CN110764031A - 用于光泵磁力仪的加热和射频集成式组件 - Google Patents

用于光泵磁力仪的加热和射频集成式组件 Download PDF

Info

Publication number
CN110764031A
CN110764031A CN201911112596.3A CN201911112596A CN110764031A CN 110764031 A CN110764031 A CN 110764031A CN 201911112596 A CN201911112596 A CN 201911112596A CN 110764031 A CN110764031 A CN 110764031A
Authority
CN
China
Prior art keywords
metal material
layer
substrate
heating
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911112596.3A
Other languages
English (en)
Inventor
徐昆
任秀艳
曾自强
王国宝
吴灵美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201911112596.3A priority Critical patent/CN110764031A/zh
Publication of CN110764031A publication Critical patent/CN110764031A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/26Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux using optical pumping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34015Temperature-controlled RF coils
    • G01R33/3403Means for cooling of the RF coils, e.g. a refrigerator or a cooling vessel specially adapted for housing an RF coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34092RF coils specially adapted for NMR spectrometers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明提供了一种用于光泵磁力仪的加热和射频集成式组件,包括:加热层,加热层包括柔性绝缘的第一基底,在第一基底的一个表面上刻蚀金属材料,在第一基底的另一个表面涂布粘合剂,金属材料刻蚀末端焊接引出线,相邻的刻蚀形成的金属材料线中的电流流动方向相反;电磁层,电磁层包括柔性绝缘的第二基底,在第二基底的一个表面上刻蚀金属材料,在第二基底的另一个表面涂布粘合剂,金属材料刻蚀末端焊接引出线,相邻的刻蚀形成的金属材料线中的电流流动方向相同;其中,加热层与电磁层叠置粘贴。本发明采用刻蚀加工使剩磁大幅度减小,降低了磁干扰,加热层和电磁层均采用柔性基底,尺寸灵活可调,便于安装,使磁力仪探头结构更加紧凑。

Description

用于光泵磁力仪的加热和射频集成式组件
技术领域
本发明的实施例涉及磁力仪及其组件,具体涉及一种用于光泵磁力仪的加热和射频集成式组件。
背景技术
光泵磁力仪是一种把光抽运和电子自旋共振原理相结合的磁场测量装置,其广泛应用于资源勘探、医学诊断、军事目标探测等领域。其中,原子气室是众多量子测量仪器的重要组成部分。在光泵磁力仪中,需要对原子气室进行加热和提供射频场,以达到测量磁场的条件。
传统的原子气室的无磁加热技术,将原子气室置于一个绕有线圈的加热腔中,双绞线或多绞线缠绕的线圈用来抵消加热电流带来的磁场;然而双绞线并不能像理想情况一样完全抵消正负电流,在精密测量实验中,发现加热电流仍然带来了磁场噪声,影响测量效果,从而降低了仪器的性能指标;同时地,加热腔占用空间大,不利于磁力仪探头的小型化。
射频线圈也是磁力仪的重要组成部件,其产生的交变磁场用于使原子气室中处于暗态的电子发生跃迁即光磁共振。在实际应用中,射频线圈占用空间大、不利于安装,制约了磁力仪的小型化和集成化。
基于上述不足,本发明有必要对磁力仪的现有结构进行改进,使原子气室实现无磁加热,以及保证射频线圈产生磁场功能不变的同时,使得整体结构更加紧凑,增加其便携性。
发明内容
为了解决上述技术问题中的至少一个方面,本发明的实施例提供了一种加热和射频集成式组件,采用金属材料刻蚀技术在柔性基底上形成一定形状的金属线状,使其满足加热线圈和射频线圈的功能,并且在实际应用中,该加热和射频集成式组件能够粘贴于原子气室的外表面上,因而有利于减小线圈的占用空间,使加热和射频功能集成化。
根据本发明的一个方面,提供一种加热和射频集成式组件,包括:加热层,所述加热层包括柔性绝缘的第一基底,其中:在所述第一基底的一个表面上刻蚀金属材料,在所述第一基底的另一个表面涂布粘合剂,所述金属材料刻蚀末端焊接引出线,相邻的刻蚀形成的金属材料线中的电流流动方向相反;电磁层,所述电磁层包括柔性绝缘的第二基底,其中:在所述第二基底的一个表面上刻蚀金属材料,在所述第二基底的另一个表面涂布粘合剂,所述金属材料刻蚀末端焊接引出线,相邻的刻蚀形成的金属材料线中的电流流动方向相同;所述加热层与所述电磁层叠置粘贴。
进一步地,所述金属材料在所述第一基底表面刻蚀成对称的双绞线状;或者,
所述金属材料在所述第一基底表面刻蚀成往复对折状。
进一步地,所述金属材料在所述第二基底表面刻蚀成双回字形。
进一步地,所述加热层的第一基底包括第一表面和第二表面,所述电磁层的第二基底包括第三表面和第四表面;所述第二表面和第四表面均涂布粘合剂;所述加热层通过其第二表面的粘合剂粘贴于电磁层的第三表面上,或者所述电磁层通过其第四表面的粘合剂粘贴于加热层的第一表面上,从而使所述加热层与所述电磁层叠置粘贴。
进一步地,所述加热层中通入第一电流,使所述组件产生热效应;以及所述电磁层中通入第二电流,使所述组件产生磁效应。
在一些实施例中,本发明还提供一种磁力仪,其包括原子气室以及上述的加热和射频集成式组件,其中所述组件粘贴于所述原子气室的外表面,所述加热层中的刻蚀形成的金属材料线的排布与所述原子气室的中心轴线垂直;所述电磁层形成的磁场方向与所述原子气室的中心轴线垂直。
在另一些实施例中,本发明还提供一种磁力仪,其包括原子气室和薄膜组件,其中,所述薄膜组件设置在原子气室的外表面上;所述薄膜组件包括加热层和电磁层,所述加热层由金属材料刻蚀在柔性绝缘的第一基底上形成,相邻的刻蚀形成的金属材料线中的电流流动方向相反,所述电磁层由金属材料刻蚀在柔性绝缘的第二基底上形成,相邻的刻蚀形成的金属材料线中的电流流动方向相同;其中,所述原子气室为圆柱形;所述加热层中的刻蚀形成的金属材料线的排布与所述原子气室的中心轴线垂直;所述电磁层形成的磁场方向与所述原子气室的中心轴线垂直。
进一步地,所述电磁层的金属材料在所述第二基底表面刻蚀成双回字形;所述双回字形的电路形成的磁场方向相同。
进一步地,所述加热层与所述电磁层叠置粘贴于原子气室的外表面上;所述加热层的第一基底包括第一表面和第二表面,所述第二表面上涂布粘合剂;所述电磁层的第二基底包括第三表面和第四表面,所述第四表面上涂布粘合剂;所述加热层的第二表面粘贴于原子气室的外表面上,并且所述电磁层的第四表面粘贴于加热层的第一表面上;或者所述电磁层的第四表面粘贴于原子气室的外表面上,并且所述加热层的第二表面粘贴于电磁层的第三表面上。
与现有技术相比,本发明具有以下有益效果中的至少一个:
(1)本发明实施例的加热和射频集成式组件,制作成柔性层结构,经粘合粘贴在原子气室的外表面,大大减小了其占用空间,加热层和电磁层的尺寸灵活可调,使得仪器整体构型更加紧凑,适用于对光泵磁力仪探头要求较小的应用场合,并且便于安装使用和拆卸;
(2)本发明实施例的加热和射频集成式组件,通过将金属材料刻蚀在绝缘基底上形成具有特定形状的线状结构,能够实现精确控制金属线的排布方向和形状,避免人工缠绕线圈造成的误差;
(3)本发明实施例的加热组件,基于金属材料线的精准排布,其通电后产生的方向相反的电流能够完全抵消,避免产生剩磁干扰,有利于营造无磁加热环境;
(4)本发明实施例的加热组件和射频组件能够分别单独应用于原子气室的外表面,或者经叠置集成后同时应用于原子气室的外表面,能够实现均匀加热,提供一定范围磁场分布的射频场的需求,在磁力仪应用中,不仅使得磁力仪探头小型化和集成化,还有利于提高测量精度。
附图说明
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
图1为根据本发明的一个实施例的加热组件的结构示意图;
图2为根据本发明的一个实施例的射频组件的结构示意图;以及
图3为根据本发明的一个实施例的加热和射频集成式组件的结构示意图。
需要说明的是,附图并不一定按比例来绘制,而是仅以不影响读者理解的示意性方式示出。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一个实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
参见图1-3,根据本发明实施方式的加热和射频集成式组件,包括:加热层10,加热层10包括柔性绝缘的第一基底101,在第一基底101的一个表面上刻蚀金属材料102,在第一基底101的另一个表面涂布粘合剂,金属材料102刻蚀末端焊接引出线103,相邻的刻蚀形成的金属材料线中的电流流动方向相反;电磁层20,电磁层20包括柔性绝缘的第二基底201,其中:在第二基底201的一个表面上刻蚀金属材料202,在第二基底201的另一个表面涂布粘合剂,金属材料202刻蚀末端焊接引出线203,相邻的刻蚀形成的金属材料线中的电流流动方向相同;加热层10与电磁层20叠置粘贴。
具体地,参见图1,根据本发明实施方式的加热组件包括:加热层10,加热层10包括柔性绝缘基底101,其中:在基底101的一个表面刻蚀金属材料102,在基底101的另一个表面涂布粘合剂,金属材料刻蚀末端焊接引出线103,相邻的刻蚀形成的金属材料线102中的电流流动方向相反。
根据实际应用中,加热线圈通常经手工缠绕于原子气室的外壁上,一方面,两根金属丝结合形成的双绞线中形成的电流并不是严格意义上的方向相反,不能完全抵消,使得剩余电流产生干扰磁场;另一方面,手工缠绕线圈,难以保证其缠绕方向与原子气室的中心轴线方向垂直,也会产生干扰磁场,由此,传统的加热线圈易对测量环境造成干扰,不利于提高测量精度。
本发明实施方式的加热组件,克服了上述现有技术的缺点,在不增加线圈体积的前提下,精确控制金属加热丝的排布方式和方向,形成无磁环境,从而有利于提高仪器的测量精度。为减小加热组件的使用空间,将加热组件设计为柔性层结构或薄膜结构,在实际应用中,该加热组件能够固定在原子气室的外壁上,便于安装和拆卸。基底101构成加热线圈的载体结构,为使基底101能够置于仪器表面上使用,其需要具备一定的表面积和柔性,参见图1所示,基底101例如为具有一定尺寸的长方形结构,且具有柔性能够展开或弯曲;为使基底101与仪器表面或其他接触的组件隔开,基底101具有良好的绝缘性,且作为加热组件,基底101还应具有耐高温等性质。进一步地,在基底101的其中一个表面上具有金属材料形成的线状结构102,金属材料选用具有一定电阻率的金属丝,使得通入电流后,金属丝能够产生热量从而对仪器进行加热,即电流的热效应;在加热过程中,为较小磁干扰,金属丝的尺寸应尽可能细;在基底101的另一个表面上涂布粘合剂,使得基底101能够粘贴在仪器的外表面上,如此便减小了加热组件的使用空间。
进一步地,为形成加热的无磁环境,金属材料线102中的电流需要完全抵消,避免剩余电流产生磁场噪声,即相邻的金属材料线102中的电流流动方向相反,于是相邻电流产生的磁场,大小相等方向相反,因而相互抵消。如图1中,当电流从a1点流入,经过金属线排布方向流动并最终从a2点流出,相邻的金属线中的电流流动方向相反,从而使电流正负抵消,仅产生加热作用,排除磁干扰。
为进一步控制金属线的排布方向,降低磁场分布对其的影响,采用自动刻蚀工艺进行加工,根据预先设计的图线的分布位置,将金属材料刻蚀到基底上的相应的位置,实现金属材料线的精确排布控制。进一步地,加热组件还包括引出线103,如图1中,例如金属线刻蚀从a1点开始,经过特定形状的刻蚀完成后,在a2点结束,此时,还需在a1点和a2点的端部制作引出线103,引出线103延伸出基底101的一边,引出线103用于连接电源或电极组件使得电流通入或流出。引出线103例如通过焊接工艺焊接到金属材料刻蚀的a1和a2端点,焊接时应尽可能减小焊点,以避免产生干扰磁场。
基底101可以采用无机化合物等材料制成,例如当加热组件用于光泵磁力仪中时,为实现更好的加热效果,基底101材料可以具有较好的导热性能、耐高温等特性,实现快速升温、引入磁场小等效果。基底101层的厚度及尺寸大小可以根据实际应用需求设计,例如根据其所要粘贴到的原子气室的表面尺寸而定;金属材料可以根据电阻率等参数进行选择,金属丝线的尺寸以及金属线排布的疏密程度可以根据实际应用中加热区域范围等需求来设计。
在一个实施例中,金属材料102在基底101表面刻蚀成对称的双绞线状。依照传统加热线圈缠绕的方式,如图1所示,可以将金属材料线按照双绞线缠绕排列的方式进行刻蚀,在双绞线中,由于电流的流动方向是相反的,因而能够使电流相互抵消,构造无磁加热环境。在本实施例中,基于自动刻蚀工艺,相比传统的手工缠绕方式,金属线的排列方向能够精确控制,因而有利于消除剩余电流的影响。
在一个实施例中,金属材料102在基底101表面刻蚀成往复对折状。参见图1,金属材料从a1点开始刻蚀,沿图中所示路线形成往复对折排布,最后在a2点刻蚀完成。例如,从a1点处的引出线中通入如图所示方向的电流,电流从a2点处的引出线中流出,两根引出线中电流流动方向相反,产生的磁场相互抵消。基于刻蚀工艺的自动化,金属材料在重复对折排列时,其相邻金属材料线之间的间距能够保持较高的一致性,由此实现均匀、稳定加热的目的。
参见图1,在一个实施例中,磁力仪包括原子气室和加热组件,加热组件粘贴于原子气室的外表面。加热组件包括加热层10,加热层10包括柔性绝缘基底101,在基底101的一个表面刻蚀金属材料102,在基底101的另一个表面涂布粘合剂,加热组件通过粘合剂粘贴于原子气室的外表面上。金属材料102在基底101表面刻蚀成往复对折状,相邻的刻蚀形成的金属材料线102中的电流流动方向相反。金属材料刻蚀末端焊接引出线103,当从引出线103一端通入电流后,具有一定电阻率的金属材料线被加热,其产生的热量用来满足对原子密度和气压等参数的需求。由于相邻的金属材料线102中的电流流动方向相反,使得相反方向的电流相互抵消,不会产生剩余电流,因而避免了剩余电流产生磁场噪声的影响,使得加热组件对原子气室实现无磁加热,且基于刻蚀工艺的自动化,相邻金属材料线之间的间距易于稳定控制和调整,有利于实现均匀加热。
参见图2,根据本发明实施方式的射频组件包括:电磁层20,电磁层20包括柔性绝缘基底201,其中:在基底201的一个表面刻蚀金属材料202,在基底201的另一个表面涂布粘合剂,金属材料刻蚀末端焊接引出线203,相邻的刻蚀形成的金属材料线中的电流流动方向相同。
为克服现有技术中射频线圈体积大占用空间大的缺点,本发明实施方式将射频组件设计为柔性层结构或薄膜结构,在实际应用中,该射频组件能够固定在原子气室的外壁上,便于安装和拆卸。基底201构成电磁线圈的载体结构,为使基底201能够置于仪器表面上使用,其需要具备一定的表面积和柔性,参见图2所示,基底201例如为具有一定尺寸的长方形结构,且具有柔性能够展开或弯曲;为使基底201与仪器表面或其他接触的组件隔开,基底201具有良好的绝缘性。进一步地,在基底201的其中一个表面上具有金属材料形成的线状结构202,金属材料可以选用金属铜丝等,使得通入电流后,能够在一定范围内产生磁效应;在基底201的另一个表面上涂布粘合剂,使得基底201能够粘贴在仪器的外表面上,如此便减小了射频组件的使用空间。
采用自动刻蚀工艺对基底201上的金属线状进行加工,根据预先设计的图线的分布位置,将金属材料刻蚀到基底上的相应的位置,实现金属材料线的精确排布控制。进一步地,射频组件还包括引出线203,如图2中,例如金属线刻蚀从b1点开始,经过特定形状的刻蚀完成后,在b2点结束,此时,还需在b1点和b2点的端部制作引出线203,引出线203延伸出基底201的一边,引出线203用于连接电源或电极组件使得电流通入或流出。引出线203例如通过焊接工艺焊接到金属材料刻蚀的b1和b2端点,焊接时应尽可能减小焊点,以避免产生干扰磁场。
金属材料刻蚀形成的线状结构中,相邻的金属材料线中的电流流动方向相同,以形成均匀的磁场分布。
基底201层的厚度及尺寸大小可以根据实际应用需求设计,例如根据其所要粘贴到的原子气室的表面尺寸而定。
金属材料可以根据电阻率等参数进行选择,金属材料线的尺寸以及金属线排布的疏密程度可以根据实际应用中磁场分布等需求来设计。
参见图2,在一个实施例中,金属材料202在基底201表面刻蚀成双回字形。金属材料从b1点开始刻蚀,沿图中所示路线形成左右双回字形排布,最后在b2点刻蚀完成。例如,从b1点处的引出线中通入如图所示方向的电流,电流从b2点处的引出线中流出,图中左边回字形电路中,电流沿顺时针方向流动,右边回字形电路中,电流沿逆时针方向流动(从平面图角度来看);而当射频组件的电磁层粘贴于圆柱形原子气室的外表面时,左、右回字形电路中产生方向相同的磁场,从而使得电磁层在其覆盖的工作区域产生的磁场强度满足实际使用需求。
参见图2,在一个实施例中,磁力仪包括原子气室和射频组件,射频组件粘贴于原子气室的外表面。射频组件包括电磁层20,电磁层20包括柔性绝缘基底201,在基底201的一个表面刻蚀金属材料202,在基底201的另一个表面涂布粘合剂,射频组件通过粘合剂粘贴于原子气室的外表面上。金属材料202在基底201表面刻蚀成双回字形,相邻的刻蚀形成的金属材料线中的电流流动方向相同。金属材料刻蚀末端焊接引出线203,当通过引出线203通入电流后,电流回路产生磁场分布,产生射频场,使原子气室内的原子发生磁共振。金属材料线路采用刻蚀工艺制作,能够精确控制线路的排布方向和线宽、间距等,从而有利于形成均匀的磁场分布。
在实际应用中,当需要同时实现加热和产生射频场时,可以将不同排布的线圈结构集成化,一方面实现热效应和磁效应的双重功能,另一方面使仪器使用空间减小,使整体构型更加紧凑。如图1和2中,加热层和电磁层具有相似的结构,可以将两者进行层叠设置。例如,加热层10的第一基底101包括第一表面1011和第二表面1012,其中,第一表面1011上进行刻蚀金属材料102,第二表面1012上涂布有粘合剂;电磁层20的第二基底201包括第三表面2011和第四表面2012,其中,第三表面2011上进行刻蚀金属材料202,第四表面2012上涂布有粘合剂。为集成加热层10和电磁层20,如图3(c)所示,将加热层10置于底层,电磁层20置于顶层,加热层10和电磁层20进行叠置粘贴,其中,加热层10的第一表面1011和电磁层20的第四表面2012通过该第四表面2012上的粘合剂进行粘合固定;如图3(d)所示,将加热层10置于顶层,电磁层20置于底层,电磁层20和加热层10进行叠置粘贴,其中,电磁层20的第三表面2011和加热层10的第二表面1012通过该第二表面1012上的粘合剂进行粘合固定。
在层叠设置中,上述“底层”表示第一层,“顶层”表示在第一层的其中一个表面上叠置形成第二层,其中,第二层与第一层可以完全重叠,也可以部分重叠,根据第二层与第一层的基底的尺寸而定。
上述加热层与电磁层进行叠置粘贴,例如可以采用绝缘胶或其他种类的粘合剂,绝缘胶使得加热层和电磁层彼此绝缘,不会对各自的结构、实施效果等产生影响。
当加热和射频集成式组件使用时,在加热层中通入第一电流,由于加热层中相邻的金属材料线中的电流流动方向相反,于是相邻电流产生的磁场,大小相等方向相反,从而相互抵消,使得加热层仅产生加热作用,排除磁干扰;同时地,在电磁层中通入第二电流,电磁层中相邻的金属材料线中的电流流动方向相同,使得通电回路产生磁场,即电磁层提供一个射频场;加热层和电磁层在一定范围内同时实现了提供热量和磁场分布的功能,相比传统的单个线圈的使用,使得结构更加紧凑,功能更加集成化。其中,第一电流和第二电流可以是相同或不同种类的电流,电流大小根据各自使用需求而定。例如,第一电流可以是直流电流,电流的大小根据加热的程度来确定;第二电流可以是交变电流(产生交变磁场),电流的大小根据磁场的分布和强度大小来确定。在一个实施例中,金属材料102在第一基底101表面刻蚀成对称的双绞线状;或者,刻蚀成往复对折状。
在一个实施例中,金属材料202在第一基底201表面刻蚀成双回字形。
金属材料102和金属材料202可以采用相同或不同的材料,形成的线路宽度、间距等,根据产生热效应和磁效应的需求而定。
参见图3,在一个实施例中,磁力仪包括原子气室以及加热和射频集成式组件,组件粘贴于原子气室的外表面,加热层10中的刻蚀形成的金属材料线的排布与原子气室的中心轴线垂直;电磁层20形成的磁场方向与原子气室的中心轴线垂直。
加热和射频集成式组件中,加热层10与电磁层20叠置粘贴。当加热层10与电磁层20按图3(c)所示叠置时,加热层10位于底层,通过其第二表面1012上的粘合剂可以与原子气室的外表面进行粘贴;电磁层20则粘贴于加热层10的第一表面1011上。当加热层10与电磁层20按图3(d)所示叠置时,电磁层20位于底层,通过其第四表面2012上的粘合剂可以与原子气室的外表面进行粘贴,加热层10则粘贴于电磁层20的第三表面2011上。当加热层10与电磁层20不能够完全重叠时,未重叠部分均可以通过涂布粘合剂与原子气室的外表面进行粘贴。当加热层10与电磁层20按上述图3(c)所示方式叠置粘贴时,能够使加热层直接、完全地接触原子气室的外表面,从而充分发挥其对原子气室的加热效果。
进一步地,加热层10中的金属材料刻蚀的线路成往复对折状,使得金属材料线的横向排布方向与原子气室的中心轴线垂直;电磁层20中的金属材料刻蚀的线路成双回字形,其通电回路产生的射频磁场的方向与原子气室的中心轴线垂直。
在一个实施例中,磁力仪包括原子气室和薄膜组件,其中,薄膜组件设置在原子气室的外表面上;薄膜组件包括加热层10和电磁层20,加热层10由金属材料102刻蚀在柔性绝缘的第一基底101上形成,相邻的刻蚀形成的金属材料线中的电流流动方向相反,电磁层20由金属材料202刻蚀在柔性绝缘的第二基底201上形成,相邻的刻蚀形成的金属材料线中的电流流动方向相同;其中,原子气室为圆柱形;加热层10中的刻蚀形成的金属材料线的排布与原子气室的中心轴线垂直;电磁层20形成的磁场方向与原子气室的中心轴线垂直。
其中,加热层10用于在金属材料线路中通入电流产生热量,从而对原子气室进行加热,使原子气室内原子处于最佳状态;电磁层20用于在金属材料线路中通入电流产生射频磁场,使原子发生磁共振。由于加热层10中相邻的刻蚀形成的金属材料线中的电流流动方向相反,因而能够避免产生剩余电流带来的磁干扰,营造无磁加热环境。加热层10和电磁层20中金属材料线排布采用刻蚀工艺制作,能够根据需要设计相邻金属线之间的间距,从而实现均匀加热或形成均匀分布的磁场,有利于为磁力仪提供精确的测量环境,提高测量精度。
为使磁力仪探头小型化和集成化,可以将加热层10和电磁层20层叠设置。在实际应用中,例如在安装过程中,薄膜组件设置在原子气室的外表面上,可以先将加热层10和电磁层20叠置粘贴,再将薄膜组件粘贴于原子气室的外表面上;也可以将加热层10和电磁层20分别粘贴于原子气室的外表面上。如加热层10与电磁层20按图3(c)所示排列时,一种安装方法是:将加热层10置于底层,电磁层20置于顶层,加热层10和电磁层20进行叠置粘贴,其中,加热层10的第一表面1011和电磁层20的第四表面2012通过第四表面2012上的粘合剂进行粘合固定;然后将已经叠置粘贴的薄膜组件通过加热层10的第二表面1012上的粘合剂与原子气室的外表面进行粘贴。第二种安装方法是:先将加热层10的第二表面1012上涂布粘合剂,然后粘贴于原子气室的外表面上,然后在电磁层20的第四表面2012上涂布粘合剂,按照图3(c)的叠置方式将电磁层20的第四表面2012粘贴于加热层10的第一表面1011上。
当按照图3(d)的方式进行薄膜组件的粘贴时,方法类似。当薄膜组件按图3(c)所示方式进行叠置粘贴时,加热层能够直接、充分地覆盖原子气室的外表面,从而使得加热层加热产生的热量能够及时地传递给原子气室内的原子,减少热量损失,实现强化加热。无论采用何种粘贴方式,均能够实现加热层10和电磁层20的集成化,使得薄膜组件同时对原子气室产生热效应和磁效应,提高磁力仪的使用便捷性。
本发明所用粘合剂可以采用绝缘胶,使得加热层与原子气室外表面,电磁层与原子气室外表面,或者加热层和电磁层之间形成绝缘隔开。
其中,原子气室可以具有圆柱形;加热层10中的金属材料刻蚀的线路成往复对折状,使得金属材料线的横向排布方向与原子气室的底面相平行,即金属材料线的横向排布方向与原子气室的中心轴线垂直,使得电流流动方向能够大范围地覆盖原子气室的外表面,从而实现均匀加热;电磁层20中的金属材料刻蚀的线路成双回字形,其通电回路产生的射频磁场的方向与原子气室的中心轴线垂直,当电磁层粘贴在圆柱形原子气室的外表面时,双回字形回路中通入电流后产生方向相同的磁场,使得磁场分布满足对原子气室的工作需要。
本发明实施例的加热组件和射频组件既能够分别单独应用于原子气室的外表面,也能够经叠置集成后同时应用于原子气室的外表面,从而实现均匀加热,提供一定范围磁场分布的射频场的需求,在磁力仪应用中,不仅使得磁力仪探头小型化和集成化,还有利于提高测量精度。
对于本发明的实施例,还需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

1.一种加热和射频集成式组件,包括:
加热层,所述加热层包括柔性绝缘的第一基底,其中:
在所述第一基底的一个表面上刻蚀金属材料,在所述第一基底的另一个表面涂布粘合剂,
所述金属材料刻蚀末端焊接引出线,
相邻的刻蚀形成的金属材料线中的电流流动方向相反;
电磁层,所述电磁层包括柔性绝缘的第二基底,其中:
在所述第二基底的一个表面上刻蚀金属材料,在所述第二基底的另一个表面涂布粘合剂,
所述金属材料刻蚀末端焊接引出线,
相邻的刻蚀形成的金属材料线中的电流流动方向相同;
所述加热层与所述电磁层叠置粘贴。
2.根据权利要求1所述的组件,其中,
所述金属材料在所述第一基底表面刻蚀成对称的双绞线状。
3.根据权利要求1所述的组件,其中,
所述金属材料在所述第一基底表面刻蚀成往复对折状。
4.根据权利要求1所述的组件,其中,
所述金属材料在所述第二基底表面刻蚀成双回字形。
5.根据权利要求1-4任一项所述的组件,其中,
所述加热层的第一基底包括第一表面和第二表面,所述电磁层的第二基底包括第三表面和第四表面;
所述第二表面和第四表面均涂布粘合剂;
所述加热层通过其第二表面的粘合剂粘贴于电磁层的第三表面上,或者
所述电磁层通过其第四表面的粘合剂粘贴于加热层的第一表面上,从而使所述加热层与所述电磁层叠置粘贴。
6.根据权利要求5所述的组件,其中,
所述加热层中通入第一电流,使所述组件产生热效应;以及
所述电磁层中通入第二电流,使所述组件产生磁效应。
7.一种磁力仪,其包括原子气室以及权利要求1-6任一项所述的组件,其中,所述组件粘贴于所述原子气室的外表面,所述加热层中的刻蚀形成的金属材料线的排布与所述原子气室的中心轴线垂直;
所述电磁层形成的磁场方向与所述原子气室的中心轴线垂直。
8.一种磁力仪,包括原子气室和薄膜组件,其中,
所述薄膜组件设置在原子气室的外表面上;
所述薄膜组件包括加热层和电磁层,所述加热层由金属材料刻蚀在柔性绝缘的第一基底上形成,相邻的刻蚀形成的金属材料线中的电流流动方向相反,所述电磁层由金属材料刻蚀在柔性绝缘的第二基底上形成,相邻的刻蚀形成的金属材料线中的电流流动方向相同;
其中,所述原子气室为圆柱形;
所述加热层中的刻蚀形成的金属材料线的排布与所述原子气室的中心轴线垂直;
所述电磁层形成的磁场方向与所述原子气室的中心轴线垂直。
9.根据权利要求8所述的磁力仪,其中,
所述电磁层的金属材料在所述第二基底表面刻蚀成双回字形;
所述双回字形的电路形成的磁场方向相同。
10.根据权利要求8所述的磁力仪,其中,
所述加热层与所述电磁层叠置粘贴于原子气室的外表面上;
所述加热层的第一基底包括第一表面和第二表面,所述第二表面上涂布粘合剂;
所述电磁层的第二基底包括第三表面和第四表面,所述第四表面上涂布粘合剂;
所述加热层的第二表面粘贴于原子气室的外表面上,并且所述电磁层的第四表面粘贴于加热层的第一表面上;或者
所述电磁层的第四表面粘贴于原子气室的外表面上,并且所述加热层的第二表面粘贴于电磁层的第三表面上。
CN201911112596.3A 2019-11-14 2019-11-14 用于光泵磁力仪的加热和射频集成式组件 Pending CN110764031A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911112596.3A CN110764031A (zh) 2019-11-14 2019-11-14 用于光泵磁力仪的加热和射频集成式组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911112596.3A CN110764031A (zh) 2019-11-14 2019-11-14 用于光泵磁力仪的加热和射频集成式组件

Publications (1)

Publication Number Publication Date
CN110764031A true CN110764031A (zh) 2020-02-07

Family

ID=69337742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911112596.3A Pending CN110764031A (zh) 2019-11-14 2019-11-14 用于光泵磁力仪的加热和射频集成式组件

Country Status (1)

Country Link
CN (1) CN110764031A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408442A (zh) * 2008-09-24 2009-04-15 北京时代蓝天光电技术有限公司 硅基薄膜结构空气质量流量传感器
CN101505555A (zh) * 2009-03-03 2009-08-12 中国科学院电工研究所 用于触发高磁场超导磁体失超的加热器
CN102437414A (zh) * 2011-08-04 2012-05-02 瑞声声学科技(深圳)有限公司 射频识别天线的制作方法
CN105430770A (zh) * 2015-10-30 2016-03-23 北京航天控制仪器研究所 一种用于微型核磁共振陀螺仪的多层无磁加热装置
CN106802397A (zh) * 2016-12-20 2017-06-06 中国船舶重工集团公司第七〇五研究所 一种波长自动锁定的激光铯光泵原子磁力仪
CN107128871A (zh) * 2017-05-10 2017-09-05 中国电子科技集团公司第四十九研究所 一种基于mems原子芯片的物理封装件及其封装方法
CN108614224A (zh) * 2018-04-03 2018-10-02 北京航天控制仪器研究所 一种用于cpt磁力仪的气室工作温度自动标定系统及方法
CN108751122A (zh) * 2018-05-17 2018-11-06 中国科学院上海微系统与信息技术研究所 一种三维微型加热器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408442A (zh) * 2008-09-24 2009-04-15 北京时代蓝天光电技术有限公司 硅基薄膜结构空气质量流量传感器
CN101505555A (zh) * 2009-03-03 2009-08-12 中国科学院电工研究所 用于触发高磁场超导磁体失超的加热器
CN102437414A (zh) * 2011-08-04 2012-05-02 瑞声声学科技(深圳)有限公司 射频识别天线的制作方法
CN105430770A (zh) * 2015-10-30 2016-03-23 北京航天控制仪器研究所 一种用于微型核磁共振陀螺仪的多层无磁加热装置
CN106802397A (zh) * 2016-12-20 2017-06-06 中国船舶重工集团公司第七〇五研究所 一种波长自动锁定的激光铯光泵原子磁力仪
CN107128871A (zh) * 2017-05-10 2017-09-05 中国电子科技集团公司第四十九研究所 一种基于mems原子芯片的物理封装件及其封装方法
CN108614224A (zh) * 2018-04-03 2018-10-02 北京航天控制仪器研究所 一种用于cpt磁力仪的气室工作温度自动标定系统及方法
CN108751122A (zh) * 2018-05-17 2018-11-06 中国科学院上海微系统与信息技术研究所 一种三维微型加热器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
果莉等: "《电子工艺实训指导》", 31 August 2013 *

Similar Documents

Publication Publication Date Title
TWI342086B (zh)
EP1277060B1 (en) Current measurement device
US6680608B2 (en) Measuring current through an electrical conductor
US7772841B2 (en) Magnetic device
US6856131B2 (en) Magnetic sensor, side-opened TEM cell, and apparatus using such magnetic sensor and side-opened TEM cell
US7495624B2 (en) Apparatus for detection of the gradient of a magnetic field, and a method for production of the apparatus
US5583436A (en) Miniature magnetic field sensor with compact magnetization coil
US9441992B2 (en) Electromagnetic induction sensor, overlay member for electromagnetic induction sensor, and manufacturing method of electromagnetic induction sensor
JP4532167B2 (ja) チップコイルおよびチップコイルを実装した基板
CN105612404B (zh) 具有传感器元件的传感器以及用于制造传感器元件的工艺
JP2009111294A (ja) 磁気カプラ
CN108226825A (zh) 一种软磁薄膜平面线圈复合磁传感器及其制备方法
JP2001004726A (ja) 磁界センサ
CN110764031A (zh) 用于光泵磁力仪的加热和射频集成式组件
CN110764032B (zh) 用于光泵磁力仪的射频薄膜
CN110603454B (zh) 具有集成的磁通门传感器的部件承载件
CN110619987A (zh) 可调式贴片电感器及其制备方法
JP2003309012A (ja) 表面実装用磁性部品とそれを用いた表面実装回路装置
JP4135882B2 (ja) 磁束センサ、磁束検出方法および電流検出方法
US20140167783A1 (en) Resonator and biosensor system including the same
JP3634281B2 (ja) 磁気インピーダンス効果センサー
CN110220930B (zh) 自旋效应微电子集成测试台
JP2001196226A (ja) インダクタ及びその製造方法
CN210575349U (zh) 可调式贴片电感器
CA3118576C (en) Electricity meter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200207

RJ01 Rejection of invention patent application after publication