CN110763936A - 一种组串式光伏逆变器老化电路 - Google Patents

一种组串式光伏逆变器老化电路 Download PDF

Info

Publication number
CN110763936A
CN110763936A CN201911046630.1A CN201911046630A CN110763936A CN 110763936 A CN110763936 A CN 110763936A CN 201911046630 A CN201911046630 A CN 201911046630A CN 110763936 A CN110763936 A CN 110763936A
Authority
CN
China
Prior art keywords
circuit
power tube
inverter
positive
negative poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911046630.1A
Other languages
English (en)
Other versions
CN110763936B (zh
Inventor
韩旭
赵龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sineng Electric Co Ltd
Original Assignee
Sineng Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sineng Electric Co Ltd filed Critical Sineng Electric Co Ltd
Priority to CN201911046630.1A priority Critical patent/CN110763936B/zh
Publication of CN110763936A publication Critical patent/CN110763936A/zh
Application granted granted Critical
Publication of CN110763936B publication Critical patent/CN110763936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开一种组串式光伏逆变器老化电路,该电路包括BUCK降压电路、直流电源以及组串式光伏逆变器;所述组串式光伏逆变器包括BOOST升压电路和逆变电路;所述直流电源正负极与BOOST升压电路的输入正负极连接,所述BOOST升压电路的输出正负极与BUCK降压电路输入正负极连接,所述BUCK降压电路的输出正负极与直流电源正负极连接;所述逆变电路与BOOST升压电路的输出正负极连接;所述逆变电路的各相输出短路。本发明可靠性高,而且结构简单,成本低,体积小,易于推广应用。

