CN110747459A - 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法 - Google Patents

机器人联动的激光熔覆复合激光锻造的双光束变向控制方法 Download PDF

Info

Publication number
CN110747459A
CN110747459A CN201910951329.9A CN201910951329A CN110747459A CN 110747459 A CN110747459 A CN 110747459A CN 201910951329 A CN201910951329 A CN 201910951329A CN 110747459 A CN110747459 A CN 110747459A
Authority
CN
China
Prior art keywords
laser
forging
head
laser cladding
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910951329.9A
Other languages
English (en)
Other versions
CN110747459B (zh
Inventor
张永康
刘俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Radium Laser Technology Co Ltd
Original Assignee
Guangdong Radium Laser Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Radium Laser Technology Co Ltd filed Critical Guangdong Radium Laser Technology Co Ltd
Priority to CN201910951329.9A priority Critical patent/CN110747459B/zh
Publication of CN110747459A publication Critical patent/CN110747459A/zh
Priority to PCT/CN2020/082807 priority patent/WO2021068465A1/zh
Application granted granted Critical
Publication of CN110747459B publication Critical patent/CN110747459B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/33Platforms or substrates translatory in the deposition plane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种机器人联动的激光熔覆复合激光锻造的双光束变向控制方法,包括激光熔覆系统、激光锻造系统和机器人,激光熔覆系统设有左激光熔覆头和右激光熔覆头,左激光熔覆头和右激光熔覆头位于激光锻造系统中激光锻造头的两侧且位于同一条直线上。由于激光熔覆系统采用了双激光熔覆头的方式,加工产品的下一层时,不再需要将被加工的产品移到初始位置,被加工的产品可以直接反向移动进行加工,从而大大提高了工作效率;由于通过对激光熔覆头和激光锻造头以及机械手的合理控制,解决了在拐角处,被加工产品漏锻的现象;通过调节机械手对产品的移动速度以及激光锻造头的脉冲重复频率,避免出现把液态金属“打飞”,出现凹坑的现象。

Description

机器人联动的激光熔覆复合激光锻造的双光束变向控制方法
技术领域
本发明涉及一种增减材制造领域,具体涉及一种机器人联动的激光熔覆复合激光锻造的双光束变向控制方法。
背景技术
激光熔覆技术在国内尚未完全实现产业化的主要原因是熔覆层质量的不稳定性。激光熔覆过程中,加热和冷却的速度极快,最高速度可达1012℃/s。由于熔覆层和基体材料的温度梯度和热膨胀系数的差异,可能在熔覆层中产生多种缺陷,主要包括气孔、裂纹、变形和表面不平度,激光熔覆层的开裂敏感性,仍然是困扰国内外研究者的一个难题,也是工程应用及产业化的障碍,虽然已经对裂纹的形成扩进行了研究,但控制方法方面还不成熟。而采用激光熔覆+激光锻造的方法能够很好的解决这些问题。
国家知识产权局于2019年3月8日公开了公开号为CN109434110A的专利文献,一种等离子熔覆与激光锻造复合增减材制造方法,其特征在于,包括等离子束发生器、激光发生器、同轴送粉系统、等离子束熔覆系统、激光锻造系统、激光铣削系统、激光分光束系统、高速三维测量系统、温度传感系统,中央控制系统,计算机服务器;在等离子束熔覆成形的同时,根据温度传感器的实时反馈的数据和零件的分层切片图中熔覆的不同部位,设置不同的激光冲击锻造参数,对熔覆区域进行激光锻造,解决零件内部的裂纹缺陷、应力分布不平衡的问题;在熔覆三层或多层后,根据高速三维测量系统的数据,设置激光铣削参数,对熔覆区进行激光铣削,解决零件外部的挂渣,粗糙度大,尺寸精度低的问题;等离子束熔覆系统、激光锻造系统、激光铣削系统三大主要系统有机结合,相互耦合影响,形成闭环系统,同时解决增材制造中零件的外部和内部的问题,提高零件的性能和寿命。
国家知识产权局于2018年11月16日公开了公开号为CN108817671A的专利文献,丝材电弧熔积与激光冲击锻造复合增减材制造方法,其特征在于,包括以下步骤:S1. 通过计算机对三维零件模型进行切片分层处理,生成加工路径,所述加工路径包括电弧熔积路径、激光冲击锻造路径以及铣削路径;根据所述加工路径设定加工参数,所述加工参数包括焊机参数、激光束参数以及铣削参数,根据所述加工参数生成数控加工的代码,并提取加工路径输入至控制器中;S2. 控制器指令电弧熔积系统开始送丝,再根据步骤S1中所述的电弧熔积路径熔化焊丝,形成熔覆层;S3. 在形成步骤S2所述的熔覆层时,采用温度传感器对熔覆层区域温度实时监控并将监测的温度实时反馈给计算机;当监测的温度达到设定的激光锻造温度时,控制器控制激光冲击锻造系统按照步骤S1所述的激光冲击锻造路径对零件进行激光冲击锻造加工;S4. 在丝材电弧熔积与激光冲击锻造加工完成零件的一层结构时,图像传感器把已形成的零件表面形貌数据传输到计算机分析,调整铣削系统的高度,铣削系统根据步骤S1所述的铣削路径对零件表面机械铣削加工;S5. 当步骤S4中的铣削加工完成后,图像传感器再次测量零件表面形貌数据并上传至计算机分析,重新设定零件下一层结构的加工参数;S6. 重复步骤S2、S3、S4,直至完成零件最后一层结构的熔积,控制器控制机械铣削系统对零件表面进行精加工处理得到预定零件。
上述专利文献尽管采用了激光熔覆+激光锻造的方法,但在实际应用中存在以下缺陷:一是在产品成型过程中,必须先熔覆后锻造并且由于激光熔覆系统和激光锻造系统的构造,激光熔覆头和激光锻造头是不适合移动的,两者的位置固定,被加工的产品只能相对激光熔覆头和激光锻造头单向移动,所以当加工完成产品的一层结构后,处理下一层时,被加工的产品必须移到初始位置进行加工,所以工作效率不高;二是激光熔覆头和激光锻造头的组合,在加工路线的拐角处容易出现激光锻造不到的地方;三是在加工路线的拐角处,熔覆单道1与熔覆单道2之间存在着搭接,由于熔覆单道1的温度尚未冷却,导致单道2的温度下降缓慢,可能存在液态组织,此时如果进行激光锻造,容易把液态金属“打飞”出现凹坑,从而影响下一层的成形。
发明内容
为了克服上述之不足,本发明的目的在于提供一种工作效率高的机器人联动的激光熔覆复合激光锻造的双光束变向控制方法。
为解决上述技术问题,本发明所采用的技术方案是:
机器人联动的激光熔覆复合激光锻造的双光束变向控制方法,包括激光熔覆系统、激光锻造系统和机器人,所述机器人用以带动被加工件基板沿着增材轨迹移动,激光熔覆系统和激光锻造系统固定不动,用以对被加工件作增材处理;所述激光熔覆系统设有左激光熔覆头和右激光熔覆头,左激光熔覆头和右激光熔覆头位于激光锻造系统中激光锻造头的两侧且位于同一条直线上,激光锻造头到左激光熔覆头和右激光熔覆头的距离相等,距离为△S;对被加工件进行分层增材处理时,机器人带动被加工件基板沿着增材轨迹由左向右移动,左激光熔覆头不工作,激光锻造头和右激光熔覆头增材处理完一层后处理下一层时,机器人带动被加工件基板沿着增材轨迹反向移动,右激光熔覆头不工作,激光锻造头和左激光熔覆头对该层进行增材处理。
进一步地,所述增材处理的具体过程如下:启动机器人,机器人移动被加工件基板,当被加工件的增材轨迹的初始位置位于左激光熔覆头的下方时,开启熔覆系统的左激光熔覆头,左激光熔覆头喷出的熔覆料沿着增材轨迹布置,当跟随被加工件基板移动的初始位置熔覆料移动到激光锻造系统的激光锻造头下方时(移动长度为△S),启动激光锻造系统的激光锻造头对熔覆料进行锻造。
进一步地,当机器人移动被加工件基板,使增材轨迹的拐角处到达左激光熔覆头的下方时,左激光熔覆头继续工作,机器人继续按原移动方向继续移动被加工件基板,当左激光熔覆头偏离增材轨迹时,左激光熔覆头关闭;移动△S的距离后,激光锻造头完成对拐角处熔覆料的锻造。该操作控制方式解决了拐角处锻造不到的问题。
进一步地,当激光锻造头完成对拐角处熔覆料的锻造时,机器人移动被加工件基板,将增材轨迹的拐角处移动到左激光熔覆头的下方时,启动左激光熔覆头沿着增材轨迹继续布置熔覆料,当移动△S的距离时,启动激光锻造系统的激光锻造头,同时降低锻造激光器的脉冲频率,直到液态组织不出现,再提高锻造激光器的脉冲频率。以解决液态金属“打飞”出现凹坑的问题。
进一步地,所述锻造激光器的脉冲频率在1Hz、5 Hz、10Hz三个参数之间调整。
进一步地,所述左激光熔覆头和右激光熔覆头安装在同一个输料管上。
本发明的有益效果在于:
由于激光熔覆系统采用了双激光熔覆头的方式,并且将双激光熔覆头置于激光锻造头的两侧,加工产品的下一层时,不再需要将被加工的产品移到初始位置,被加工的产品可以直接反向移动进行加工,从而大大提高了工作效率;
由于通过对激光熔覆头和激光锻造头以及机械手的合理控制,解决了在拐角处,被加工产品漏锻的现象;
通过调节机械手对产品的移动速度以及激光锻造头的脉冲重复频率,避免出现把液态金属“打飞”,出现凹坑的现象。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图:
图1为本发明机械手向左移动中右激光熔覆头开始熔覆的状态图;
图2为图1机械手向左移动中启动激光锻造头的状态图;
图3为图2机械手向左移动完成第一条单道熔覆时右激光熔覆头关闭的状态图;
图4为图3机械手向左移动完成第一单道的锻造时激光锻造头关闭的状态图;
图5为图4机器人带动基板反向移动熔覆下一层时左熔覆头开启的状态图;
图6为图5机械手向左移动中启动激光锻造头的状态图。
图中:1、左激光熔覆头; 2、右激光熔覆头; 3、激光锻造头; 4、机器人; 5、被加工件基板。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步详细的描述,需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
机器人联动的激光熔覆复合激光锻造的双光束变向控制方法,包括激光熔覆系统、激光锻造系统和机器人,左激光熔覆头和右激光熔覆头安装在同一个输料管上。机器人用以带动被加工件基板沿着增材轨迹移动,激光熔覆系统和激光锻造系统固定不动,用以对被加工件作增材处理;所述激光熔覆系统设有左激光熔覆头1和右激光熔覆头2,左激光熔覆头和右激光熔覆头位于激光锻造系统中激光锻造头3的两侧且位于同一条直线上,激光锻造头到左激光熔覆头和右激光熔覆头的距离相等,距离为△S;对被加工件进行分层增材处理时,机器人带动被加工件基板沿着增材轨迹由左向右移动,左激光熔覆头不工作,激光锻造头和右激光熔覆头增材处理完一层后处理下一层时,机器人带动被加工件基板沿着增材轨迹反向移动,右激光熔覆头不工作,激光锻造头和左激光熔覆头对该层进行增材处理。这样操作的好处是:加工产品的下一层时,不再需要将被加工的产品移到初始位置,被加工的产品可以直接反向移动进行加工,以提高工作效率。
增材处理的具体过程如下:启动机器人,机器人移动被加工件基板,当被加工件的增材轨迹的初始位置位于左激光熔覆头的下方时,开启熔覆系统的左激光熔覆头,左激光熔覆头喷出的熔覆料沿着增材轨迹布置,当跟随被加工件移动的初始位置熔覆料移动到激光锻造系统的激光锻造头下方时(移动长度为△S),启动激光锻造系统的激光锻造头对熔覆料进行锻造。当机器人移动被加工件基板,使增材轨迹的拐角处到达左激光熔覆头的下方时,左激光熔覆头继续工作,机器人继续按原移动方向继续移动被加工件,当左激光熔覆头偏离增材轨迹时,左激光熔覆头关闭;移动△S的距离后,激光锻造头完成对拐角处熔覆料的锻造。该操作控制方式解决了拐角处锻造不到的问题。当激光锻造头完成对拐角处熔覆料的锻造时,机器人移动被加工件基板,将增材轨迹的拐角处移动到左激光熔覆头的下方时,启动左激光熔覆头沿着增材轨迹继续布置熔覆料,当移动△S的距离时,启动激光锻造系统的激光锻造头,同时降低锻造激光器的脉冲频率,直到液态组织不出现,再提高锻造激光器的脉冲频率。以解决液态金属“打飞”出现凹坑的问题。所述锻造激光器的脉冲频率在1Hz、5 Hz、10Hz三个参数之间调整。
本专利以加工“弓”字型结构的零件为例,展开描述,具体步骤如下:
S1、轨迹规划:根据待成形零件的三维模型,进行分层切片处理,每一层的双光束的运动轨迹为“弓”字型,即机器人4夹持被加工件基板5,在用户坐标系的运动轨迹为“弓”字型的往复运动,是在被加工件基板5上加工出“弓”字型结构的零件;
S2、设置激光熔覆系统工艺参数:根据切片处理的厚度等,设置激光熔覆系统的送分率、激光功率、光斑大小等工艺参数;
S3、设置激光锻造系统和机器人4的工艺参数:根据零件材料特性等,设置激光锻造系统的激光能量、光斑大小、脉冲频率等参数;最后设置机器人的用户坐标、移动速率等参数;
S4、启动激光熔覆系统和机器人,右激光熔覆头2开始熔覆,如图1所示,在熔覆单道长度为△S的时候,启动激光锻造系统的激光锻造头3如图2;
S5、完成第一条单道熔覆时,如图3所示,右激光熔覆头2关闭,激光锻造系统的激光锻造头继续工作,机器人带动基板移动△S的距离,完成第一单道的锻造,激光锻造头关闭,如图4所示;
S6、对零件的下一层增料时,机器人4带动被加工件基板5反向移动,左熔覆头1开启,如图5所示;在熔覆的熔覆单道长度为△S的时候,启动激光锻造系统的激光锻造头3,如图6所示;同时降低激光锻造头3的脉冲频率,直到液态组织不出现,再提高激光锻造头的脉冲频率,在完成第二条单道的熔覆时,再重复步骤S5;
S7、重复步骤S4~S6,直到完成零件的成形。
此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (6)

1.一种机器人联动的激光熔覆复合激光锻造的双光束变向控制方法,其特征在于:包括激光熔覆系统、激光锻造系统和机器人,所述机器人用以带动被加工件基板沿着增材轨迹移动,激光熔覆系统和激光锻造系统固定不动,用以对被加工件作增材处理;所述激光熔覆系统设有左激光熔覆头和右激光熔覆头,左激光熔覆头和右激光熔覆头位于激光锻造系统中激光锻造头的两侧且位于同一条直线上,激光锻造头到左激光熔覆头和右激光熔覆头的距离相等,距离为△S;对被加工件进行分层增材处理时,机器人带动被加工件基板沿着增材轨迹由左向右移动,左激光熔覆头不工作,激光锻造头和右激光熔覆头增材处理完一层后处理下一层时,机器人带动被加工件基板沿着增材轨迹反向移动,右激光熔覆头不工作,激光锻造头和左激光熔覆头对该层进行增材处理。
2.根据权利要求1所述的机器人联动的激光熔覆复合激光锻造的双光束变向控制方法,其特征在于:所述增材处理的具体过程如下:启动机器人,机器人移动被加工件基板,当被加工件的增材轨迹的初始位置位于左激光熔覆头的下方时,开启熔覆系统的左激光熔覆头,左激光熔覆头喷出的熔覆料沿着增材轨迹布置,当跟随被加工件基板移动的初始位置熔覆料移动到激光锻造系统的激光锻造头下方时,启动激光锻造系统的激光锻造头对熔覆料进行锻造。
3.根据权利要求2所述的机器人联动的激光熔覆复合激光锻造的双光束变向控制方法,其特征在于:当机器人移动被加工件基板,使增材轨迹的拐角处到达左激光熔覆头的下方时,左激光熔覆头继续工作,机器人继续按原移动方向继续移动被加工件基板,当左激光熔覆头偏离增材轨迹时,左激光熔覆头关闭;移动△S的距离后,激光锻造头完成对拐角处熔覆料的锻造。
4.根据权利要求3所述的机器人联动的激光熔覆复合激光锻造的双光束变向控制方法,其特征在于:当激光锻造头完成对拐角处熔覆料的锻造时,机器人移动被加工件基板,将增材轨迹的拐角处移动到左激光熔覆头的下方时,启动左激光熔覆头沿着增材轨迹继续布置熔覆料,当移动△S的距离时,启动激光锻造系统的激光锻造头,同时降低锻造激光器的脉冲频率,直到液态组织不出现,再提高锻造激光器的脉冲频率。
5.根据权利要求4所述的机器人联动的激光熔覆复合激光锻造的双光束变向控制方法,其特征在于:所述锻造激光器的脉冲频率在1Hz、5 Hz、10Hz三个参数之间调整。
6.根据权利要求1所述的机器人联动的激光熔覆复合激光锻造的双光束变向控制方法,其特征在于:所述左激光熔覆头和右激光熔覆头安装在同一个输料管上。
CN201910951329.9A 2019-10-08 2019-10-08 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法 Active CN110747459B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910951329.9A CN110747459B (zh) 2019-10-08 2019-10-08 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法
PCT/CN2020/082807 WO2021068465A1 (zh) 2019-10-08 2020-04-01 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910951329.9A CN110747459B (zh) 2019-10-08 2019-10-08 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法

Publications (2)

Publication Number Publication Date
CN110747459A true CN110747459A (zh) 2020-02-04
CN110747459B CN110747459B (zh) 2021-09-07

Family

ID=69277761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910951329.9A Active CN110747459B (zh) 2019-10-08 2019-10-08 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法

Country Status (2)

Country Link
CN (1) CN110747459B (zh)
WO (1) WO2021068465A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195467A (zh) * 2020-09-30 2021-01-08 南京中科煜宸激光技术有限公司 盘类件高速激光熔覆制备功能涂层变形量控制方法与系统
WO2021068465A1 (zh) * 2019-10-08 2021-04-15 广东镭奔激光科技有限公司 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法
CN114378315A (zh) * 2021-12-06 2022-04-22 南方科技大学 高通量材料开发成型设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113927312A (zh) * 2021-10-28 2022-01-14 燕山大学 激光重熔快速成形装置及重熔成形方法
CN115026315B (zh) * 2022-03-10 2023-07-21 武汉大学 一种基于超速激光成像的熔覆增减材加工在线检测装置
CN114473798A (zh) * 2022-03-18 2022-05-13 绵阳科奥表面涂层技术有限公司 一种金属表面梯度涂层熔覆装置及方法
CN115007881A (zh) * 2022-06-16 2022-09-06 广东省科学院智能制造研究所 旋转挤压装置、复合增材制造系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2500996A (en) * 2012-03-19 2013-10-09 Bae Systems Plc Stress relieving layers in additive layer manufacturing
CN106825574A (zh) * 2017-04-18 2017-06-13 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
US20170217093A1 (en) * 2016-01-28 2017-08-03 Lawrence Livermore National Security, Llc Heat treatment to anneal residual stresses during additive manufacturing
CN108746616A (zh) * 2018-06-15 2018-11-06 广东工业大学 一种同轴送粉与激光锻打复合增减材制造方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19533960C2 (de) * 1995-09-13 1997-08-28 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Herstellung von metallischen Werkstücken
CN101392382B (zh) * 2008-10-15 2010-08-11 江苏大学 一种激光熔覆结合激光喷丸强化表面改性的方法和装置
CN106312068A (zh) * 2016-10-26 2017-01-11 华南理工大学 一种基于粉床的机械接触式双向切换铺粉系统
CN107217253B (zh) * 2017-05-08 2020-10-16 广东工业大学 一种光-粉-气同轴输送激光熔覆冲击锻打成形复合制造方法
CN109550955A (zh) * 2018-12-24 2019-04-02 苏州西帝摩三维打印科技有限公司 双向定量铺粉机构
CN109434110A (zh) * 2018-12-26 2019-03-08 合肥华脉激光科技有限公司 一种等离子熔覆与激光锻打复合增减材制造方法及装置
CN110747459B (zh) * 2019-10-08 2021-09-07 广东镭奔激光科技有限公司 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2500996A (en) * 2012-03-19 2013-10-09 Bae Systems Plc Stress relieving layers in additive layer manufacturing
US20170217093A1 (en) * 2016-01-28 2017-08-03 Lawrence Livermore National Security, Llc Heat treatment to anneal residual stresses during additive manufacturing
CN106825574A (zh) * 2017-04-18 2017-06-13 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
CN108746616A (zh) * 2018-06-15 2018-11-06 广东工业大学 一种同轴送粉与激光锻打复合增减材制造方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KALENTICS N等: "3D laser shock peening as a way to improve geometrical accuracy in selective laser melting", 《INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY》 *
杨智帆、张永康: "复合增材制造技术研究进展", 《电加工与模具》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021068465A1 (zh) * 2019-10-08 2021-04-15 广东镭奔激光科技有限公司 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法
CN112195467A (zh) * 2020-09-30 2021-01-08 南京中科煜宸激光技术有限公司 盘类件高速激光熔覆制备功能涂层变形量控制方法与系统
CN112195467B (zh) * 2020-09-30 2022-04-22 南京中科煜宸激光技术有限公司 盘类件高速激光熔覆制备功能涂层变形量控制方法与系统
CN114378315A (zh) * 2021-12-06 2022-04-22 南方科技大学 高通量材料开发成型设备

Also Published As

Publication number Publication date
WO2021068465A1 (zh) 2021-04-15
CN110747459B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN110747459B (zh) 机器人联动的激光熔覆复合激光锻造的双光束变向控制方法
US10682716B2 (en) Method for rapidly forming a part using combination of arc deposition and laser shock forging and device implementing same
CN108746616B (zh) 一种同轴送粉与激光锻打复合增减材制造方法及装置
CN106425490B (zh) 一种增减材复合加工设备及其应用
CN107378251B (zh) 一种大型金属零件的去应力激光冲击锻打表面修复方法与装置
CN109202082B (zh) 增材、等材、减材复合金属3d激光成形装置及其方法
CN110076566A (zh) 一种微铸锻铣磨原位复合的金属零件制造系统及方法
CN107217253B (zh) 一种光-粉-气同轴输送激光熔覆冲击锻打成形复合制造方法
US20050173380A1 (en) Directed energy net shape method and apparatus
CN109746441A (zh) 一种激光冲击强化辅助的激光增材制造复合加工方法
CN206415882U (zh) 一种大幅面零部件的增减材复合制造设备
CN110744172B (zh) 电弧增材限行程高频微锻冲击强化锻造头、装置及方法
CN111702416A (zh) 一种高铁枕梁工艺孔自动焊接方法
CN109226760B (zh) 一种金属材料增材制造装置及方法
CN106513676A (zh) 一种光斑与粉斑自动协同可控的激光金属增材制造装置及方法
WO2011127798A1 (zh) 零件与模具的熔积成形复合制造方法及其辅助装置
WO2017071316A1 (zh) 基于互联网信号传递的等离子熔融及多轴铣削加工复合3d打印设备
CN109175367B (zh) 增材、等材复合金属3d激光成形装置及其方法
CN113059277B (zh) 一种航空发动机火焰筒异型气膜孔的超快激光加工方法
CN109434110A (zh) 一种等离子熔覆与激光锻打复合增减材制造方法及装置
CN111702417A (zh) 一种高铁枕梁工艺孔用移载式双机器人电弧3d打印工作站及其工作方法
JP2019098402A (ja) 付加的製造のための方法及びシステム
CN112663043A (zh) 一种超声喷丸辅助激光增材修复装置及其修复方法
RU2695856C1 (ru) Способ изготовления изделий из стали типа ак
CN114101712A (zh) 一体式电弧3d打印增减材制造系统与增减材加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant