CN110739156A - 一种增强钛酸钾电极电化学性能的处理方法 - Google Patents

一种增强钛酸钾电极电化学性能的处理方法 Download PDF

Info

Publication number
CN110739156A
CN110739156A CN201810790431.0A CN201810790431A CN110739156A CN 110739156 A CN110739156 A CN 110739156A CN 201810790431 A CN201810790431 A CN 201810790431A CN 110739156 A CN110739156 A CN 110739156A
Authority
CN
China
Prior art keywords
potassium titanate
electrode
electrochemical performance
enhancing
titanate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810790431.0A
Other languages
English (en)
Inventor
夏晖
张薇
徐璟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201810790431.0A priority Critical patent/CN110739156A/zh
Publication of CN110739156A publication Critical patent/CN110739156A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种增强钛酸钾电极电化学性能的处理方法,对钛酸钾电极进行氩‑氢混合等离子体处理,经本发明提供的氩‑氢混合等离子体处理方法处理后,增加了电极中一维纳米结构表面粗糙度,增大了晶格间距,降低了材料的能隙,提高了其电导率,从而有效增强钛酸钾纳米材料的电化学性能,使之能够更好、更广泛的应用于超级电容、锂离子电池、以及光电催化材料等领域。

Description

一种增强钛酸钾电极电化学性能的处理方法
技术领域
本发明涉及电化学电极材料领域,特别是涉及一种增强钛酸钾电极电化学性能的处理方法。
背景技术
伴随着日益突出的能源匮乏的问题日,寻找廉价的储能材料和清洁能源成为研究的热点。Ti基材料具有成本低、应变小、无毒、化学性质稳定等优势被广泛应用于太阳能电池、光催化、传感器、生物医学等领域。但其较宽的带隙和较差的电导率限制了在储能器件的应用。因此,降低带隙宽度和提高电导率有望使Ti基电极的性能得到很大提升。
钛酸钾是Ti基材料的一种,其工作电位低、化学性质稳定,但是其电导率低,离子扩散动力学缓慢,不适用于储能领域。目前对于钛酸钾的改性方法主要有制备纳米结构的钛酸钾,增大比表面积来增加更多的活性位点,缩短扩散距离,促进离子传输,提高电化学动力学(Zhang,Q.Ultrafine Potassium Titanate Nanowires:a New Ti-Based Anodefor Sodium Ion Batteries.Chem.Commun.2016,52,6229-6232.Jin Han,Exploration ofK2Ti8O17as an anode material for potassium-ion batteries.Chem.Commun.,2016,52,11274);或者与导电性更高的材料(如石墨烯)进行复合等策略来实现电化学性能的提高。(Cheng Zeng,Confined Transformation Derived Ultrathin Titanate Nanosheets/Graphene Films for Excellent Na/K Ion Storage.Angew.Chem.10.1002/ange.201803511)。
发明内容
鉴于以上所述钛酸钾的缺点,本发明的目的在于提供一种简单高效的增强钛酸钾电极电化学性能的处理方法,用于解决其电导率低,电化学性能差的问题。
为实现上述目的及其他相关目的,本发明提供一种增强钛酸钾电极电化学性能的处理方法,所述的处理方法包括以下步骤:
对制备的电极进行气体等离子体处理,增大其层间距,引入氧空位,从而提高电极材料的导电性和电化学性能。
优选地,采用一步水热法制备钛酸钾电极。
优选地,水热反应在高压反应釜中进行,混合溶液体积为反应釜体积的75%~85%。
优选地,水热反应温度为180℃~220℃,反应时间为5h~12h。
优选地,一维纳米结构为纳米带或纳米线结构。
优选地,等离子体处理采用的气体为氩-氢混合气,气体流量为20-100sccm。
优选地,等离子体处理时,体系气压在20Pa,等离子体气相沉积仪的功率为100-300W,处理时间为30-180min。
如上所述,本发明的增强钛酸钾电极电化学性能的处理方法,具有以下效果:1.通过采用等离子体对制备的一维结构的钛酸钾电极进行处理,可以在较低温度和较短时间内引入氧空位。
2.经过本发明提供的处理方法处理后,由于等离子体的击打作用,电极从一维纳米结构变成二维纳米结构,提高材料的比表面积,并且氧空位的引入降低了材料的能隙,提高材料电导率,从而可有效增强材料的电化学性能,为纳米材料在超级电容器、锂离子电池、钠离子电池、钾离子电池等储能领域的性能提升提供了有效途径。
附图说明
图1是实施例1制备的KTO电极经等离子体处理前后的SEM图
图2为实施例1中制备的KTO电极经等离子体处理后SEM图
图3是实施例1制备的KTO电极经等离子体处理前后的XRD对比图
图4是实施例1制备的KTO电极经等离子体处理前后的XPS对比图
图5为实施例1中制备的KTO电极经等离子体处理前后的循环伏安曲线对比图
图6为实施例1中制备的KTO电极经等离子体处理前后的阻抗曲线对比图
图7为实施例1中制备的KTO电极经等离子体处理前后的恒流充放电曲线对比图
图8为实施例2中制备的KTO电极经等离子体处理前后的循环伏安曲线对比图
具体实施方式
下面结合实施例和附图对本发明做进一步详细的描述。
实施例1
采用一步水热法制备钛酸钾电极。首先,依次用丙酮、乙醇和水将两片Ti箔超声清洗15min,接着,将Ti箔作为钛源,放入盛有1M KOH聚四氟乙烯内衬的高压釜内,将高压釜密封后置于烘箱内,于200℃下恒温5h后,取出Ti箔,用去离子水冲洗,烘干。
将制备的两个KTO电极中的其中一个KTO电极不做等离子体处理,另一个放入等离子体气相沉积仪的反应腔室中,进行等离子体处理,其中,处理所用的气体为氩-氢混合气,气流量为50sccm,等离子体清洗仪的功率为200W,处理时间为60min。
对上述制备的未经等离子体处理和经过等离子体处理的两个KTO电极分别进行了各项测试,测试内容有:
对未经等离子体处理和经过等离子体处理的两个电极进行形貌观察,如图1和图2分别为未经等离子体处理和经等离子体处理后的电极的SEM图。由图看出,初始制备的电极为纳米带结构,经过等离子体处理后,电极材料中有二维纳米片出现,提高了电极接触面积,增加了电极活性位点。此外由于等离子体本身具有较强的刻蚀作用,用等离子体处理过的电极的表面显然更为粗糙,使得电极材料的比表面积增大,这也有利于电极电化学性能的增强。
对未经等离子体处理和经过等离子体处理的两个电极进行XRD测试,如图3为经等离子体处理前后电极的XRD对比图谱。从图中看出,经等离子体处理过的电极(200)晶面主峰向左偏移,表明晶面间距增大,由于所述制备的材料为一种层状钛酸钾材料,由XRD图谱看出经等离子处理后的电极材料的层间距扩大,这有利于离子的嵌入与脱出,促进其电化学性能的增强。
对未经等离子体处理和经过等离子体处理的两个电极进行XPS测试,如图4为经等离子体处理前后电极的XPS对比图谱。从图中看出,经等离子体处理过的电极Ti2p3/2的结合能从458.52eV向左偏移到458.28eV,Ti2p1/2的峰位置从464.34eV左移至464.16Ev,表明经等离子体处理后有Ti3+存在,说明产生了氧空位,提高了导电性,这有利于电子的传输,促进其电化学性能的增强。
对未经等离子体处理和经过等离子体处理的两个电极进行循环伏安曲线测试,以待测试的电极作为工作电极,铂片作为对电极,Ag/AgCl作为参比电极,电解液为0.5MK2SO4。如图5为经等离子体处理前后的电极的循环伏安曲线对比图,测试时扫描速度均为50mv/s。从图中看出,经等离子体处理过的电极曲线电流和包围的面积明显增加,这表明处理过的KTO电极的电化学性能有明显的提高,电容增加。
对未经等离子体处理和经过等离子体处理的两个电极进行阻抗测试,测试体系与循环伏安曲线与相同,如图6为经等离子体处理前后的KTO电极的阻抗曲线对比图。可以看出,处理后的电极阻抗曲线中半圆半径很小,这就意味着处理后的电极具有更小的内阻和更好的导电性,更窄的能隙。这可能是由于等离子体部分还原,形成Ti3+自掺杂和氧空位,降低材料的能隙,提高了导电性能。
对未经等离子体处理和经过等离子体处理的两个电极以1Ag-1电流密度恒电流充放电进行充放电测试。如图7为经等离子体处理前后的KTO电极的恒电流充放电对比图。可以看出,没有经等离子体处理和经过等离子体处理的电极比电容分别能达到78.5F/g和160.8F/g,从数据看出,经过等离子体处理的电极的电化学性能有很大提高。
实施例2
钛酸钾电极制备方法与实施例1相同,采用一步水热法,将Ti箔作为钛源,放入盛有1M KOH聚四氟乙烯内衬的高压釜内,将高压釜密封后置于200℃的烘箱内,恒温5h后,取出Ti箔,用去离子水冲洗,烘干。对其进行等离子体处理。采用氩-氢混合气,功率为100W,处理时间为30min。电极测试过程与实施例1相同,获得的未处理和处理的电极的形貌照片、阻抗测试曲线的对比结果与实施例1相同。以50mv/s扫速进行循环伏安测试,测试结果如图8所示。经计算得出不处理和处理的电极比电容分别为78.5F/g和100.7F/g,从数据看出,经过等离子体处理的电极的电化学性能有了提高。
综上所述,本发明提供一种简单高效的增强钛酸钾电极电化学性能的处理方法,通过采用等离子体处理的方法,对制备的一维结构的电极进行处理,经过本发明提供的处理方法处理后,材料从一维纳米带结构变成二维纳米片结构,使得离子扩散距离缩短,接触面积增大,此外还增加了电极表面粗糙度,提高了比表面积,并且等离子体部分还原Ti4+形成Ti3+自掺杂和氧空位,降低了材料的能隙,提高了其导电性能,从而有效地增强材料的电化学性能,钛酸钾纳米材料能够更好、更广泛的应用于超级电容、锂离子电池以及光电催化材料等领域。

Claims (7)

1.一种增强钛酸钾电极电化学性能的处理方法,其特征在于,所述钛酸钾电极的处理方法,包括以下步骤:
用氩氢混合等离子体对所制备的钛酸钾电极进行处理,增大其层间距,引入氧空位,提高电导率和电化学性能。
2.根据权利要求1所述的增强钛酸钾电极电化学性能的处理方法,其特征在于,采用水热法制备所述的钛酸钾电极。
3.根据权利要求2所述的增强钛酸钾电极电化学性能的处理方法,其特征在于,所述的水热反应在高压反应釜中进行,混合溶液体积为反应釜体积的75%~85%。
4.根据权利要求2或3所述的增强钛酸钾电极电化学性能的处理方法,其特征在于,所述的水热反应温度为160℃~220℃,反应时间为5h~12h。
5.根据权利要求1所述的制备增强钛酸钾电极电化学性能的处理方法,其特征在于,所述电极为层状结构纳米材料。
6.根据权利要求1所述的增强钛酸钾电极电化学性能的处理方法,其特征在于,等离子体处理采用的气体为氩-氢混合气,气体流量为20-100sccm。
7.根据权利要求1所述的增强钛酸钾电极电化学性能的处理方法,其特征在于,等离子体处理时,体系气压在20Pa,等离子体气相沉积仪的功率为100-300W,处理时间为30-180min。
CN201810790431.0A 2018-07-18 2018-07-18 一种增强钛酸钾电极电化学性能的处理方法 Pending CN110739156A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810790431.0A CN110739156A (zh) 2018-07-18 2018-07-18 一种增强钛酸钾电极电化学性能的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810790431.0A CN110739156A (zh) 2018-07-18 2018-07-18 一种增强钛酸钾电极电化学性能的处理方法

Publications (1)

Publication Number Publication Date
CN110739156A true CN110739156A (zh) 2020-01-31

Family

ID=69234903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810790431.0A Pending CN110739156A (zh) 2018-07-18 2018-07-18 一种增强钛酸钾电极电化学性能的处理方法

Country Status (1)

Country Link
CN (1) CN110739156A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219941A1 (en) * 1999-06-04 2003-11-27 Cem Basceri Dielectric cure for reducing oxygen vacancies
CN103265067A (zh) * 2013-05-03 2013-08-28 上海中科高等研究院 一种增强TiO2电极电化学性能的处理方法
CN103922402A (zh) * 2014-03-24 2014-07-16 攀钢集团攀枝花钢铁研究院有限公司 一种制备nh4v3o8纳米带的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219941A1 (en) * 1999-06-04 2003-11-27 Cem Basceri Dielectric cure for reducing oxygen vacancies
CN103265067A (zh) * 2013-05-03 2013-08-28 上海中科高等研究院 一种增强TiO2电极电化学性能的处理方法
CN103922402A (zh) * 2014-03-24 2014-07-16 攀钢集团攀枝花钢铁研究院有限公司 一种制备nh4v3o8纳米带的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZE YANG ET AL: "Hydrogen plasma reduced potassium titanate as a high power and ultralong lifespan anode material for sodium-ion batteries", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Similar Documents

Publication Publication Date Title
Liang et al. Oxygen-vacancy-rich nickel-cobalt layered double hydroxide electrode for high-performance supercapacitors
Lian et al. Porous SnO2@ C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries
Yang et al. Nitrogen-doped TiO 2 (B) nanorods as high-performance anode materials for rechargeable sodium-ion batteries
CN104979105B (zh) 一种氮掺杂多孔碳材料、制备方法及其应用
Yang et al. Graphitic carbon materials extracted from spent carbon cathode of aluminium reduction cell as anodes for lithium ion batteries: Converting the hazardous wastes into value-added materials
Kim et al. Structural modification of self-organized nanoporous niobium oxide via hydrogen treatment
Wu et al. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes
Zheng et al. Microwave-assisted synthesis of SnO2-Ti3C2 nanocomposite for enhanced supercapacitive performance
Zhang et al. Ultrasonic and NH4+ assisted Ni foam substrate oxidation to achieve high performance MnO2 supercapacitor
Li et al. Constructing graphene-like nanosheets on porous carbon framework for promoted rate performance of Li-ion and Na-ion storage
CN102923698A (zh) 一种超级电容器用三维多孔石墨烯的制备方法
Wang et al. Ultrastable MnO 2 nanoparticle/three-dimensional N-doped reduced graphene oxide composite as electrode material for supercapacitor
Stenina et al. Effect of carbon and N-doped carbon nanomaterials on the electrochemical performance of lithium titanate-based composites
Wang et al. Biomass CQDs derivate carbon as high-performance anode for K-ion battery
Mateen et al. Silicon intercalation on MXene nanosheets towards new insights into a superior electrode material for high-performance Zn-ion supercapacitor
Wei et al. High-specific-capacitance supercapacitor based on vanadium oxide nanoribbon
Yu et al. Conductive hydrogels with 2D/2D β-NiS/Ti3C2Tx heterostructure for high-performance supercapacitor electrode materials
Pang et al. Surface activated commercial carbon cloth as superior electrodes for symmetric supercapacitors
Wang et al. Protonic acid catalysis to generate fast electronic transport channels in O-functionalized carbon textile with enhanced energy storage capability
Li et al. High nitrogen-oxygen dual-doped three-dimensional hierarchical porous carbon network derived from Eriocheir sinensis for advanced supercapacitors
Jiang et al. An aqueous symmetrical supercapacitor with high bulk pseudocapacitance induced by phase transformation of MnO2
CN105789628A (zh) 一种氮杂石墨烯和二氧化锰杂化气凝胶及其制备方法和用途
Mo et al. Nitrogen and oxygen co-doped hierarchical porous carbon for zinc-ion hybrid capacitor
Li et al. Preparation and performance comparison of supercapacitors based on nanocomposites of MnO2 with cationic surfactant of CTAC or CTAB by direct electrodeposition
Cho et al. Anomalous increase in specific capacitance in MXene during galvanostatic cycling studies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200131

RJ01 Rejection of invention patent application after publication