CN110724820B - 一种利用水热法回收退役锂离子电池正极材料的方法 - Google Patents

一种利用水热法回收退役锂离子电池正极材料的方法 Download PDF

Info

Publication number
CN110724820B
CN110724820B CN201911049842.5A CN201911049842A CN110724820B CN 110724820 B CN110724820 B CN 110724820B CN 201911049842 A CN201911049842 A CN 201911049842A CN 110724820 B CN110724820 B CN 110724820B
Authority
CN
China
Prior art keywords
lithium ion
ion battery
anode material
acid
reaction kettle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911049842.5A
Other languages
English (en)
Other versions
CN110724820A (zh
Inventor
胡敬平
蔡晨
彭刚伟
武龙胜
陈思静
侯慧杰
刘冰川
杨家宽
梁莎
肖可可
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201911049842.5A priority Critical patent/CN110724820B/zh
Publication of CN110724820A publication Critical patent/CN110724820A/zh
Application granted granted Critical
Publication of CN110724820B publication Critical patent/CN110724820B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

本发明公开了一种利用水热回收退役锂离子电池正极材料的方法,属于锂离子电池回收技术领域。将退役锂离子电池正极材料加入到有机酸和糖类还原剂的混合液中,转移至反应釜中,然后将该反应釜密封,在100℃‑300℃的条件下进行加热,所述糖类还原剂的还原性官能团将退役锂离子电池正极材料的氧化物还原成有价金属离子,得到黑色浑浊液,然后进行离心,除去黑色沉淀后,将上清液采用孔径小于2μm的水系滤膜进行过滤,即得到含有有价金属离子的浸出液。本发明具有回收成本低、操作简单、回收率高和无污染等优点;同时本发明能实现退役锂离子电池正极材料中有价金属元素的循环利用,解决了锂离子电池正极材料中的氧化物向可利用的离子态转变的问题。

Description

一种利用水热法回收退役锂离子电池正极材料的方法
技术领域
本发明属于锂离子电池回收技术领域,更具体地,涉及一种利用水热回收退役锂离子电池正极材料的方法。
背景技术
锂离子电池作为一种可充电二次电池,由于其体积小、质量轻、能量密度高、循环寿命长、工作电压高、绿色环保等性能优势,被视为21世纪理想的“绿色电源”。锂离子电池广泛应用于移动手机、笔记本电脑和数码相机等便携式电子设备,以及动力汽车、航天航空和军事工业等多个领域。
随着现代科技的飞跃发展,锂离子电池的种类不断发展,消耗量也日益激增,预计到2020年,我国将有50万吨的退役锂离子电池产生,若不及时采取适当的方式处理退役锂离子电池,势必会造成环境污染以及资源的浪费。目前,市场上应用最多的锂离子电池正极材料有钴酸锂、磷酸铁锂和三元材料。其中,以镍钴锰酸锂为代表的三元锂离子电池由于其较高比容量和稳定的性能,正在逐步取代钴酸锂和磷酸铁锂电池,越来越受到人们的青睐。
目前针对退役锂离子电池正极材料的回收主要采用湿法冶金工艺,正极材料首先经酸浸后,采用双氧水作为还原剂,使有价金属从固态转移到离子液态,得到含有价金属的富集溶液,然后经过分离、萃取、沉淀和提纯等一系列的复杂过程实现退役锂离子电池的资源化回收。此种方法中双氧水会迅速分解,压力急剧增加,使密闭的反应釜爆裂,产生严重的安全隐患。现有回收工艺主要基于退役钴酸锂电池的回收利用,而针对新兴的三元正极材料的处理工艺偏少。其中针对退役三元锂离子电池的回收工艺大多数是锂镍钴锰四种金属元素的分别回收,回收工艺繁琐,能耗高,易造成二次污染。
发明内容
本发明解决了现有技术中退役锂离子电池正极材料中氧化物无法利用,有价金属离子回收率低,以及回收过程中反应釜会出现爆裂,存在安全隐患的技术问题。本发明提供了一种利用水热法回收退役锂离子电池正极材料中的有价金属的方法,在水热反应釜中,利用糖类还原剂的还原性官能团将退役锂离子电池正极材料的氧化物还原成有价金属离子。本发明利用一种绿色环保的液体水热法,以退役锂离子电池正极材料为原料,以糖类还原剂还原锂离子电池正极材料中的氧化物,能回收再生有价资源以及实现对环境的保护,同时具备成本低、工艺简单及易于产业化发展的优势。
按照本发明的目的,提供了一种利用水热法回收退役锂离子电池正极材料中的有价金属的方法,包括以下步骤:
(1)将退役锂离子电池正极材料加入到有机酸和糖类还原剂的混合液中,充分混匀后,转移至反应釜中,然后将该反应釜密封,在100℃-300℃的条件下进行加热,所述糖类还原剂的还原性官能团将退役锂离子电池正极材料的氧化物还原成有价金属离子,得到黑色浑浊液;
(2)将步骤(1)得到的黑色浑浊液进行离心,除去黑色沉淀后,将上清液采用孔径小于2μm的水系滤膜进行过滤,即得到含有有价金属离子的浸出液。
优选地,所述退役锂离子电池正极材料含有钴酸锂、锰酸锂、镍酸锂、磷酸铁锂和镍钴锰酸锂中的至少一种。
优选地,所述有机酸为乙酸、苹果酸、柠檬酸、酒石酸、天冬氨酸、抗坏血酸、乳酸、丁二酸和马来酸中的至少一种。
优选地,所述有机酸在混合液中的浓度为0.5mol/L-5mol/L。
优选地,所述还原性官能团为醛基和/或羟基。
优选地,所述糖类还原剂为葡萄糖、蔗糖、纤维素、果糖、乳糖、麦芽糖、核糖和低聚木糖中的至少一种。
优选地,所述糖类还原剂与退役锂离子电池正极材料的质量比为(0.5-5):1。
优选地,所述退役锂离子电池正极材料的质量与混合液的体积之比满足5g/L-50g/L。
优选地,步骤(1)中所述加热的时间为0.5h-5h。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
(1)本发明采用柔性有机酸浸出退役锂离子电池正极材料,避免了无机酸强酸的二次污染,采用糖类还原剂代替传统的双氧水作为还原性添加剂,价格低廉,易于获取,降低了成本。现有技术中高温高压下传统浸出方法使用的双氧水会迅速分解,压力急剧增加,使密闭的反应釜爆裂,产生严重的安全隐患。与之相比,本发明采用的工艺消除了这方面的安全隐患。在糖类还原剂存在的情况下,具有较高价态的过渡金属元素可以还原为较低价离子态的形式,有效地促进了浸出反应。同时高温高压下的水表现为具有独特性质的环保反应介质。在水热条件下,水可以作为一种化学组分起作用并参与反应,亚临界水的高离子产物常数导致的H+的高自然浓度有利于酸浸反应。
(2)本发明通过水热活化浸出,采用温和环保的有机酸作为浸出剂,以糖类还原性添加剂,具有回收成本低、操作简单、回收率高和无污染等优点;同时本发明能实现退役锂离子电池正极材料中有价金属元素的循环利用,解决了锂离子电池正极材料中的氧化物向可利用的离子态转变的问题。本发明必须同时添加有机酸和糖类还原剂,因为过渡金属元素只有在酸性环境中以离子态的形式存在,有机酸负责提供温和的酸性环境,糖类还原剂将高价态难溶于水的过渡金属还原为低价态易溶于水的离子态,破坏金属氧化物的稳定结构,极大的促进了正极材料的浸出过程。
(3)本发明采用的水热浸出,工作温度范围宽,广泛适用于绝大多数有机酸和糖类还原剂,加热的停留时间短,最终实现在低能耗下达到高浸出率的目标。
(4)本发明实现退役锂离子电池正极材料的循环利用,回收得到较高纯度富含有价金属的浸出液,可以作为后续利用的前驱体,推进城市矿山的开发和废弃物的零排放处理。
(5)本发明提出的水热浸出方法绿色环保,简单易于操作,成本低,具有良好的工业化前景。
附图说明
图1为本发明提供的一种利用水热法回收退役锂离子电池正极材料的工艺的流程图。
图2为退役锂离子电池正极材料在不同水热条件下浸出前后的红外光谱(FTIR)图。
图3为不同处理条件下的有价金属元素浸出率对比图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
本发明提供了一种利用水热法回收退役锂离子电池正极材料中的有价金属的方法,图1为本发明提供的一种利用水热法回收退役锂离子电池正极材料的工艺的流程图,包括以下步骤:
(1)将0.2g退役锂离子电池正极材料、2mol/L乙酸和0.3g葡萄糖放入水热反应釜中,其中正极材料与乙酸和葡萄糖混合液的固液比为10g/L,在175℃水热反应3h,获得黑色浑浊液体;
(2)将黑色浑浊液体用高速离心机进行离心,除去黑色沉淀,再用2μm的水系滤膜进行过滤得到富含价金属的浸出液。浸出液中锂的浸出率为99%,钴的浸出率为99%,锰的浸出率为98%,镍的浸出率为98%。
实施例2
本发明提供了一种利用水热法回收退役锂离子电池正极材料中的有价金属的方法,图1为本发明提供的一种利用水热法回收退役锂离子电池正极材料的工艺的流程图,包括以下步骤:
(1)将0.4g退役锂离子电池正极材料、1.5mol/L柠檬酸和0.3g葡萄糖放入水热反应釜中,其中正极材料与乙酸和葡萄糖混合液的固液比为20g/L,在200℃水热反应2h,获得黑色浑浊液体;
(2)将黑色浑浊液体用高速离心机进行离心,除去黑色沉淀,再用2μm的水系滤膜进行过滤得到富含价金属的浸出液。浸出液中锂的浸出率为96%,钴的浸出率为98%,锰的浸出率为99%,镍的浸出率为99%。
实施例3
本发明提供了一种利用水热法回收退役锂离子电池正极材料中的有价金属的方法,图1为本发明提供的一种利用水热法回收退役锂离子电池正极材料的工艺的流程图,包括以下步骤:
(1)将0.5g退役锂离子电池正极材料、1.5mol/L乙酸和1.0g蔗糖放入水热反应釜中,其中正极材料与乙酸和葡萄糖混合液的固液比为25g/L,在150℃水热反应4h,获得黑色浑浊液体;
(2)将黑色浑浊液体用高速离心机进行离心,除去黑色沉淀,再用2μm的水系滤膜进行过滤得到富含价金属的浸出液。浸出液中锂的浸出率为93%,钴的浸出率为90%,锰的浸出率为91%,镍的浸出率为90%。
图2为退役锂离子电池正极材料在不同水热条件下浸出前后的红外光谱(FTIR)图,由图2可知,红外光谱图可以分为特征区域(4000-1350cm-1)和指纹区域(1350-500cm-1)。在特征区域中,在2901、1637和1373cm-1附近的特征峰指示C-H(拉伸键)和C=O(不同的拉伸振动带)的官能团。1317-1164cm-1附近的特征峰为C-O拉伸键,1112-1033cm-1附近的峰表明不同醇化物的C-O拉伸键的官能团(O-H键)。在本发明中,糖类还原剂中的醛/酮化合物(C=O键)和醇化合物(O-H键)在浸出反应中可以被氧化。此外,627-550cm-1附近的峰表明了Co-O、Ni-O、Mn-O和Li-O的特征化学键,从图2可以看出,浸出前后C=O和C-O的特征峰(相关特征峰的强度和宽度)均发生显著变化,而正极材料的特征峰浸出后几乎消失或变弱。表明酸性浸出条件下,糖类还原剂可以与正极材料发生氧化还原反应。
为了便于比较本发明所述方法的必要性,下面将结合对比实例对本发明的优越性进行说明。
对比例1
(1)将0.4g退役锂离子电池正极材料、2mol/L乙酸和1.2g葡萄糖放入三颈烧瓶中,水浴加热,其中正极材料与乙酸和葡萄糖混合液的固液比为20g/L,在90℃水热反应5h,获得黑色浑浊液体;
(2)将黑色浑浊液体用高速离心机进行离心,除去黑色沉淀,再用2μm的水系滤膜进行过滤得到富含有价金属的浸出液。浸出液中锂的浸出率为87%,钴的浸出率为41%,锰的浸出率为56%,镍的浸出率为59%。
此对比例说明相比水浴加热,水热反应能有效提高退役锂离子电池的浸出效果。高温高压下,反应釜中水溶液的质子传递速率加快,有利于浸取液向固体内核的扩散以及产物向溶液主体的扩散,同时可以加速正极材料和糖类还原剂的氧化还原反应,从而大大提高浸取率。
对比例2
(1)将0.8g退役锂离子电池正极材料和2.5mol/L乙酸放入水热反应釜中,其中正极材料与乙酸和葡萄糖混合液的固液比为40g/L,在175℃水热反应3h,获得黑色浑浊液体;
(2)将黑色浑浊液体用高速离心机进行离心,除去黑色沉淀,再用2μm的水系滤膜进行过滤得到富含价金属的浸出液。浸出液中锂的浸出率为66%,钴的浸出率为17%,锰的浸出率为16%,镍的浸出率为26%。
此对比例说明,单独添加柔性有机酸而不添加多糖还原剂下进行的水热处理退役锂离子电池正极材料的浸出效果较差。
对比例3
(1)将0.65g退役锂离子电池正极材料和1.3g葡萄糖放入水热反应釜中,其中正极材料与乙酸和葡萄糖混合液的固液比为33g/L,在275℃水热反应2.5h,获得黑色浑浊液体;
(2)将黑色浑浊液体用高速离心机进行离心,除去黑色沉淀,再用2μm的水系滤膜进行过滤得到富含价金属的浸出液。浸出液中锂的浸出率为79%,钴的浸出率为4%,锰的浸出率为12%,镍的浸出率为2%。
此对比例说明,单独添加多糖还原剂而不添加柔性有机酸下进行的水热处理退役锂离子电池正极材料的浸出效果较差。
图3为不同处理条件下的有价金属元素浸出率对比图。由图3可知,与传统水浴加热相比,水热反应能有效提高浸出效率。在水热浸出过程中,必须同时添加有机酸和糖类还原剂才能实现显著的浸出效果,单独添加有机酸或者糖类还原剂中浸出效率低下。
对比例4
(1)将0.3g退役锂离子电池正极材料、5mol/L乙酸和0.15g葡萄糖放入水热反应釜中,其中正极材料与乙酸和葡萄糖混合液的固液比为15g/L,在90℃水热反应1.5h,获得黑色浑浊液体;
(2)将黑色浑浊液体用高速离心机进行离心,除去黑色沉淀,再用2μm的水系滤膜进行过滤得到富含价金属的浸出液。浸出液中锂的浸出率为72%,钴的浸出率为24%,锰的浸出率为39%,镍的浸出率为43%。
此对比例说明,低温条件下,水热处理退役锂离子电池正极材料的浸出效果较差。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种利用水热法回收退役锂离子电池正极材料中的有价金属的方法,其特征在于,包括以下步骤:
(1)将退役锂离子电池正极材料加入到有机酸和糖类还原剂的混合液中,充分混匀后,转移至反应釜中,然后将该反应釜密封,在150℃-300℃的条件下进行加热,所述糖类还原剂的还原性官能团将退役锂离子电池正极材料的氧化物还原成有价金属离子,得到黑色浑浊液;密封反应釜的高温高压下,反应釜中水溶液的质子传递速率加快,有利于浸取液向固体内核的扩散以及产物向溶液主体的扩散,同时加速正极材料和糖类还原剂的氧化还原反应,从而提高浸取率;
(2)将步骤(1)得到的黑色浑浊液进行离心,除去黑色沉淀后,将上清液采用孔径小于2 μm的水系滤膜进行过滤,即得到含有有价金属离子的浸出液;
所述有机酸为乙酸、苹果酸、柠檬酸、酒石酸、天冬氨酸、抗坏血酸、乳酸、丁二酸和马来酸中的至少一种;
所述还原性官能团为醛基和/或羟基;所述糖类还原剂为葡萄糖、蔗糖、纤维素、果糖、乳糖、麦芽糖、核糖和低聚木糖中的至少一种;所述糖类还原剂与退役锂离子电池正极材料的质量比为(0.5-5):1。
2.如权利要求1所述的利用水热法回收退役锂离子电池正极材料中的有价金属的方法,其特征在于,所述退役锂离子电池正极材料含有钴酸锂、锰酸锂、镍酸锂、磷酸铁锂和镍钴锰酸锂中的至少一种。
3.如权利要求1所述的利用水热法回收退役锂离子电池正极材料中的有价金属的方法,其特征在于,所述有机酸在混合液中的浓度为0.5 mol/L-5 mol/L。
4.如权利要求1所述的利用水热法回收退役锂离子电池正极材料中的有价金属的方法,其特征在于,所述退役锂离子电池正极材料的质量与混合液的体积之比满足5 g/L-50g/L。
5. 如权利要求1所述的利用水热法回收退役锂离子电池正极材料中的有价金属的方法,其特征在于,步骤(1)中所述加热的时间为0.5 h-5 h。
CN201911049842.5A 2019-10-31 2019-10-31 一种利用水热法回收退役锂离子电池正极材料的方法 Active CN110724820B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911049842.5A CN110724820B (zh) 2019-10-31 2019-10-31 一种利用水热法回收退役锂离子电池正极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911049842.5A CN110724820B (zh) 2019-10-31 2019-10-31 一种利用水热法回收退役锂离子电池正极材料的方法

Publications (2)

Publication Number Publication Date
CN110724820A CN110724820A (zh) 2020-01-24
CN110724820B true CN110724820B (zh) 2021-05-18

Family

ID=69222589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911049842.5A Active CN110724820B (zh) 2019-10-31 2019-10-31 一种利用水热法回收退役锂离子电池正极材料的方法

Country Status (1)

Country Link
CN (1) CN110724820B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647752A (zh) * 2020-07-01 2020-09-11 深圳技术大学 一种锂离子电池废料的钴金属回收方法及其设备
CN113862476B (zh) * 2021-09-16 2024-04-02 格林美股份有限公司 一种废旧锂离子电池预提锂方法
CN114480845B (zh) * 2021-12-08 2022-12-02 华中科技大学 一种回收退役锂离子电池正极材料中有价金属的方法
CN114525408B (zh) * 2022-02-18 2023-06-09 中国科学院赣江创新研究院 一种废旧钴酸锂正极材料和含钨固废联合处理的方法
CN115784324B (zh) * 2022-11-29 2024-04-12 四川蜀矿环锂科技有限公司 一种利用废旧三元锂电池回收制备三元正极材料前驱体的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764215A (zh) * 2009-10-14 2010-06-30 孙琦 一种制备锂离子电池正极材料磷酸铁锂的水热合成方法
CN103956461A (zh) * 2014-04-28 2014-07-30 张家港智电芳华蓄电研究所有限公司 一种磷酸亚铁锂和亚铁酸锂复合材料的水热制备方法
CN104091950A (zh) * 2014-07-21 2014-10-08 中国科学院青海盐湖研究所 一种水热法制备磷酸亚铁锂材料的方法
CN109837392A (zh) * 2019-01-25 2019-06-04 宁波行殊新能源科技有限公司 锂离子电池正极材料废料的回收及再生方法
CN110129571A (zh) * 2019-06-11 2019-08-16 中国科学院过程工程研究所 一种从废旧锂离子电池材料中提取有价金属的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868190B (zh) * 2015-05-13 2017-09-12 中国科学院过程工程研究所 一种锂离子电池正极废料中金属的浸出及回收方法
CN105428631A (zh) * 2016-01-20 2016-03-23 宁德新能源科技有限公司 一种锂电池正极材料,其制备方法及含有该材料的锂离子电池
CN108913873A (zh) * 2018-07-05 2018-11-30 山东省科学院能源研究所 一种从废旧镍钴锰锂离子电池中回收高附加值金属的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764215A (zh) * 2009-10-14 2010-06-30 孙琦 一种制备锂离子电池正极材料磷酸铁锂的水热合成方法
CN103956461A (zh) * 2014-04-28 2014-07-30 张家港智电芳华蓄电研究所有限公司 一种磷酸亚铁锂和亚铁酸锂复合材料的水热制备方法
CN104091950A (zh) * 2014-07-21 2014-10-08 中国科学院青海盐湖研究所 一种水热法制备磷酸亚铁锂材料的方法
CN109837392A (zh) * 2019-01-25 2019-06-04 宁波行殊新能源科技有限公司 锂离子电池正极材料废料的回收及再生方法
CN110129571A (zh) * 2019-06-11 2019-08-16 中国科学院过程工程研究所 一种从废旧锂离子电池材料中提取有价金属的方法

Also Published As

Publication number Publication date
CN110724820A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
CN110724820B (zh) 一种利用水热法回收退役锂离子电池正极材料的方法
CN112331949B (zh) 从废旧磷酸铁锂电池中回收磷、铁和锂的方法
CN110791652B (zh) 基于机械化学法的废旧锂离子电池正极材料的回收方法
CN106929664B (zh) 一种从废旧三元锂离子电池中回收锂的方法
CN106848469A (zh) 一种从废旧锂离子电池正极材料中回收有价金属的方法
CN111082043A (zh) 一种废旧镍钴锰酸锂三元电池正极材料的回收利用方法
CN109868364A (zh) 一种废旧锂电池湿法线回收方法
CN109536713B (zh) 一种利用离子液体分离废旧锂离子电池正极活性物质与铝箔的方法
CN110592384B (zh) 一种从混合型废旧锂离子电池中同时回收有价值的金属和铁的新型工艺
CN111477985B (zh) 一种回收废旧锂离子电池的方法
CN110835117B (zh) 一种从废旧三元正极材料中选择性提锂的方法
CN111987381A (zh) 从废旧锂离子电池中浸出有价金属同步脱氟的方法
CN112877548B (zh) 一种废旧锂离子电池正极粉回收有价金属的方法
CN112267023B (zh) 一种含氟物料两段除氟的方法
Yang et al. Progress and prospect on the recycling of spent lithium‐ion batteries: Ending is beginning
CN112186287A (zh) 一种废旧锂离子电池正极材料球磨喷雾再生方法
CN115621598A (zh) 一种废旧ncm523型三元锂电池正极材料回收再生方法
CN114085997A (zh) 一种废旧锂离子电池回收方法
US20240088468A1 (en) Method for extracting lithium from waste lithium battery
CN110649346B (zh) 一种锂电池正极材料的循环制备方法
CN113206227B (zh) 一种废旧镍钴锰锂离子电池正负极材料同时回收制备碳基金属硫化物负极材料的方法
CN114204151A (zh) 一种废弃锂离子电池正极活性材料修复改性方法
CN112591806A (zh) 废旧锂离子电池正极活性材料的回收与再生的方法
CN114480845A (zh) 一种回收退役锂离子电池正极材料中有价金属的方法
CN113737000A (zh) 一种短流程清洁回收三元电池材料中有价金属的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant