比预期大得多。比率ZREAL(SSWE-WE)/ZREAL(SSWE-CE)和比率ZREAL(SSCE-WE)/ZREAL(SSCE-CE)对葡萄糖浓度,样品类型,血细胞比容,温度,试剂流速,毛细管高度,间隔器放置,金属化极限,在封闭小瓶中存储两年以上的生物传感器,用例暴露,原材料,制造工艺,环境条件和测试溶液的变化不敏感。
上面详细描述了用于生物传感器的电极布置的示例性实施例。装置和方法不限于本文描述的特定实施例,而是,方法的操作和系统的组件可以与本文描述的其他操作或组件独立地并且分开地加以利用。例如,本文描述的方法和装置可以具有其他工业或消费者应用,并且不限于与本文描述的生物传感器组件一起实践。而是,可以结合其他行业来实现和利用一个或多个实施例。
尽管已经在附图和前面的描述中详细图示和描述了本发明,但是本发明在特征方面应被认为是说明性的,而不是限制性的,应理解,仅示出和描述了优选实施例,并且期望保护落入由所附权利要求书限定的本发明的精神内的所有改变、等同物和修改。本说明书中引用的所有出版物,专利和专利申请都通过引用并入本文,就如同每个单独的出版物,专利或专利申请都被具体地和单独地指出通过引用并且以其整体出发并入本文一样。

Claims (14)

1.一种用于对生物传感器进行错误检查的方法,包括:
将液体测量介质施加到生物传感器上的周边电极、近端电极和远端电极,其中所述周边电极位于所述生物传感器的侧边缘处并且相比于远端电极更接近近端电极;
向周边电极和近端电极施加交流电压;
测量用于确定周边电极和近端电极之间的第一阻抗的电导率;
将所述交流电压施加到周边电极和远端电极;
测量用于确定周边电极和远端电极之间的第二阻抗的电导率;
使用第一阻抗和第二阻抗来确定指示阻抗之间的比率的值;以及
如果该值超出容差,则提供错误消息。
2.根据权利要求1所述的方法,其中,所述周边电极是样品充足对电极。
3.根据权利要求1所述的方法,其中,所述周边电极是样品充足工作电极。
4.根据权利要求1至3中任一项所述的方法,其中,所述近端电极是工作电极或对电极中的一个,并且所述远端电极是工作电极或对电极中的另一个。
5.根据权利要求1至3中的任一项所述的方法,还包括:
检测近端电极中的缺陷。
6.根据权利要求1至3中的任一项所述的方法,还包括:
检测远端电极中的缺陷。
7.根据权利要求1所述的方法,其中,如果所述值小于1.0,所述周边电极是样品充足工作电极,所述近端电极是工作电极,所述远端电极是对电极,则提供错误消息发生。
8.根据权利要求1所述的方法,其中,如果所述值大于1.0,所述周边电极是样品充足对电极,所述近端电极是工作电极,并且所述远端电极是对电极,则提供错误消息发生。
9.根据权利要求1所述的方法,其中,所述值是比率ZREAL(周边电极-近端电极)/ZREAL(周边电极-远端电极),其中所述值小于1.0表示远端电极有缺陷。
10.根据权利要求1所述的方法,其中,所述值是比率ZREAL(周边电极- 近端电极)/ZREAL(周边电极-远端电极),其中,所述值大于1.0表示所述近端电极有缺陷。
11.根据权利要求1所述的方法,还包括:
向第二周边电极和近端电极施加交流电压,其中所述第二周边电极不同于所述第一周边电极并且位于所述生物传感器的另一侧边缘处;
测量用于确定第二周边电极和近端电极之间的第三阻抗的电导率;
将交流电压施加到第二周边电极和远端电极;
测量用于确定第二周边电极和远端电极之间的第四阻抗的电导率;
使用第三阻抗和第四阻抗确定指示阻抗之间的另一比率的第二值;以及
如果第二值超出容差,则提供第二错误消息。
12.一种用于对生物传感器进行错误检查的测量仪器,该仪器包括:
接触部,其电连接到生物传感器上的第一周边电极,第二周边电极,近端电极和远端电极,其中所述第一周边电极位于所述生物传感器的第一侧边缘处并且相比于远端电极更接近近端电极,并且所述第二周边电极位于所述生物传感器的第二侧边缘处并且相比于远端电极更接近近端电极;
电子器件,其产生测试电压并检测来自第一周边电极,第二周边电极,近端电极和远端电极的传感器信号;
处理器,其被编程为:
向生物传感器的两个电极施加交流电压并测量用于确定两个电极之间的第一阻抗的电导率,其中一个电极是第一周边电极或第二周边电极,并且第二个电极是近端电极或远端电极;
向生物传感器的其余两个电极施加交流电压,并测量用于确定其余两个电极之间的第二阻抗的电导率;
使用第一阻抗和第二阻抗来确定指示阻抗之间的比率的值;以及
如果该值超出容差,则提供错误消息;以及
输出单元,提供所述错误消息。
13.根据权利要求12所述的仪器,其中,如果所述值小于1.0,所述第一周边电极是样品充足工作电极,所述近端电极是工作电极,并且所述远端电极是对电极,则提供所述错误消息发生。
14.根据权利要求12所述的仪器,其中,如果所述值大于1.0,所述第二周边电极是样品充足对电极,所述近端电极是工作电极,并且所述远端电极是对电极,则提供所述错误消息发生。
CN201880037737.7A 2017-06-08 2018-06-06 电极断裂检测 Active CN110770574B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762516700P 2017-06-08 2017-06-08
US62/516700 2017-06-08
PCT/US2018/036183 WO2018226775A1 (en) 2017-06-08 2018-06-06 Electrode break detection

Publications (2)

Publication Number Publication Date
CN110770574A CN110770574A (zh) 2020-02-07
CN110770574B true CN110770574B (zh) 2022-07-15

Family

ID=64566344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880037737.7A Active CN110770574B (zh) 2017-06-08 2018-06-06 电极断裂检测

Country Status (8)

Country Link
US (1) US11493473B2 (zh)
EP (1) EP3635380A4 (zh)
JP (1) JP6916311B2 (zh)
KR (1) KR102346982B1 (zh)
CN (1) CN110770574B (zh)
CA (1) CA3061348C (zh)
TW (1) TWI785059B (zh)
WO (1) WO2018226775A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7173924B2 (ja) * 2019-05-22 2022-11-16 花王株式会社 センサー付き吸収性物品の検査方法及び製造方法
CN111812180B (zh) * 2020-07-07 2022-12-09 江苏鱼跃医疗设备股份有限公司 一种识别试样类型或故障类型的方法及生物传感器装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453146A (en) * 1987-01-09 1989-03-01 Hitachi Ltd Method and instrument for measuring electrical conductivity of solution and water quality control method
US7407811B2 (en) 1997-12-22 2008-08-05 Roche Diagnostics Operations, Inc. System and method for analyte measurement using AC excitation
US6733655B1 (en) 2000-03-08 2004-05-11 Oliver W. H. Davies Measurement of substances in liquids
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
CA2984221C (en) * 2004-06-18 2019-06-04 F. Hoffmann-La Roche Ag System and method for quality assurance of a biosensor test strip
US7601299B2 (en) 2004-06-18 2009-10-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7429865B2 (en) * 2005-10-05 2008-09-30 Roche Diagnostics Operations, Inc. Method and system for error checking an electrochemical sensor
US8409424B2 (en) * 2006-12-19 2013-04-02 Apex Biotechnology Corp. Electrochemical test strip, electrochemical test system, and measurement method using the same
US20120111739A1 (en) * 2008-10-08 2012-05-10 Pasqua John J Dual Frequency Impedance Measurement of Hematocrit in Strips
US9149220B2 (en) * 2011-04-15 2015-10-06 Dexcom, Inc. Advanced analyte sensor calibration and error detection
TWI504890B (zh) 2012-01-06 2015-10-21 Delbio Inc 生物感測器以及生物量測系統
US9213010B2 (en) * 2012-06-08 2015-12-15 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US10041901B2 (en) 2013-03-15 2018-08-07 Roche Diabetes Care, Inc. Electrode configuration for a biosensor
KR20160009619A (ko) 2013-06-10 2016-01-26 에프. 호프만-라 로슈 아게 체액에서 분석물을 검출하기 위한 방법 및 시스템
JP6579778B2 (ja) * 2014-05-14 2019-09-25 キヤノン株式会社 振動型駆動装置、振動型駆動装置を備える交換用レンズ、撮像装置、及び振動型駆動装置の製造方法
JP6588927B2 (ja) 2014-06-05 2019-10-09 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト テストエレメントの完全性のための電極装置
WO2016036883A1 (en) * 2014-09-02 2016-03-10 Zoll Medical Corporation Impedance spectroscopy for defibrillator applications
WO2016073395A1 (en) * 2014-11-03 2016-05-12 Roche Diabetes Care, Inc. Electrode arrangements for electrochemical test elements and methods of use thereof
CN106226379A (zh) 2016-07-10 2016-12-14 浙江亿联健医疗器械有限公司 一种消除进样过程影响的生物传感器及测试方法
CN109425643B (zh) * 2017-08-25 2022-10-25 爱科来株式会社 基于酶电化学阻抗测量法的新型生物传感技术

Also Published As

Publication number Publication date
CA3061348C (en) 2023-02-14
KR102346982B1 (ko) 2022-01-03
WO2018226775A1 (en) 2018-12-13
JP6916311B2 (ja) 2021-08-11
US20200096471A1 (en) 2020-03-26
KR20200003032A (ko) 2020-01-08
EP3635380A4 (en) 2021-03-10
CA3061348A1 (en) 2018-12-13
EP3635380A1 (en) 2020-04-15
CN110770574A (zh) 2020-02-07
US11493473B2 (en) 2022-11-08
TW201908722A (zh) 2019-03-01
TWI785059B (zh) 2022-12-01
JP2020523573A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
US11137366B2 (en) Electrode arrangements for test element integrity
CN110770574B (zh) 电极断裂检测
US10690618B2 (en) Electrode arrangements for electrochemical test elements and methods for use thereof
EP3504657A1 (en) Capacitive autocoding
JP5467378B2 (ja) 測定器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40023897

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant