CN110737040A - 3d识别滤光片 - Google Patents

3d识别滤光片 Download PDF

Info

Publication number
CN110737040A
CN110737040A CN201810790443.3A CN201810790443A CN110737040A CN 110737040 A CN110737040 A CN 110737040A CN 201810790443 A CN201810790443 A CN 201810790443A CN 110737040 A CN110737040 A CN 110737040A
Authority
CN
China
Prior art keywords
refractive index
filter
refractive
layers
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810790443.3A
Other languages
English (en)
Other versions
CN110737040B (zh
Inventor
刘哲
于光龙
李昱
苏炎
吴砺
林志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photop Technologies Inc
Original Assignee
Photop Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photop Technologies Inc filed Critical Photop Technologies Inc
Priority to CN201810790443.3A priority Critical patent/CN110737040B/zh
Priority to US17/259,419 priority patent/US20210255377A1/en
Priority to JP2021525342A priority patent/JP2021530752A/ja
Priority to KR1020217004612A priority patent/KR20210042110A/ko
Priority to PCT/CN2018/105142 priority patent/WO2020015103A1/zh
Publication of CN110737040A publication Critical patent/CN110737040A/zh
Application granted granted Critical
Publication of CN110737040B publication Critical patent/CN110737040B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0068Reactive sputtering characterised by means for confinement of gases or sputtered material, e.g. screens, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/3442Applying energy to the substrate during sputtering using an ion beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了3D识别滤光片,具有与800nm到1800nm波长范围部分重叠的通带,并且具有包含380到750nm范围的截止带,包括基片及在基片两个表面镀制的滤光膜层,其中一个表面的滤光膜层由高折射率层、中折射率层和低折射率层堆叠而成,另一个表面的滤光膜层由至少两种材料层堆叠而成。该3D识别滤光片在实现大的光线入射角度时较小的波长偏移量的同时,保持了高截止度和较窄的过渡带宽度。

Description

3D识别滤光片
技术领域
本发明涉及滤光片领域,尤其涉及3D识别滤光片。
背景技术
三维(3D)识别技术在机器视觉、虚拟现实、身份识别、自动驾驶等领域获得了广泛的应用。相对于二维的成像,3D识别可以获得被探测物的立体信息。3D识别的基本原理是发射某波段的红外光,并利用传感器接收被探测物返回的该波段的光线,利用信号处理获得距离信息,从而建立被探测物的三维模型。典型的3D识别模组发射端包含红外光源、调制器件、透镜,接收端包含红外探测器、镜头、红外滤光片等。
对3D识别而言,其接收端的红外滤光片与传统的可见光摄像头中的滤光片存在较大差异。传统的可见光摄像头中的滤光片往往是红外截止式,而3D识别滤光片:a) 只允许特定波段的光(与发射端红外光源相对应)透过,对其他波段特别是可见光需要高度截止,以实现过滤噪声、提高系统信噪比的目的;b)3D识别需要探测到一定角度内的立体信息,因此滤光片需要容纳足够的光线入射角(如20到40度)。由于通带带宽和截止带深度决定了滤光片过滤噪声的能力,因此希望3D识别滤光片的通带位置对光线入射角度尽量不敏感,同时对其他波段特别是可见光有较高的截止度。
3D识别模组使用的滤光片主要基于干涉原理,通过真空镀膜技术将数十至上百层薄膜沉积到透明基板(如玻璃)上,其薄膜材料一般至少为两种,影响最终滤光片性能的主要因素是每一层材料的折射率和沉积厚度。根据光学干涉多层膜理论,如果基于带通膜系在入射角为0时的中心波长为λ0,那么在入射角为θ时该膜系的中心波长λθ与λ0存在以下关系:
Figure RE-GDA0001777080140000011
其中n为膜系的等效折射率,由膜系中的腔层阶数、材料折射率决定。假设选用二阶腔,则膜系的等效折射率为(参见H.Angus Macloed著《薄膜光学》(Thin-Film OpticalFilters,fourth edition),第八章):
Figure RE-GDA0001777080140000021
膜系由高、低折射率两种材料层构成,其中nH为高折射率层的折射率,nL为低折射率层的折射率。基于这两个公式,可以容易的估算实现低角度漂移所需要的材料折射率。例如,如果某个入射角为0度时中心波长为850nm的滤光片希望在入射角为30度时的中心波长不小于830nm,则需要膜系的等效折射率n不小于2.3;假设低折射率层为折射率为1.48的SiO2,则高折射率层的折射率只要满足不小于3.1即可以实现。制备折射率大于3的材料的一种常规方法是利用Si:H材料,Hidenhiko Yoda等人在2004年公开了题为“利用射频磁控溅射制备a-Si:H/SiO2多层膜光学滤光片 (a-Si:H/SiO2multilayer films fabricated byradio-frequency magnetron sputtering for optical filters)”的方法(美国光学学会,Applied Optics,2004年,第43卷,第17 期),可以制备在800-1800nm波段折射率均大于3.5的Si:H,并且Si:H材料在 800-1800nm波段透明。
然而,现有3D滤光片基于如上所述的高低两种折射率的多腔带通膜系的方法,仍存在一些问题:a)Si:H材料对600nm波长以下的光吸收很强,但对于600-800nm 波长范围的光没有完全的吸收,导致滤光片难以在该范围有高的截止度;b)进一步减小角度漂移需要增加腔层的阶数,为了保持通带的带宽,提高腔层阶数不可避免的增加了各光学腔之间的失配,导致滤光片的抖度变差,过渡带变宽;c)由于b)的影响,为了维持滤光片的抖度需要大幅增加腔的数目,导致滤光膜层数明显增加,制备难度提高。
发明内容
本发明的目的在于提供一种3D识别滤光片,对现有3D识别滤光片进行了技术改进,在实现大的光线入射角度时较小的波长偏移量的同时,保持了高截止度和较窄的过渡带宽度。
为实现上述目的,本发明采用以下技术方案:
3D识别滤光片,具有与800nm到1800nm波长范围部分重叠的通带,并且具有包含380到750nm范围的截止带,包括基片及在基片两个表面镀制的滤光膜层。
其中一个表面的滤光膜层由高折射率层、中折射率层和低折射率层堆叠而成;所述高折射率层为Si:H,每个高折射率层在800到1800nm的折射率均大于3;所述中折射率层在800到1800nm的折射率均大于1.6且小于3;所述低折射率层在800nm 到1800nm的折射率均小于1.6;所有高折射率层和低折射率层的物理厚度的比例大于1.5:1。
另一个表面的滤光膜层由至少两种材料层堆叠而成,其层数不小于15层。
所述滤光片的通带具有中心波长,在入射光的角度由0度变为30度时,其中心波长的偏移量小于20nm;所述滤光片的截止带在380nm到750nm范围的截止度大于 OD4;所述滤光片的通带边缘具有过渡带,其在90%透过率到10%透过率的过渡带宽度小于5nm。
所述基片的材料为硅材料,或基于二氧化硅材料的玻璃材料,或塑料,或蓝宝石。其通带具有中心波长,在入射光的角度由0度变为30度时,其中心波长的偏移量小于12nm。
所述中折射率层为Si:H、TiO2、Nb2O5、Ta2O5、SiO2、SixNy其中一种或至少两种组成的混合物;当其为混合物时,通过工艺配比,其折射率具有在从1.6到3的部分范围内可连续调整的性质;
或所述中折射率层为SiOx:H,通过工艺调整元素组分的化学计量比值,其折射率具有在从1.6到3的部分范围内可连续调整的性质;
或所述中折射率层为SiNx:H,通过工艺调整元素组分的化学计量比值,其折射率具有在从1.6到3的部分范围内可连续调整的性质。
所述低折射率层为SiO2
本发明采用以上技术方案,在实现大的光线入射角度时较小的波长偏移量的同时,保持了高截止度和较窄的过渡带宽度。
本发明还公开了实现该3D识别滤光片的制造方法。该方法采用中频磁控溅射或者离子束溅射的方式,通过向溅射机腔室内通入氢气,形成Si:H膜层。本发明公开了实现该技术方案所需调整沉积膜层的光学性质的多种方法:氢气的流量可以调节,从而调整Si:H膜层的光学性质;氢气和氧气的流量可以同时调节,从而调整SiOx:H 膜层元素组分的化学计量比,进而调整SiOx:H的折射率;氮气和氢气的流量可以同时调节,从而调整SiNx:H膜层元素组分的化学计量比,进而调整SiNx:H的折射率;至少两种材料可以共同沉积,通过调整材料的比例,调整混合物膜层的折射率。
附图说明
以下结合附图和具体实施方式对本发明做进一步详细说明:
图1为本发明的示意图。
图2为示例常规3D识别滤光片在0度和30度入射角时的透射光谱图,其中横坐标为波长(nm),纵坐标为透过率(%)。
图3为该示例常规3D识别滤光片在0度时的光密度图,横坐标为波长(nm),纵坐标为光密度(无量纲)。
图4为本发明实施例的3D识别滤光片在0度和30度入射角时的透射光谱图,其中横坐标为波长(nm),纵坐标为透过率(%)。
图5为该本发明实施例的3D识别滤光片在0度时的光密度图,其中横坐标为波长(nm),纵坐标为光密度(无量纲)。
图6a为一种中频磁控溅射系统的示意图。
图6b为图6a中频磁控溅射系统中靶材处电压的时序示意图,其中横坐标为时间,纵坐标为电压。
图7为一种离子束溅射系统的示意图;
图8为氢气气体流量和沉积Si:H膜层的折射率n、消光系数k的关系的示意图。
图9为氢气和氧气气体流量的比例和沉积SiOx:H膜层的折射率的关系的示意图。
图10为氢气和氮气气体流量的比例和沉积SiNx:H膜层的折射率的关系的示意图。
图11为一种支持两种材料共同溅射从而实现沉积膜层折射率连续可控的装置。
图12为另一种支持两种材料共同溅射从而实现沉积膜层折射率连续可控的装置。
具体实施方式
如图1所示,根据本发明的一种3D识别滤光片101,包括基片102,基片102 一个表面镀制的滤光膜层103,基片102另一个表面镀制的滤光膜层104组层。基片 102对滤光片的工作波段透光,并且起到支撑滤光片的作用。一般的,当滤光片的通带在800-1000nm范围内时,基片材料优选为透光性良好的光学玻璃,如BK7、D263T、 B270等。当滤光片通带在1550nm波段附近时,基片102可以选择为硅基片。特别的,也可以使用对特别波段有吸收效果的有色玻璃,以达到进一步增加截止度的目的;通过对玻璃进行钢化处理,可以进一步提高基片的机械强度。
基片一个表面(以下简述为“带通膜面”)镀制的滤光膜层103,由高折射率层、中折射率层和低折射率层堆叠而成。其中高折射率层为Si:H,在800到1800nm的折射率均大于3;中折射率层在800到1800nm的折射率均大于1.6且小于3;低折射率层在800nm到1800nm的折射率均小于1.6。所有高折射率层和低折射率层的物理厚度的比例大于1.5:1。以图1为例,103-1层可以是高折射率层Si:H,103-2层可以是中低折射率层记为M1,103-3层可以是低折射率层如SiO2,103-4层可以是另一种中折射率层记为M2。每层材料交替堆叠,膜层总数为n1层。基片另一个表面(以下简述为“截止膜面”)镀制的滤光膜层104,由至少两种材料层堆叠而成。各材料层交替堆叠,膜层总数为n2层,且n2>15。图1中的膜层数目、材料堆叠顺序只是起示意之用,实际的膜层数目、堆叠顺序可以根据滤光片应用需求而设计。
图2、图3描述了一种现有技术的3D识别滤光片的光谱性能,该滤光片被设计成在入射角0度到30度入射范围内透射848nm到861nm的光。其中带通膜面采用高折射率层和低折射率层交替堆叠而成,高折射率层使用Si:H,在860nm附近的折射率为3.62;低折射率层使用SiO2,在860nm附近的折射率为1.48。滤光膜面膜层总层数为41层,总的物理厚度为4.4μm。在基板的另一个表面,通过镀制抗反射(AR) 膜,以实现提高860nm附近通带透过率的目的。AR膜采用Ta2O5和SiO2材料交替堆叠,层数为5层。由于AR膜只起到降低背面反射的作用,该滤光片的过渡带抖度、截止带深度都是由带通膜面决定的。
图2为该示例3D识别滤光片在0度和30度入射角时的透射光谱图,纵坐标为透射率。如前所述,基于光学薄膜理论,当腔层选用折射率大于3的材料时,其等效折射率满足显而易见的关系,可以实现低的角度偏移。该设计采用的初始腔层阶数为2 阶腔,腔层数目为7,其通带中心波长(定义为90%透过率的两个波长点的中心位置) 在30度入射角时的偏移量小于10nm。
值得一提的是,该滤光片的偏移量已经接近现有3D识别滤光片技术的最好水平。然而,为了减小角度偏移采用高阶腔,通过增大光学腔之间的失配来得到应用需求的带宽,会导致通带和截止带之间的过渡带抖度的牺牲:41层、7腔膜系实现的90%透过率到10%透过率波长点的过渡带宽度在短波段为6.8nm,长波段为6.9nm。继续提高抖度需要增加腔的数目,即增加膜系的层数,相应制备难度也会明显增加。
图5为该示例3D识别滤光片在0度时的光密度图。光密度OD与透射率T(单位为%)的换算关系为:OD=-log10(T/100),光密度直观表示了滤光片的截止度水平。受益于Si:H对短波段光的吸收,滤光片在600nm以下可以到达较高的截止度。然而,在700nm至730nm附近,由于Si:H对这个波段的吸收并不完全,导致滤光片的OD4 截止范围无法覆盖整个可见光波段。
图4、图5描述了根据本发明的实施例的3D识别滤光片的光谱性能。同样的,该3D识别滤光片也被设计成在入射角0度到30度入射范围内透射848nm到861nm 的光,与图2、图3的3D滤光片相当。该实施例带通膜面的滤光膜层由高折射率层、中折射率层和低折射率层堆叠而成;其中高折射率层为Si:H,在860nm附近的折射率为3.62;低折射率层使用SiO2,在860nm附近的折射率为1.48;采用两种中折射率层,其中第一种中折射率层M1在860nm附近的折射率为1.91,第二种中折射率层 M2在860nm附近的折射率为2.71。带通膜面的膜层层数为19层,总厚度为4.1μm。该实施例的截止膜面膜层由Si:H和SiO2两种材料层构成,层数为31层。本实施例的滤光片的过渡带抖度由带通膜面膜系决定,截止带深度则由带通膜面和截止膜面膜系共同决定。
图4为该实施例的3D识别滤光片在0度和30度入射角时的透射光谱图,纵坐标为透射率。该实施例的通带中心波长(定义为90%透过率的两个波长点的中心位置) 在30度入射角时的偏移量小于10nm,与图2、图3的3D滤光片相当。不同的是,虽然本实施例的滤光片在带通膜面层数减少了一半以上,但滤光片的过渡带抖度不仅没有降低,反而有提升:90%透过率到10%透过率波长点的过渡带宽度在短波段为 4.3nm,长波段为4.9nm。
图5为该实施例的3D识别滤光片在0度时的光密度图。针对带通膜面在 600-800nm波段截止度不足的问题,在滤光片的截止膜面镀制多层截止膜,以弥补带通膜面在该波段的截止度不足。增加截止膜后,滤光片的OD4截止范围可以覆盖整个可见光波段。
表1将图2中的示例3D识别滤光片和图3中的根据本发明的3D识别滤光片进行的比较列表。可以看出,示例和根据本发明的实施例的3D识别滤光片通带范围、角度漂移一致,但本发明的实施例具有显著的优点:a)带通膜面膜系膜层数目明显减少,本实施例减少了一半以上;b)更高的过渡带抖度;c)本发明的OD4截止带宽度可以覆盖整个可见光波段。
表1
Figure RE-GDA0001777080140000061
Figure RE-GDA0001777080140000071
在生产上,带通膜面膜系的制备难度远高于截止膜面。简化的带通膜面膜层数目降低了膜系的制备难度,提高了生产效率和成品率;更高的抖度意味着滤光片从高透到高截止的过渡带更窄,对过渡带附近的噪声光抑制更好;更深的可见光截止度有利于抑制可见光噪声。表2、表3分别罗列了该实施例两个表面的滤光膜层的详细设计,包含了层的编号(从基底到空气)、层的材料、层的折射率和物理厚度。
表2
Figure RE-GDA0001777080140000072
表3
Figure RE-GDA0001777080140000081
本发明滤光片中滤光膜层的高折射率层Si:H和中折射率层,通过真空溅射沉积的方法实现。图6a示意性的表示了一种可用于制备本发明3D识别滤光片的真空溅射系统,该系统为中频磁控溅射系统。其中601为溅射系统的腔室。602为抽真空系统,具体可以是机械泵、扩散泵、冷凝泵、分子泵的一种或几种,优选情况为机械泵和分子泵的组合。603为中频电源,其包含了两路输出到溅射靶材,输出功率为kW级别,频率为5到100kHz;优选情况为输出功率8到10kW,工作频率为40kHz。溅射单元由一对604-1、604-2磁铁和一对605-1、605-2靶材构成,604磁铁位于605靶材的背面,起到约束电子轨迹的作用。当溅射Si:H材料时,靶材605-1、605-2为同样尺寸的硅靶材。在溅射时,基片606位于靶材的对面,虽然图6a为基板位于靶材下方的结构,但实际选取也可以是靶材位于基板下方。设备可能用到的工艺气体为氩气607、氢气608、氧气609和氮气610,这些工艺气体通过管路通入到腔室内溅射单元附近,管路上配有流量计用于调整和监控气体流量。氩气607为工作气体,氢气608、氧气 609、氮气610为反应气体。抽真空系统602将多余的气体排出,整个溅射是在高真空中进行。作为优选的情况,溅射系统可以配备辅助离子源611,氩气、氢气、氧气、氮气可以部分或全部的通过辅助离子源611输入到腔室内,以增加离子活化水平,提高成膜质量。作为优选的情况,在靶材605和基片606之间可以配置均匀性修正板612,通过在修正板上设计遮挡的形状,修正沉积材料在基片606不同位置的均匀性分布。
图6b为该示例中频磁控溅射系统中靶材处电压的时序示意图,其中横坐标为时间,纵坐标为电压。在溅射过程中,两个靶材605-1、605-2周期性交替进行溅射,与传统的直流溅射相比,有利于抑制打火现象,提高沉积速率。
图7示意性的表示了一种可用于制备本发明3D识别滤光片的真空溅射系统,该系统为离子束溅射系统。其中701为溅射系统的腔室。702为抽真空系统,具体可以是机械泵、扩散泵、冷凝泵、分子泵的一种或几种,优选情况为机械泵和冷凝泵的组合。703为离子束源,具体可以是考夫曼型离子源、微波型离子源、射频型离子源,优选情况为射频型离子源。离子束源703利用气体放电产生等离子体,通过电场加速形成离子束,离子束经过中和器704后,直接轰击靶材705。当沉积Si:H材料时,靶材705为硅靶。溅射材料沉积在基片706上。设备可能用到的工艺气体为氩气707、氢气708、氧气709和氮气710,这些工艺气体通过管路通入到腔室内并全部或部分的通入到离子束源703中,管路上配有流量计用于调整和监控气体流量。氩气707为工作气体,氢气708、氧气709、氮气710为反应气体。抽真空系统702将多余的气体排出,溅射过程在高真空中进行。类似的,作为优选的情况,溅射系统可以配备辅助离子源和均匀性修正板,但该示意图中并没有画出。
本发明的3D识别滤光片,除了高折射率层、低折射率层外,创新性的使用了至少一种中折射率层。中折射率层的折射率在800到1800nm范围均大于1.6且小于3,并在制备中可以具有折射率连续可调节的性质。通过至少一种的折射率连续可调的中折射率层,可以实现带通膜系中腔层和腔层之间的良好位相匹配,使得滤光片保持高抖度的同时,带通膜系的层数还能明显减少。以下对制备折射率在1.6至3部分范围内连续可调的材料的方法进行详细描述。
方法一:调整氢气的流量,从而调整Si:H的光学性质。图8为氢气气体流量和沉积Si:H膜层的折射率n、消光系数k的关系的示意图。增加H2流量,可以使Si:H 材料的折射率n降低,同时消光系数k降低;反之减小H2流量,可以使Si:H材料的折射率n提高,同时消光系数k亦提高。调节H2的方法简便,但有两个问题需要注意:a)只调整H2流量,难以实现材料折射率在1.6到3大范围内可调,经验上折射率调整范围极限为2.7至3之间;b)材料的折射率、消光系数存在敏感的相互关系,而消光系数表征了材料对光的吸收,过高的消光系数可能导致滤光片通带透过率的明显下降。
H2流量的选取受溅射系统真空抽速、靶材溅射功率、工作气体流量的影响,通过调整靶材溅射功率(溅射产额)、工作气体(Ar流量)等参数来调整材料的折射率,其基本原理与调整H2流量相同——调整Si:H材料中H的构成比例。因此,这些方法应被视为同样类型。
方法二:调整氢气和氧气气体流量的比例,调整SiOx:H沉积膜层的折射率。图9 为氢气和氧气气体流量的比例和沉积SiOx:H膜层的折射率的关系的示意图。当氢气和氧气的流量比为0,即只通入氧气时,所沉积的材料为SiO2,折射率小于1.6;当只通入氢气时,所沉积的材料为折射率大于3的Si:H。调整氢气和氧气的比例,可以调整SiOx:H膜层元素组分的化学计量比,即x的值,进而获得所需折射率的SiOx:H 膜层。SiOx:H的消光系数对氢气和氧气流量比例不敏感。
方法三:调整氢气和氮气气体流量的比例,调整SiNx:H沉积膜层的折射率。图 10为氢气和氮气气体流量的比例和沉积SiNx:H膜层的折射率的关系的示意图。类似的,当氢气和氮气的流量比为0,即只通入氮气时,所沉积的材料为氮化硅,折射率在2.0左右;当只通入氢气时,所沉积的材料为折射率大于3的Si:H。调整氢气和氮气的比例,可以调整SiNx:H膜层元素组分的化学计量比,即x的值,进而获得所需折射率的SiNx:H膜层。SiNx:H的消光系数对氢气和氮气流量比例不敏感。
方法四:利用至少两种材料溅射的混合物,通过调整被混合材料的比例,获得折射率连续可控的混合物材料。一个方法是利用不同折射率的材料轮流溅射,不同折射率层厚度满足特定理论关系,以实现类似“准梳状滤波器(Quasi-rugate filter)”的效果。另一个典型的方法是采用多种材料共溅射。图11为一种支持两种材料共同溅射从而实现沉积膜层折射率连续可控的装置,该装置可以辅助的增加到如上所述的中频磁控溅射系统中。图11为溅射系统的俯视图,1101为溅射系统的腔室。腔室1101 内有一个可以高速旋转的转盘1102,多个圆形基片1103均匀的放置在转盘1102之上,并随转盘1102高速旋转。在腔室的上方,固定着两个溅射单元1104和1105,溅射单元固定在腔室上方,并不随转盘1102旋转。溅射单元所溅射的材料、转盘转速可以根据需要选择,比如溅射单元1104溅射Nb2O5,溅射单元1105溅射SiO2,转盘转速为每分钟120转。当系统处于共溅射状态时,两个溅射单元1104、1105同时工作并溅射相应材料,当基片1103移动到溅射单元1104附近时,少量Nb2O5材料会沉积在基片上,接着当基片1103移动到溅射单元1105附近时,少量SiO2材料会沉积在基片上,如此循环往复,在基片上会形成较为均匀的Nb2O5-SiO2混合物膜层,其比例为两个溅射单元分别沉积相应材料的速率之比。通过工艺调整两个溅射单元的沉积速率,可以调整混合物薄膜的组分比例,从而控制混合物膜层的折射率。
图12为另一种支持两种材料共同溅射从而实现沉积膜层折射率连续可控的装置,该装置可以辅助的增加到如上所述的离子束溅射系统中。其中1201为离子束源,相当于图6a中的703。靶材由1202、1203两部分拼接在一起构成,两部分分别为两种不同的材料。1204区域为离子束轰击靶材的区域,由于离子束同时轰击靶材的两种材料,因此溅射沉积的材料为靶材对应两种材料的混合物。例如,靶材1202部分可以是Si材料,靶材1203部分可以是SiO2材料,这样可以通过共溅射得到Si:H和SiO2材料的混合物。靶材的固定装置具有位移调节功能,通过靶材在一个方向的平移,可以改变离子束轰击区域1204中不同材料的组成比例,实现沉积材料的折射率连续可控。

Claims (10)

1.3D识别滤光片,具有与800nm到1800nm波长范围部分重叠的通带,并且具有包含380到750nm范围的截止带,包括基片及在基片两个表面镀制的滤光膜层;其特征在于:
其中一个表面的滤光膜层由高折射率层、中折射率层和低折射率层堆叠而成;所述高折射率层为Si:H,每个高折射率层在800到1800nm的折射率均大于3;所述中折射率层在800到1800nm的折射率均大于1.6且小于3;所述低折射率层在800nm到1800nm的折射率均小于1.6;所有高折射率层和低折射率层的总物理厚度的比例大于1.5:1;
另一个表面的滤光膜层由至少两种材料层堆叠而成,其层数不小于15层;所述滤光片的通带具有中心波长,在入射光的角度由0度变为30度时,其中心波长的偏移量小于20nm;所述滤光片的截止带在380nm到750nm范围的截止度大于OD4;所述滤光片的通带边缘具有过渡带,其在90%透过率到10%透过率的过渡带宽度小于5nm。
2.根据权利要求1所述的3D识别滤光片,其特征在于:所述基片的材料为硅材料,或基于二氧化硅材料的玻璃材料,或塑料,或蓝宝石。
3.根据权利要求1所述的3D识别滤光片,其特征在于:其通带具有中心波长,在入射光的角度由0度变为30度时,其中心波长的偏移量小于12nm。
4.根据权利要求1所述的3D识别滤光片,其特征在于:所述中折射率层为Si:H、TiO2、Nb2O5、Ta2O5、SiO2、SixNy其中一种或至少两种组成的混合物;当其为混合物时,通过工艺配比,其折射率具有在从1.6到3的部分范围内可连续调整的性质;
或所述中折射率层为SiOx:H,通过工艺调整元素组分的化学计量比值,其折射率具有在从1.6到3的部分范围内可连续调整的性质;
或所述中折射率层为SiNx:H,通过工艺调整元素组分的化学计量比值,其折射率具有在从1.6到3的部分范围内可连续调整的性质。
5.根据权利要求1所述的3D识别滤光片,其特征在于:所述低折射率层为SiO2
6.一种制造如权利要求4所述滤光片的方法,其特征在于:所述方法为中频磁控溅射或离子束溅射的方式,通过向溅射系统通入氢气,形成Si:H膜层。
7.如权利要求6所述的方法,其特征在于:其中氢气的流量可以调节,从而调整Si:H膜层的光学性质。
8.如权利要求6所述的方法,其特征在于:其中氢气和氧气的流量可以同时调节,从而调整SiOx:H膜层元素组分的化学计量比,进而调整SiOx:H的折射率。
9.如权利要求6所述的方法,其特征在于:其中氮气和氢气的流量可以同时调节,从而调整SiNx:H膜层元素组分的化学计量比,进而调整SiNx:H的折射率。
10.如权利要求6所述的方法,其特征在于:其中至少两种材料层可以共同沉积,通过调整材料的比例,调整混合物膜层的折射率。
CN201810790443.3A 2018-07-18 2018-07-18 3d识别滤光片 Active CN110737040B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201810790443.3A CN110737040B (zh) 2018-07-18 2018-07-18 3d识别滤光片
US17/259,419 US20210255377A1 (en) 2018-07-18 2018-09-12 3d identification filter
JP2021525342A JP2021530752A (ja) 2018-07-18 2018-09-12 3d識別フィルタ
KR1020217004612A KR20210042110A (ko) 2018-07-18 2018-09-12 3d 식별 필터
PCT/CN2018/105142 WO2020015103A1 (zh) 2018-07-18 2018-09-12 3d识别滤光片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810790443.3A CN110737040B (zh) 2018-07-18 2018-07-18 3d识别滤光片

Publications (2)

Publication Number Publication Date
CN110737040A true CN110737040A (zh) 2020-01-31
CN110737040B CN110737040B (zh) 2022-03-01

Family

ID=69164236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810790443.3A Active CN110737040B (zh) 2018-07-18 2018-07-18 3d识别滤光片

Country Status (5)

Country Link
US (1) US20210255377A1 (zh)
JP (1) JP2021530752A (zh)
KR (1) KR20210042110A (zh)
CN (1) CN110737040B (zh)
WO (1) WO2020015103A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736250A (zh) * 2020-05-22 2020-10-02 浙江晶驰光电科技有限公司 一种黑膜窄带滤光片及其制备方法
CN111796353A (zh) * 2019-04-08 2020-10-20 采钰科技股份有限公司 光学滤波器及其形成方法
CN112226729A (zh) * 2020-09-29 2021-01-15 苏州众为光电有限公司 一种带通滤光片的制备方法
CN113075758A (zh) * 2021-04-19 2021-07-06 广州市佳禾光电科技有限公司 一种红外带通滤光片及传感器系统
CN113093322A (zh) * 2021-03-30 2021-07-09 联合微电子中心有限责任公司 Cmos图像传感器、干涉型滤光片及其制备方法
WO2022040912A1 (zh) * 2020-08-24 2022-03-03 福州高意光学有限公司 一种低角度偏移滤光片

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108897085A (zh) * 2018-08-06 2018-11-27 信阳舜宇光学有限公司 滤光片及包含该滤光片的红外图像传感系统
US11650361B2 (en) * 2018-12-27 2023-05-16 Viavi Solutions Inc. Optical filter
KR102055579B1 (ko) * 2019-06-27 2019-12-13 주식회사 옵트론텍 광학 필터
KR102429415B1 (ko) * 2020-05-15 2022-08-04 주식회사 옵트론텍 편광기를 갖는 광학 필터
TWI752677B (zh) * 2020-11-12 2022-01-11 晶瑞光電股份有限公司 紅外截止濾光片結構

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9354369B2 (en) * 2012-07-16 2016-05-31 Viavi Solutions Inc. Optical filter and sensor system
US20160216419A1 (en) * 2015-01-23 2016-07-28 Materion Corporation Near infrared optical interference filters with improved transmission
CN105891928A (zh) * 2016-04-29 2016-08-24 杭州科汀光学技术有限公司 一种日夜兼用的摄像滤波器
CN107841712A (zh) * 2017-11-01 2018-03-27 浙江水晶光电科技股份有限公司 高折射率氢化硅薄膜的制备方法、高折射率氢化硅薄膜、滤光叠层和滤光片

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2828935Y (zh) * 2005-03-22 2006-10-18 北京数字奥森识别科技有限公司 一种用于人脸识别的图像获取识别装置
CN101470225B (zh) * 2007-12-27 2011-05-25 汉王科技股份有限公司 用于人脸识别的红外滤光片及制作方法
JP5543690B2 (ja) * 2008-03-12 2014-07-09 キヤノン電子株式会社 Uvirカット用光学フィルタ
CN201440172U (zh) * 2009-06-26 2010-04-21 北京京仪博电光学技术有限责任公司 一种带通滤光片
CN201725051U (zh) * 2010-07-06 2011-01-26 北京金吉奥梦科技有限公司 一种用于人脸识别的光学装置及滤光片
CN203012173U (zh) * 2012-12-17 2013-06-19 晋谱(福建)光电科技有限公司 用于体感识别系统的近红外窄带滤光片
CN103116200B (zh) * 2013-02-05 2013-10-02 哈尔滨工业大学 基于窄带干涉滤光片和主动标志器实现的适配系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9354369B2 (en) * 2012-07-16 2016-05-31 Viavi Solutions Inc. Optical filter and sensor system
US20160216419A1 (en) * 2015-01-23 2016-07-28 Materion Corporation Near infrared optical interference filters with improved transmission
CN105891928A (zh) * 2016-04-29 2016-08-24 杭州科汀光学技术有限公司 一种日夜兼用的摄像滤波器
CN107841712A (zh) * 2017-11-01 2018-03-27 浙江水晶光电科技股份有限公司 高折射率氢化硅薄膜的制备方法、高折射率氢化硅薄膜、滤光叠层和滤光片

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111796353A (zh) * 2019-04-08 2020-10-20 采钰科技股份有限公司 光学滤波器及其形成方法
CN111796353B (zh) * 2019-04-08 2022-03-29 采钰科技股份有限公司 光学滤波器及其形成方法
US11314004B2 (en) 2019-04-08 2022-04-26 Visera Technologies Company Limited Optical filters and methods for forming the same
CN111736250A (zh) * 2020-05-22 2020-10-02 浙江晶驰光电科技有限公司 一种黑膜窄带滤光片及其制备方法
WO2022040912A1 (zh) * 2020-08-24 2022-03-03 福州高意光学有限公司 一种低角度偏移滤光片
CN112226729A (zh) * 2020-09-29 2021-01-15 苏州众为光电有限公司 一种带通滤光片的制备方法
CN112226729B (zh) * 2020-09-29 2022-09-09 苏州众为光电有限公司 一种带通滤光片的制备方法
CN113093322A (zh) * 2021-03-30 2021-07-09 联合微电子中心有限责任公司 Cmos图像传感器、干涉型滤光片及其制备方法
CN113075758A (zh) * 2021-04-19 2021-07-06 广州市佳禾光电科技有限公司 一种红外带通滤光片及传感器系统
CN113075758B (zh) * 2021-04-19 2022-09-23 广州市佳禾光电科技有限公司 一种红外带通滤光片及传感器系统

Also Published As

Publication number Publication date
US20210255377A1 (en) 2021-08-19
CN110737040B (zh) 2022-03-01
WO2020015103A1 (zh) 2020-01-23
KR20210042110A (ko) 2021-04-16
JP2021530752A (ja) 2021-11-11

Similar Documents

Publication Publication Date Title
CN110737040B (zh) 3d识别滤光片
US20210396919A1 (en) Optical filter and sensor system
CN212515117U (zh) 光学滤波器
KR102187048B1 (ko) 적외선 대역 통과 필터
CN113433607B (zh) 一种双带通滤光片及其制作方法
CN111796353A (zh) 光学滤波器及其形成方法
CN109023273B (zh) 一种镀膜设备及镀膜方法
CN211375107U (zh) 一种低雾度的叠层滤光片薄膜
US11169309B2 (en) Infrared bandpass filter having silicon aluminum hydride layers
JP2000171607A (ja) 高緻密な多層薄膜およびその成膜方法
GB2588135A (en) Infrared bandpass filter structure and infrared bandpass filter using the structure
Wang et al. Fabrication of a 33-layer optical reflection filter with stepwise graded refractive index profiles
CN115166886A (zh) 一种超低角度偏移效应的红外截止滤光器
KR20050100542A (ko) 스퍼터 방법을 이용한 광학박막의 제작장치와 방법 및 그광학박막

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant