CN110736727A - 一种土壤污染检测方法 - Google Patents
一种土壤污染检测方法 Download PDFInfo
- Publication number
- CN110736727A CN110736727A CN201911042551.3A CN201911042551A CN110736727A CN 110736727 A CN110736727 A CN 110736727A CN 201911042551 A CN201911042551 A CN 201911042551A CN 110736727 A CN110736727 A CN 110736727A
- Authority
- CN
- China
- Prior art keywords
- soil
- reacting
- water sample
- sample
- suspension water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/34—Purifying; Cleaning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/38—Diluting, dispersing or mixing samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/44—Sample treatment involving radiation, e.g. heat
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种土壤污染检测方法,包括以下步骤:划定土壤检测区域并采集、土壤样品烘培、土壤样品研磨、土壤样品配制悬浮液、投加聚合氯化铝助凝剂与聚丙烯酰胺絮凝剂、悬浮液水样加酸沉淀以及荧光光谱分析测试,本发明通过将土壤样品与水混合形成悬浮液,利用聚合氯化铝助凝剂与聚丙烯酰胺絮凝剂对重金属来实现迅速又精确的捕捉,进而完成土壤的检测。
Description
技术领域
本发明属于土壤检测技术领域,更具体的说涉及一种土壤污染检测方法。
背景技术
土壤污染源主要来自于以重金属为代表的无机污染物和以有毒元素为代表的非金属通过化工合成的有机污染物,目前受到较多关注的重金属污染物有铬、镍、铜、铅及汞等,非金属污染物主要有砷、氟以及硒等,也包括酸、碱以及盐类等,这些有害污染物往往以农药、石油以及天然合成材料废弃污染物夹杂在土壤中释放有害污染元素,还有通过工业废水排放导致土壤污染,最终这些污染元素直接或间接进入人与其他生物体内,不仅危害人体身体健康,而且还导致其他生物逐渐死去,数量大大较少,可见隐藏在土壤中的污染物是非常地危险,而潜藏在土壤中的污染源一般不能通过肉眼发现,必须经过专业的检测手段来获得,现有的检测方法存在一些问题,如检测污染物不全面,部分有害元素存在漏检现象,而且检测出来的有毒元素含量不准确,造成土壤数据达到的假象屡屡发生,因此,如何制定能够快速又精确的土壤污染检测方法是当前土壤检测技术领域亟待解决的问题。
发明内容
本发明的目的在于提供一种土壤污染检测方法,能够实现土壤中铜、铬及镍等重金属快速又精确的测定,大大提升土壤重金属的检测效率,本发明检测技术方案在未来应用广泛,具备推广的前景。
为了实现以上目的,本发明采用以下技术方案:
一种土壤污染检测方法,包括以下步骤:
S1:划定土壤检测区域,且在划定的土壤区域内采集取样;
S2:取出一定量土壤样品放置在电热箱内烘培处理,烘培的温度保持在90℃~100℃的条件下,烘培时间为8~10h,待土壤样品中的含水量在1~3%之间,则取出土壤样品;
S3:将烘培后的土壤样品放置在卧式研磨仪中做研磨处理,待研磨后,将土壤样品粉末放置在干式三维振动筛分仪中做筛分处理,且筛分后的土壤样品粉末直径在25~35μm;
S4:将土壤样品粉末在天平上称取3~5g,并制成50~150ml悬浮液水样,若测定PH值2~4之间,再投入60~80ml悬浮液水样,待反应10~20min,若测定的PH值小于2,再投入150~250ml悬浮液水样,待调节pH值至4~6后,再投入浓度为15%的BC-05SH溶液200ml,待反应10~20min;
S5:投加浓度15%的聚合氯化铝助凝剂200~300ml,并搅拌,待反应10min,形成沉淀物;
S6:再投加浓度为0.01%的聚丙烯酰胺絮凝剂溶液150~250ml,并搅拌,待反应15min,形成沉淀物;
S7:在悬浮液水样中,再加入浓度为25%的稀盐酸100ml,并放置在坩埚上加热200~300℃,再加入浓度为20%的稀硝酸30~50ml,待反应20min,形成沉淀物;
S8:待上述处理完成后,对沉淀物做荧光光谱分析测试,即完成对土壤污染的检测。
优选地,聚合氯化铝助凝剂与聚丙烯酰胺絮凝剂能够快速地捕捉到铬、镍等重金属。
有益效果:
1.本发明通过特定的土壤取样方法能够有效避免特定区域对土壤检测的误导,保证了土壤检测的准确性,减少了土壤的分析时间,有效提高了土壤检测效率。
2.本发明通过将土壤样品与水混合形成悬浮液,利用聚合氯化铝助凝剂与聚丙烯酰胺絮凝剂对重金属来实现迅速又精确的捕捉,进而完成土壤的检测。
具体实施方式
下面将结合具体实施方式对本发明进一步说明,但不限于本发明的保护范围。
实施例1
一种土壤污染检测方法,包括以下步骤:
S1:划定土壤检测区域,且在划定的土壤区域内采集取样;
S2:取出一定量土壤样品放置在电热箱内烘培处理,烘培的温度保持在90℃的条件下,烘培时间为8h,待土壤样品中的含水量在1%,则取出土壤样品;
S3:将烘培后的土壤样品放置在卧式研磨仪中做研磨处理,待研磨后,将土壤样品粉末放置在干式三维振动筛分仪中做筛分处理,且筛分后的土壤样品粉末直径在25μm;
S4:将土壤样品粉末在天平上称取3g,并制成50ml悬浮液水样,若测定PH值2,再投入60ml悬浮液水样,待反应10min,若测定的PH值小于2,再投入150ml悬浮液水样,待调节pH值至4后,再投入浓度为15%的BC-05SH溶液200ml,待反应10min;
S5:投加浓度15%的聚合氯化铝助凝剂200ml,并搅拌,待反应10min,形成沉淀物;
S6:再投加浓度为0.01%的聚丙烯酰胺絮凝剂溶液150ml,并搅拌,待反应15min,形成沉淀物;
S7:在悬浮液水样中,再加入浓度为25%的稀盐酸100ml,并放置在坩埚上加热200℃,再加入浓度为20%的稀硝酸30~50ml,待反应20min,形成沉淀物;
S8:待上述处理完成后,对沉淀物做荧光光谱分析测试,即完成对土壤污染的检测。
实施例2
S1:划定土壤检测区域,且在划定的土壤区域内采集取样;
S2:取出一定量土壤样品放置在电热箱内烘培处理,烘培的温度保持在95℃的条件下,烘培时间为9h,待土壤样品中的含水量在2%,则取出土壤样品;
S3:将烘培后的土壤样品放置在卧式研磨仪中做研磨处理,待研磨后,将土壤样品粉末放置在干式三维振动筛分仪中做筛分处理,且筛分后的土壤样品粉末直径在30μm;
S4:将土壤样品粉末在天平上称取4g,并制成100ml悬浮液水样,若测定PH值为3,再投入70ml悬浮液水样,待反应15min,若测定的PH值小于2,再投入200ml悬浮液水样,待调节pH值至5后,再投入浓度为15%的BC-05SH溶液200ml,待反应15min;
S5:投加浓度15%的聚合氯化铝助凝剂250ml,并搅拌,待反应10min,形成沉淀物;
S6:再投加浓度为0.01%的聚丙烯酰胺絮凝剂溶液200ml,并搅拌,待反应15min,形成沉淀物;
S7:在悬浮液水样中,再加入浓度为25%的稀盐酸100ml,并放置在坩埚上加热250℃,再加入浓度为20%的稀硝酸40ml,待反应20min,形成沉淀物;
S8:待上述处理完成后,对沉淀物做荧光光谱分析测试,即完成对土壤污染的检测。
实施例3
S1:划定土壤检测区域,且在划定的土壤区域内采集取样;
S2:取出一定量土壤样品放置在电热箱内烘培处理,烘培的温度保持在100℃的条件下,烘培时间为10h,待土壤样品中的含水量在3%之间,则取出土壤样品;
S3:将烘培后的土壤样品放置在卧式研磨仪中做研磨处理,待研磨后,将土壤样品粉末放置在干式三维振动筛分仪中做筛分处理,且筛分后的土壤样品粉末直径在35μm;
S4:将土壤样品粉末在天平上称取5g,并制成150ml悬浮液水样,若测定PH值为4,再投入80ml悬浮液水样,待反应20min,若测定的PH值小于2,再投入250ml悬浮液水样,待调节pH值至6后,再投入浓度为15%的BC-05SH溶液200ml,待反应20min;
S5:投加浓度15%的聚合氯化铝助凝剂300ml,并搅拌,待反应10min,形成沉淀物;
S6:再投加浓度为0.01%的聚丙烯酰胺絮凝剂溶液250ml,并搅拌,待反应15min,形成沉淀物;
S7:在悬浮液水样中,再加入浓度为25%的稀盐酸100ml,并放置在坩埚上加热300℃,再加入浓度为20%的稀硝酸50ml,待反应20min,形成沉淀物;
S8:待上述处理完成后,对沉淀物做荧光光谱分析测试,即完成对土壤污染的检测。
本发明技术方案对发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性改进,或未经改进将发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。
Claims (1)
1.一种土壤污染检测方法,其特征在于,包括以下步骤:
S1:划定土壤检测区域,且在划定的土壤区域内采集取样;
S2:取出一定量土壤样品放置在电热箱内烘培处理,烘培的温度保持在90℃~100℃的条件下,烘培时间为8~10h,待土壤样品中的含水量在1~3%之间,则取出土壤样品;
S3:将烘培后的土壤样品放置在卧式研磨仪中做研磨处理,待研磨后,将土壤样品粉末放置在干式三维振动筛分仪中做筛分处理,且筛分后的土壤样品粉末直径在25~35μm;
S4:将土壤样品粉末在天平上称取3~5g,并制成50~150ml悬浮液水样,若测定PH值2~4之间,再投入60~80ml悬浮液水样,待反应10~20min,若测定的PH值小于2,再投入150~250ml悬浮液水样,待调节pH值至4~6后,再投入浓度为15%的BC-05SH溶液200ml,待反应10~20min;
S5:投加浓度15%的聚合氯化铝助凝剂200~300ml,并搅拌,待反应10min,形成沉淀物;
S6:再投加浓度为0.01%的聚丙烯酰胺絮凝剂溶液150~250ml,并搅拌,待反应15min,形成沉淀物;
S7:在悬浮液水样中,再加入浓度为25%的稀盐酸100ml,并放置在坩埚上加热200~300℃,再加入浓度为20%的稀硝酸30~50ml,待反应20min,形成沉淀物;
S8:待上述处理完成后,对沉淀物做荧光光谱分析测试,即完成对土壤污染的检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911042551.3A CN110736727A (zh) | 2019-10-30 | 2019-10-30 | 一种土壤污染检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911042551.3A CN110736727A (zh) | 2019-10-30 | 2019-10-30 | 一种土壤污染检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110736727A true CN110736727A (zh) | 2020-01-31 |
Family
ID=69270358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911042551.3A Pending CN110736727A (zh) | 2019-10-30 | 2019-10-30 | 一种土壤污染检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110736727A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112067344A (zh) * | 2020-08-26 | 2020-12-11 | 西藏自治区农牧科学院农业质量标准与检测研究所 | 一种土壤有害微量元素及硝酸盐污染生态风险评估方法 |
CN112285326A (zh) * | 2020-11-03 | 2021-01-29 | 湖南精泰检测有限公司 | 一种土壤污染检测方法 |
CN112577941A (zh) * | 2020-11-13 | 2021-03-30 | 江苏海洋大学 | 一种土壤有机污染物检测方法 |
CN114354247A (zh) * | 2021-12-16 | 2022-04-15 | 江苏朗地环境技术服务有限公司 | 一种土壤检测方法及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2437083C1 (ru) * | 2010-09-16 | 2011-12-20 | Государственное научное учреждение Всероссийский научно-исследовательский институт агрохимии им. Д.Н. Прянишникова | Способ рентгенофлуоресцентного определения кислоторастворимых форм металлов в почве |
CN104014583A (zh) * | 2014-06-10 | 2014-09-03 | 苏州同和环保工程有限公司 | 一种重金属污染土壤淋洗和重金属浓缩化方法及其设备 |
CN107179329A (zh) * | 2017-06-29 | 2017-09-19 | 苏州浪声科学仪器有限公司 | 一种手持式x荧光光谱仪测定土壤中重金属含量的方法 |
-
2019
- 2019-10-30 CN CN201911042551.3A patent/CN110736727A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2437083C1 (ru) * | 2010-09-16 | 2011-12-20 | Государственное научное учреждение Всероссийский научно-исследовательский институт агрохимии им. Д.Н. Прянишникова | Способ рентгенофлуоресцентного определения кислоторастворимых форм металлов в почве |
CN104014583A (zh) * | 2014-06-10 | 2014-09-03 | 苏州同和环保工程有限公司 | 一种重金属污染土壤淋洗和重金属浓缩化方法及其设备 |
CN107179329A (zh) * | 2017-06-29 | 2017-09-19 | 苏州浪声科学仪器有限公司 | 一种手持式x荧光光谱仪测定土壤中重金属含量的方法 |
Non-Patent Citations (3)
Title |
---|
武汉聚丙烯酰胺使用: "固体重金属捕捉剂", 《HTTP://BLOG.SINA.COM.CN/S/BLOG_D38024680101HA1C.HTML》 * |
高发奎等: "头发、茶叶、土壤中微量重金属元素的X射线荧光分析", 《甘肃环境研究与检测》 * |
黄礼煌等: "《贵金属提取新技术》", 30 November 2016, 冶金工业出版社 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112067344A (zh) * | 2020-08-26 | 2020-12-11 | 西藏自治区农牧科学院农业质量标准与检测研究所 | 一种土壤有害微量元素及硝酸盐污染生态风险评估方法 |
CN112285326A (zh) * | 2020-11-03 | 2021-01-29 | 湖南精泰检测有限公司 | 一种土壤污染检测方法 |
CN112577941A (zh) * | 2020-11-13 | 2021-03-30 | 江苏海洋大学 | 一种土壤有机污染物检测方法 |
CN114354247A (zh) * | 2021-12-16 | 2022-04-15 | 江苏朗地环境技术服务有限公司 | 一种土壤检测方法及其应用 |
CN114354247B (zh) * | 2021-12-16 | 2024-06-04 | 江苏朗地环境技术服务有限公司 | 一种土壤检测方法及其应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110736727A (zh) | 一种土壤污染检测方法 | |
Chen et al. | Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China | |
Feng et al. | Colorimetric filtrations of metal chelate precipitations for the quantitative determination of nickel (II) and lead (II) | |
Ao et al. | Water and sediment quality in Qinghai Lake, China: a revisit after half a century | |
Tufekci et al. | Determination of Pb (II), Zn (II), Cd (II), and Co (II) ions by flame atomic absorption spectrometry in food and water samples after preconcentration by coprecipitation with Mo (VI)-diethyldithiocarbamate | |
Sun et al. | A smartphone-based ratiometric fluorescent device for field analysis of soluble copper in river water using carbon quantum dots as luminophore | |
Ma et al. | Highly sensitive SERS probe for mercury (II) using cyclodextrin-protected silver nanoparticles functionalized with methimazole | |
Shi et al. | Spatial distribution of mercury in topsoil from five regions of China | |
CN109163958A (zh) | 一种土壤消解方法及一种同时测定土壤中多种重金属的检测方法 | |
Khudhair et al. | A simple pre-concentration method for the determination of nickel (II) in urine samples using UV-vis spectrophotometry and flame atomic absorption spectrometry techniques | |
Golui et al. | A new approach to establish safe levels of available metals in soil with respect to potential health hazard of human | |
Rathore | Interpretation and evaluation of the variations in uranium, major cations and anions content of hydrogeochemical samples with reference to the time interval between sampling and analysis | |
Zobkov et al. | Data on the chemical composition of Lake Onego water in 2019-2021 | |
Li et al. | A self-designed versatile and portable sensing device based on smart phone for colorimetric detection | |
CN105699409B (zh) | X射线荧光玻璃熔片法测定重晶石中硫酸钡含量的方法 | |
Langer et al. | Barium partitioning in coccoliths of Emiliania huxleyi | |
Gumbi et al. | Gold nanoparticles for the quantification of very low levels of poly-diallyldimethylammonium chloride in river water | |
CN104914083A (zh) | 一种荧光银纳米簇同时检测I-和Br-的方法及运用 | |
CN102004098A (zh) | 肥料中微量元素的测定方法 | |
Xiong et al. | Simple multimodal detection of selenium in water and vegetable samples by a catalytic chromogenic method | |
Saçmaci et al. | Chromium speciation in environmental samples by solid-phase extraction using lewatit ionac SR-7 resin and flame atomic absorption spectrometry | |
CN107144624B (zh) | 甄别二氧化硅颗粒来源的方法 | |
CN104297172A (zh) | 一种快速检测土壤中汞含量的方法 | |
Hoaghia et al. | Groundwater chemistry rendering using Durov, Piper and ion balance diagrams. Study case: the northern part of Sibiu county | |
CN111912800B (zh) | 一种饮用水中低浓度氨氮的检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200131 |
|
WD01 | Invention patent application deemed withdrawn after publication |