Description

一种组串式光伏逆变器老化电路
技术领域
本发明涉及光伏发电领域,尤其涉及一种组串式光伏逆变器老化电路。
背景技术
现有的组串式光伏逆变器老化方式如图1所示,通用直流电源接组串式光伏逆变器的输入,组串式光伏逆变器的输出接电网,在老化的环节里,直流电源是投入费用较高的部分,比如一个70kw的机器,满载老化,需要70kw左右的直流源供电,成本高。
发明内容
本发明的目的在于通过一种组串式光伏逆变器老化电路,来解决以上背景技术部分提到的问题。
为达此目的,本发明采用以下技术方案:
一种组串式光伏逆变器老化电路,该电路包括BUCK降压电路、直流电源以及组串式光伏逆变器;所述组串式光伏逆变器包括BOOST升压电路和逆变电路;所述直流电源正负极与BOOST升压电路的输入正负极连接,所述BOOST升压电路的输出正负极与BUCK降压电路输入正负极连接,所述BUCK降压电路的输出正负极与直流电源正负极连接;所述逆变电路与BOOST升压电路的输出正负极连接;所述逆变电路的各相输出短路。
特别地,所述BUCK降压电路包括电感L1、电容C1、二极管D1以及功率管Q1;所述BOOST升压电路包括电感L2、功率管Q2、二极管D2以及电容C1;所述逆变电路包括三级管S1、功率管S2、功率管S3、功率管S4、功率管S5以及功率管S6;其中,直流电源的正极与电感L1的一端、电容C1的一端、电感L2的一端连接,所述直流电源的负极与电容C1的另一端、二极管D1的正极、功率管Q2的发射极、电容C2的一端、功率管S4的发射极、功率管S5的发射极、功率管S6的发射极连接,电感L1的另一端与二极管D1的负极、功率管Q1的发射极连接,电感L2的另一端与功率管Q2的集电极、二极管D2的正极连接,二极管D2的负极与功率管Q1的集电极、功率管S1的集电极、功率管S2的集电极、功率管S3的集电极连接,功率管S1的发射极与功率管S2的发射极、功率管S3的发射极、功率管S4的集电极、功率管S5的集电极、功率管S6的集电极连接,所述逆变电路的三相输出短路。
特别地,所述BUCK降压电路采用但不限于有源软开关降压拓扑电路或无源软开关降压拓扑电路。
特别地,所述逆变电路采用但不限于三相两电平逆变电路、I型三电平逆变电路、T型三电平逆变电路的任一种。
本发明提出的组串式光伏逆变器老化电路将电网移除,组串式光伏逆变器的三相输出短路,通过BUCK降压电路实现组串式光伏逆变器中BOOST升压电路的老化,形成BOOST升压电路-BUCK降压电路能量环、逆变电路能量环,直流电源输出的能量经BOOST升压变换,一部分通过BUCK降压变换,另一部分能量输出到逆变部分,实际上直流电源只提供了BOOST升压,BUCK降压及逆变部分的全部的功率管以及线缆的损耗,整个能量损耗很小,能够很有效的减小直流电源的成本投入,节约很大的用电量。本发明通过改进传统组串式光伏逆变器的老化方式,使用热等效的方式来降低投入的直流源的成本,从而解决背景技术部分提到的问题。本发明可靠性高,而且结构简单,成本低,体积小,易于推广应用。
附图说明
图1为传统的组串式光伏逆变器老化电路示意图;
图2为本发明实施例提供的组串式光伏逆变器老化电路示意图;
图3为本发明实施例提供的组串式光伏逆变器老化电路结构图;
图4为本发明实施例提供的T型三电平逆变电路结构图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容理解的更加透彻全面。需要说明的是,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参照图2所示,图2为本发明实施例提供的组串式光伏逆变器老化电路示意图。
本实施例中组串式光伏逆变器老化电路具体包括BUCK降压电路、直流电源以及组串式光伏逆变器;所述组串式光伏逆变器包括BOOST升压电路和逆变电路;所述直流电源正负极与BOOST升压电路的输入正负极连接,所述BOOST升压电路的输出正负极与BUCK降压电路输入正负极连接,所述BUCK降压电路的输出正负极与直流电源正负极连接;所述逆变电路与BOOST升压电路的输出正负极连接;所述逆变电路的各相输出短路。其中,图2中DC即指所述直流电源,BUCK即指所述BUCK降压电路,BOOST即指所述BOOST升压电路,INV即指所述逆变电路。
本实施例中提出的组串式光伏逆变器老化电路在传统老化方案的基础上,把电网移除,组串式光伏逆变器的三相输出短路,即AB,BC,AC短路,同时增加BUCK降压电路用于组串式光伏逆变器升压部分BOOST升压电路的老化,从而形成BOOST升压电路-BUCK降压电路能量环、逆变电路能量环。具体实现是直流电源输出的能量经BOOST升压变换,一部分通过BUCK降压变换,另一部分能量输出到逆变部分,实际上直流电源只提供了BOOST升压,BUCK降压及逆变部分的全部的功率管以及线缆的损耗,整个能量损耗很小。具体的,如图3所示,在本实施例中所述BUCK降压电路包括电感L1、电容C1、二极管D1以及功率管Q1;所述BOOST升压电路包括电感L2、功率管Q2、二极管D2以及电容C1;所述逆变电路包括三级管S1、功率管S2、功率管S3、功率管S4、功率管S5以及功率管S6;其中,所述直流电源的正极与电感L1的一端、电容C1的一端、电感L2的一端连接,所述直流电源的负极与电容C1的另一端、二极管D1的正极、功率管Q2的发射极、电容C2的一端、功率管S4的发射极、功率管S5的发射极、功率管S6的发射极连接,电感L1的另一端与二极管D1的负极、功率管Q1的发射极连接,电感L2的另一端与功率管Q2的集电极、二极管D2的正极连接,二极管D2的负极与功率管Q1的集电极、功率管S1的集电极、功率管S2的集电极、功率管S3的集电极连接,功率管S1的发射极与功率管S2的发射极、功率管S3的发射极、功率管S4的集电极、功率管S5的集电极、功率管S6的集电极连接,所述逆变电路的三相输出短路。上述直流电源提供的能量就是功率管Q1、功率管Q2、二极管D1、二极管D2、电感L1、电感L2、功率管S1-S6所消耗的能量。比如70kW的组串式光伏逆变器的效率按照97%来计算,损耗只有2.1kW左右,BUCK降压电路的效率按99%来计算,损耗只有0.7kW,总损耗2.8kW左右,所以就可以用一个功率较小的直流电源来实现组串式光伏逆变器的老化,从而能够很有效的减小直流电源的成本投入,节约很大的用电量;具有很高的可靠性,而且结构简单,成本低,体积小,易于推广应用。
需要说明的是,在本实施例中所述BUCK降压电路采用但不限于有源软开关降压拓扑电路或无源软开关降压拓扑电路。所述逆变电路采用但不限于三相两电平逆变电路、I型三电平逆变电路、T型三电平逆变电路的任一种。所述T型三电平逆变电路结构如图4所示。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (4)

1.一种组串式光伏逆变器老化电路,其特征在于,该电路包括BUCK降压电路、直流电源以及组串式光伏逆变器;所述组串式光伏逆变器包括BOOST升压电路和逆变电路;所述直流电源正负极与BOOST升压电路的输入正负极连接,所述BOOST升压电路的输出正负极与BUCK降压电路输入正负极连接,所述BUCK降压电路的输出正负极与直流电源正负极连接;所述逆变电路与BOOST升压电路的输出正负极连接;所述逆变电路的各相输出短路。
2.根据权利要求1所述的组串式光伏逆变器老化电路,其特征在于,所述BUCK降压电路包括电感L1、电容C1、二极管D1以及功率管Q1;所述BOOST升压电路包括电感L2、功率管Q2、二极管D2以及电容C1;所述逆变电路包括三级管S1、功率管S2、功率管S3、功率管S4、功率管S5以及功率管S6;其中,直流电源的正极与电感L1的一端、电容C1的一端、电感L2的一端连接,所述直流电源的负极与电容C1的另一端、二极管D1的正极、功率管Q2的发射极、电容C2的一端、功率管S4的发射极、功率管S5的发射极、功率管S6的发射极连接,电感L1的另一端与二极管D1的负极、功率管Q1的发射极连接,电感L2的另一端与功率管Q2的集电极、二极管D2的正极连接,二极管D2的负极与功率管Q1的集电极、功率管S1的集电极、功率管S2的集电极、功率管S3的集电极连接,功率管S1的发射极与功率管S2的发射极、功率管S3的发射极、功率管S4的集电极、功率管S5的集电极、功率管S6的集电极连接,所述逆变电路的三相输出短路。
3.根据权利要求1所述的组串式光伏逆变器老化电路,其特征在于,所述BUCK降压电路采用但不限于有源软开关降压拓扑电路或无源软开关降压拓扑电路。
4.根据权利要求1所述的组串式光伏逆变器老化电路,其特征在于,所述逆变电路采用但不限于三相两电平逆变电路、I型三电平逆变电路、T型三电平逆变电路的任一种。
CN201911046630.1A 2019-10-30 2019-10-30 一种组串式光伏逆变器老化电路 Active CN110763936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911046630.1A CN110763936B (zh) 2019-10-30 2019-10-30 一种组串式光伏逆变器老化电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911046630.1A CN110763936B (zh) 2019-10-30 2019-10-30 一种组串式光伏逆变器老化电路

Publications (2)

Publication Number Publication Date
CN110763936A true CN110763936A (zh) 2020-02-07
CN110763936B CN110763936B (zh) 2021-12-07

Family

ID=69334495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911046630.1A Active CN110763936B (zh) 2019-10-30 2019-10-30 一种组串式光伏逆变器老化电路

Country Status (1)

Country Link
CN (1) CN110763936B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1802783A (zh) * 2003-03-18 2006-07-12 国际整流器公司 高强度放电灯的镇流器电路
JP2010045966A (ja) * 2008-08-12 2010-02-25 Asahi Kasei Toko Power Device Corp 正負の出力を備えた単一インダクターバックブーストコンバータ
US20120155139A1 (en) * 2009-09-07 2012-06-21 Koninklijke Philips Electronics N.V. Electrical Energy Conversion Circuit Device
CN103401465A (zh) * 2013-08-13 2013-11-20 青岛理工大学 一种电压宽范围可调式升降压单级逆变电路装置
EP2706653A1 (en) * 2012-06-30 2014-03-12 Huawei Technologies Co., Ltd. Five-level power converter, controlling method and controlling device thereof
CN104635173A (zh) * 2013-11-08 2015-05-20 西安艾力特电子实业有限公司 一种新型回馈式节能电源老化接线电路
WO2016078552A1 (en) * 2014-11-17 2016-05-26 Byd Company Limited Steering power system for electric vehicle and method for controlling same
DE102015222023A1 (de) * 2015-06-08 2016-12-08 Dialog Semiconductor (Uk) Limited Gegen einen Kurzschluss geschützte Gleichstrom-Gleichstrom-Tiefsetzsteller
CN107223308A (zh) * 2016-05-30 2017-09-29 胡炎申 基于光伏均衡器的光伏发电系统及光伏发电装置
US20170373503A1 (en) * 2007-10-15 2017-12-28 Ampt, Llc Feedback Based Photovoltaic Conversion Systems
CN109873559A (zh) * 2019-01-15 2019-06-11 中国石油大学(华东) 模块化双buck-boost升降压输出反并联组合型逆变器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1802783A (zh) * 2003-03-18 2006-07-12 国际整流器公司 高强度放电灯的镇流器电路
US20170373503A1 (en) * 2007-10-15 2017-12-28 Ampt, Llc Feedback Based Photovoltaic Conversion Systems
JP2010045966A (ja) * 2008-08-12 2010-02-25 Asahi Kasei Toko Power Device Corp 正負の出力を備えた単一インダクターバックブーストコンバータ
US20120155139A1 (en) * 2009-09-07 2012-06-21 Koninklijke Philips Electronics N.V. Electrical Energy Conversion Circuit Device
EP2706653A1 (en) * 2012-06-30 2014-03-12 Huawei Technologies Co., Ltd. Five-level power converter, controlling method and controlling device thereof
CN103401465A (zh) * 2013-08-13 2013-11-20 青岛理工大学 一种电压宽范围可调式升降压单级逆变电路装置
CN104635173A (zh) * 2013-11-08 2015-05-20 西安艾力特电子实业有限公司 一种新型回馈式节能电源老化接线电路
WO2016078552A1 (en) * 2014-11-17 2016-05-26 Byd Company Limited Steering power system for electric vehicle and method for controlling same
DE102015222023A1 (de) * 2015-06-08 2016-12-08 Dialog Semiconductor (Uk) Limited Gegen einen Kurzschluss geschützte Gleichstrom-Gleichstrom-Tiefsetzsteller
CN107223308A (zh) * 2016-05-30 2017-09-29 胡炎申 基于光伏均衡器的光伏发电系统及光伏发电装置
CN109873559A (zh) * 2019-01-15 2019-06-11 中国石油大学(华东) 模块化双buck-boost升降压输出反并联组合型逆变器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOBUYUKI KASA 等: "A transformer-less inverter using buck-boost type chopper circuit for photovoltaic power system", 《IEEE 1999 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS》 *
丁坤 等: "光伏组件直流模块的控制策略研究", 《电子设计工程》 *
吕志立 等: "DC/DC变换器滤波电容老化预测方法", 《电子测量与仪器学报》 *

Also Published As

Publication number Publication date
CN110763936B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN110212802B (zh) 一种高压、宽电压输入范围回馈式直流电子负载电路
CN109980978B (zh) 一种变换器及其调制方法
WO2017076366A1 (zh) 五电平逆变器拓扑电路及三相五电平逆变器拓扑电路
CN203491895U (zh) 高升压比双开关直流变换器
CN102856916A (zh) 一种单相光伏逆变器无功控制方法及电路
CN102208868A (zh) 高升压变比直流-直流变换器
CN103391001B (zh) 用于光伏逆变器mppt环节的高增益dc/dc变换器
CN102223068A (zh) 一种组合式直流-直流变换器
CN106026657A (zh) 非隔离高增益dc-dc升压变换器
CN105048490A (zh) 低电流应力的光伏微逆变器及其数字控制装置
CN113037120B (zh) 可抑制二次纹波提高功率密度的单相逆变器及控制方法
CN112737293B (zh) 一种非隔离型集成升压dc/ac变换器的控制方法
CN205195587U (zh) 光伏并网变换器、光伏供电系统和电器
Min et al. Design and control of single-phase grid-connected photovoltaic microinverter with reactive power support capability
WO2017028776A1 (zh) 高电压增益的五电平逆变器拓扑电路
CN105337520A (zh) 光伏并网变换器、光伏供电系统和电器
CN203590033U (zh) 用于光伏逆变器mppt环节的高增益dc/dc变换器
CN105099248A (zh) 双输入单相逆变器
CN111277160A (zh) 一种六开关功率解耦电路及其控制方法
EP2747265A1 (en) Highly efficient inverter
CN106208788A (zh) 一种基于aac的多模块电压源型逆变器
CN110763936B (zh) 一种组串式光伏逆变器老化电路
CN203775028U (zh) 基于耦合电感的两相交错并联变换器
CN102769394A (zh) 单相可控整流电路
CN202334349U (zh) 一种直流隔离的并网逆变电路及光伏逆变系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant