CN110724656A - Electricity-producing Shewanella recombinant strain, construction method and application - Google Patents

Electricity-producing Shewanella recombinant strain, construction method and application Download PDF

Info

Publication number
CN110724656A
CN110724656A CN201910930539.XA CN201910930539A CN110724656A CN 110724656 A CN110724656 A CN 110724656A CN 201910930539 A CN201910930539 A CN 201910930539A CN 110724656 A CN110724656 A CN 110724656A
Authority
CN
China
Prior art keywords
shewanella
recombinant strain
electricity
strain
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910930539.XA
Other languages
Chinese (zh)
Inventor
宋浩
刘向
李锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Technology Research Institute of Tianjin University Co Ltd
Original Assignee
Frontier Technology Research Institute of Tianjin University Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Technology Research Institute of Tianjin University Co Ltd filed Critical Frontier Technology Research Institute of Tianjin University Co Ltd
Priority to CN201910930539.XA priority Critical patent/CN110724656A/en
Publication of CN110724656A publication Critical patent/CN110724656A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses an electricity-producing Shewanella recombinant strain, a construction method and application thereof, wherein the construction method of the electricity-producing Shewanella recombinant strain comprises the following steps: knocking out a target gene SO _3941 of wild Shewanella oneidensis MR-1 to obtain an electric Shewanella recombinant strain delta 3941, wherein the nucleotide sequence of the gene SO _3941 is shown as SEQ ID NO 15. The electro-generating Shewanella recombinant strain delta 3941 constructed by the invention is a gene-deficient strain, the strain can improve the concentration of intracellular cyclic di-GMP (cyclic di-GMP), and the increase of the c-di-GMP can promote the cell surface adhesion and the formation of a biological membrane, thereby enhancing the extracellular electron transfer rate and improving the power density of a microbial fuel cell.

Description

Electricity-producing Shewanella recombinant strain, construction method and application
Technical Field
The invention relates to the technical field of biological energy, in particular to an electricity-generating Shewanella recombinant strain, a construction method and application thereof.
Background
Energy shortage and environmental pollution are increasingly serious problems faced by China nowadays, so that energy development, environmental waste treatment and renewable utilization of energy in the process become a great challenge for sustainable development of modern society of China. Scientists are constantly looking for new technical solutions, one of which is Microbial Fuel Cells (MFC) for the production of new alternative energy sources and environmental waste management devices, and their importance is nowadays increasingly emerging.
MFC is a device that converts chemical energy in organic matter into electrical energy using an electrogenic microorganism as an anode catalyst. The electricity generating capability of microorganisms is greatly different, the electricity generating microorganisms determine the function and the application of MFC, Shewanella oneidensis (Shewanella oneidensis) belongs to one of the microorganisms which are widely used for generating electricity in MFC and the research on the metabolic pathway and the extracellular electron transfer pathway is relatively clear. Shewanella oneidensis MR-1 (Shewanella MR-1 for short) is the most widely studied strain in Shewanella in terms of genomic sequence annotation and genetic characterization. The strain can transfer electrons to an anode in a microbial fuel cell without adding an external medium, and becomes one of model organisms for researching how microorganisms generate current in MFCs.
Studies have shown that microbial Extracellular Electron Transfer (EET) is a complex process influenced by a variety of cellular components. Wherein the thickness of the biological membrane directly influences the strength of the extracellular electron transfer and influences the power density of the biological fuel cell. However, the wild type Shewanella strain MR-1 has weak cell adhesion and cannot form a thick and stable biofilm. Therefore, constructing Shewanella strains which are easy to form biofilms can not only compensate for some defects of Shewanella, but also improve the electrochemical effect of MFC.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provide an electricity-generating Shewanella recombinant strain.
The second purpose of the invention is to provide a construction method of the electricity-generating Shewanella recombinant strain.
The third purpose of the invention is to provide the application of the electricity-generating Shewanella recombinant strain.
The technical scheme of the invention is summarized as follows:
a method for constructing an electricity-generating Shewanella recombinant strain comprises the following steps: knocking out a target gene SO _3941 of wild Shewanella oneidensis MR-1 to obtain an electric Shewanella recombinant strain delta 3941, wherein the nucleotide sequence of the gene SO _3941 is shown as SEQ ID NO 15.
The electricity-producing Shewanella recombinant strain delta 3941 constructed by the method.
The electrogenic Shewanella recombinant strain delta 3941 can be used for electrogenesis.
The invention has the advantages that:
the electro-generating Shewanella recombinant strain delta 3941 constructed by the invention is a gene-deficient strain, the strain can improve the concentration of intracellular cyclic di-GMP (cyclic di-GMP), and the increase of the c-di-GMP can promote the cell surface adhesion and the formation of a biological membrane, thereby enhancing the extracellular electron transfer rate and improving the power density of a microbial fuel cell.
Drawings
FIG. 1 shows a method for gene amplification in the primer design and the homologous region.
FIG. 2 is a graph showing comparison of the generated voltage of Shewanella MR-1 and an electric Shewanella recombinant strain delta 3941 MFC.
FIG. 3 is an electrochemical characterization chart.
Detailed Description
Original strain Shewanella oneidensis MR-1 is short: wild-type Shewanella MR-1, ATCC 700550 strain purchased from ATCC (U.S. https:// www.atcc.org /) at 9 months 2010.
The present invention will be further described with reference to the following examples.
Example 1
A method for constructing an electricity-generating Shewanella recombinant strain comprises the following steps: knocking out a target gene SO _3941 of wild Shewanella MR-1 to obtain an electricity-producing Shewanella recombinant strain delta 3941, wherein the nucleotide sequence of the gene SO _3941 is shown as SEQ ID NO 15.
The specific construction method comprises the following steps:
knocking out a wild Shewanella MR-1 target gene SO _3941 by using att site-specific recombination and a double-exchange deletion method.
(1) Primer design and gene amplification:
obtaining genome sequence of Shewanella MR-1 from NCBI database, designing three pairs of primers, 3941-LF (SEQ ID NO.4) and 3941-LR (SEQ ID NO.5), 3941-5-O (SEQ ID NO.6) and 3941-5-I (SEQ ID NO.7), 3941-3-O (SEQ ID NO.8) and 3941-3-I (SEQ ID NO.9), according to target gene SO _3941 and upstream and downstream gene sequences thereof, amplifying upstream homologous regions and downstream homologous regions of target gene in vitro, wherein the upstream homologous regions and the downstream homologous regions comprise partial target gene sequences, the amplification length is about 500-1000bp, and connecting the upstream and downstream homologous regions together through fusion PCR to form fusion homologous region fragments. As shown in fig. 1. Wherein, specific sites attB1 and attB2 are respectively added at the 5 'ends of the primers 3941-5-O and 3941-3-O, and a homologous complementary sequence (Linker) with about 20bp is added at the 5' ends of the primers 3941-5-I and 3941-3-I.
The nucleotide sequence of the upstream homologous region is shown as SEQ ID NO. 1;
the nucleotide sequence of the downstream homologous region is shown as SEQ ID NO. 2;
the nucleotide sequence of the fusion homologous region is shown as SEQ ID NO. 3;
the nucleotide sequences of the specificity sites attB1 and attB2 are respectively shown as SEQ ID NO.10 and SEQ ID NO. 11;
the nucleotide sequence of the homologous complementary sequence (Linker) is shown as SEQ ID NO. 12;
(2) specifically recombining and integrating the fusion fragment obtained in the step (1) to a suicide plasmid pHG1.0 vector (the nucleotide sequence is shown as SEQ ID NO. 13) through att sites, transferring the constructed plasmid into escherichia coli WM3064 (a commercial strain), transferring the WM3064 and the Shewanella MR-1 in a combined manner, and transferring the constructed plasmid into the Shewanella MR-1. Shewanella MR-1 needs to be cultured in LB medium at 30 ℃ whereas Escherichia coli WM3064, the growth of which needs to be cultured at 37 ℃ with the addition of 0.3M/mL DAP (2, 6-diaminopimelic acid) in LB medium.
a. att site-specific recombination reaction system (5 uL):
fusion fragment 1 uL: (75ng)
pHG1.0:1uL(75ng)
BP clonase II enzyme mix:1uL
H2O:2uL
b. Gateway BP clonase II enzyme reaction program:
mixing the above components, reacting at 25 deg.C for 5 hr, and cooling to 4 deg.C for storage;
c. WM3064 chemical conversion step:
1. 50ul WM3064 competent cells were taken from-80 ℃ freezer and placed on ice for 10 min;
2. uniformly mixing the reaction compound in the step b and WM3064 competent cells in a centrifugal tube of 1.5mL, and carrying out ice bath for 30 min;
3. then thermally shocking for 90s at 42 ℃ in a water bath kettle, and carrying out ice bath again for 5 min;
4. adding 1mL LB medium containing 0.3M/mL DAP to the system, culturing at 37 deg.C and 150rpm for 1 hr;
5. coating 200uL of culture solution on an LB plate (containing 15ug/mL gentamicin), and culturing at 30 ℃ for 12 hours;
6. single colonies were picked for PCR verification and the correct WM3064 was verified for conjugal transfer with Shewanella MR-1.
(3) And (3) culturing the recombinant strain obtained in the step (2) on an LB (containing 15ug/mL gentamicin) plate, selecting a single colony for PCR verification, and obtaining the recombinant strain with the suicide plasmid integrated into the MR-1 genome through resistance screening and colony PCR verification. The primers used in colony PCR were 3941-LF (on the MR-1 genome) and F primer (on the suicide plasmid pHG1.0). The nucleotide sequence of the primer F primer is shown as SEQ ID NO. 14;
(4) culturing the strains verified to be correct in the step (3) in LB (containing 15ug/mL gentamicin) liquid culture medium overnight, then transferring the strains to non-resistant LB culture medium according to the proportion of 1% to culture until the OD value is about 0.4, coating 200uL of the strains on an LB plate which does not contain NaCl and contains 10% of sucrose by mass concentration, and culturing for 12 hours at 30 ℃. Then picking single colony to carry out PCR verification and carrying out sequencing verification; through sucrose negative screening and colony PCR verification, the SO _3941 gene knockout Shewanella delta 3941 is obtained. The correct recombinant strains were verified and stored in a-80 ℃ freezer for subsequent experiments.
Example 2: electricity-producing Shewanella recombinant strain delta 3941 and wild-type Shewanella MR-1MFC electricity production
1. Activation of bacterial strains
The electro-shewanella recombinant strain delta 3941 and the wild-type shewanella MR-1 were taken out from a refrigerator at-80 ℃ and cultured overnight in LB medium at 30 ℃ and 200rpm, respectively. The overnight culture broth was transferred to a new LB medium at a rate of 1% for 10 hours at 30 ℃ under 200rpm, measured for OD 600, calculated for volume (OD 600 in MFC: 0.5), centrifuged at 5000rpm for 10 minutes, resuspended in anolyte, and added to the MFC anode compartment.
2. MFC power generation
The experimental setup used a two-chamber MFC,110mL anode chamber (containing 110mL of both the thalli and anolyte) and 110mL cathode chamber, the size of the anode carbon cloth electrode was 1cm × 1cm, the size of the cathode carbon cloth electrode was 2.5cm × 3cm, the two chambers were separated by proton exchange membrane, which was soaked overnight with 1M hydrochloric acid aqueous solution before use, and washed three times with sterile distilled water.
The anolyte contained 6g/L disodium hydrogen phosphate, 3g/L potassium dihydrogen phosphate, 0.5g/L sodium chloride, 1g/L ammonium chloride, 1mM magnesium sulfate, 0.1mM calcium chloride, 20mM sodium lactate, 5% LB medium, and the balance water. The catholyte comprised 50mM potassium ferricyanide, 50mM dipotassium hydrogen phosphate and 50mM potassium dihydrogen phosphate, the balance being water. MFC is placed in a 30 ℃ incubator, and the anode and the cathode are connected with an external resistor of 2K omega.
3. Analysis of electrochemical effects
Cyclic Voltammetry (CV) was performed using silver chloride as a reference electrode, and scanned at a sweep rate of 1mV/s using a multichannel electrochemical workstation CHI 1000C. Linear Sweep Voltammetry (LSV) was swept from-0.87V to-0.1V at a sweep rate of 0.1mV/s, using a multichannel electrochemical workstation CHI 1000C.
4. Results
As can be seen from figure 2, the electrogenesis recombinant Shewanella delta 3941MFC has better electrogenesis performance, the highest output voltage is 113.3mV, and is improved by 30 percent compared with the original strain wild Shewanella MR-1;
the extracellular electron transfer efficiency of MFC can be further studied by bioelectrochemical analysis, and FIG. 3 shows a Linear Sweep Voltammogram (LSV) with a sweep rate of 0.1mV/s, i.e., a polarization curve, from which it can be seen that the maximum current density for MFC power generation using recombinant shewanella bacteria Δ 3941 is about 344mA/m2Maximum power density of 107.5mW/m2Relative toThe original strains, wild Shewanella MR-1, are greatly improved.
Table 1: primer and sequence thereof related to the invention
Figure BDA0002220158110000041
Sequence listing
<110> leading edge technology research institute of Tianjin university
<120> electricity-generating Shewanella recombinant strain, construction method and application
<160>15
<170>SIPOSequenceListing 1.0
<210>1
<211>954
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>1
ggggacaagt ttgtacaaaa aagcaggctg ccctcccaat tacaacatac agataacatt 60
taattgatag aagcacataa gatttataag gacaagacaa caaataacct tcactgaaaa 120
ataaatgaag catcaaaaga tgaataatgc atttatttat aaataaaaat tttattagac 180
agatagttaa ctcactttat taaacgctaa cttgttttaa tccgtttatc ctaaacacaa 240
attgacagct tattatttaa ccgtcaaatt taagggctac cataccaaat aatggtttta 300
tctcaatttg acctaatgtc tatgctatag tgacgatgac attcactcat tgctgacatt 360
cctttgaaca aaatcgctct ctttgtcgat gtgcaaaata tttattacac ctgtcgcgag 420
gcatatcagc gccaatttaa ctatcgcaaa ctgtggcaac atttaagcac acagggagaa 480
attgtcagtg ctgtcgctta tgccattcat cggggcgatg atggccaatt aaagttccaa 540
gatgccttaa ggcatatcgg ctttgagcta aaactaaagc cctttattca acgcagtgat 600
ggatcggcaa aaggagattg ggatgtaggg ataacgattg atgtacttga tgctgccccc 660
aatgtagata cagtaatact gctttctggc gatggtgatt ttgcgatatt gcttgagaaa 720
ataacgcaaa aatatggcgt aaaagcagag gtctatggtg tacctcaact gacggctaaa 780
gctctgatgg atgccacaac gcaatttaac ccgattgatg atgttttact gctctaacag 840
ctataaacct taagtttgaa actcttgggt tgataaatga taaaaattat ctatgtcagc 900
caacaatata ctgtaaacac cagcatctaa ctgcccgctt cagtggctaa cacc 954
<210>2
<211>752
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>2
gcttcagtgg ctaacaccgc cgtggcaacg gctaacaacg catgcctcac atccatgtag 60
actttgaagt catggggcag aaaggcattc attgaatttt cctaattaat tatttgttcc 120
tcgctaaaat atagtcaata ccttgataat tagctgcaaa atacaaaaaa gacctgaaat 180
ttcaggtctt ttctatcgat attaaataga acttatcaca caatgaagtt agacctctag 240
cgtcctctta cgacggccgc gttttactaa ggagtagtaa aacagtggtg tcagaatgag 300
accaaagata gtgactccaa tcatacctgc aaataccgcc actcccatgg cctgacgcat 360
ctcagcgccc gcccccgtcg aaaacaccat aggcaccact cccatgataa aggcgataga 420
agtcatcaag atggggcgca gccttaagcg tgccgcctca agaattgact ccataacctc 480
cataccatgg tcttgtttct ctttggcaaa ttcgacaatc agaatcgcgt tcttcgtcgc 540
taagcccacg aggacgataa gaccaatctg ggtgaaaata ttattatctc caccatagag 600
aagcacacca ctgagcgccg agagtaaggt cattgggata attaagataa tcgccaatgg 660
taaacttaaa ctctcgtatt gcgccgcgag caccataaac accagcacaa tcaccagcgg 720
gaaagcctgc ttttttgtac aaacttgtcc cc 752
<210>3
<211>1688
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>3
ggggacaagt ttgtacaaaa aagcaggctg ccctcccaat tacaacatac agataacatt 60
taattgatag aagcacataa gatttataag gacaagacaa caaataacct tcactgaaaa 120
ataaatgaag catcaaaaga tgaataatgc atttatttat aaataaaaat tttattagac 180
agatagttaa ctcactttat taaacgctaa cttgttttaa tccgtttatc ctaaacacaa 240
attgacagct tattatttaa ccgtcaaatt taagggctac cataccaaat aatggtttta 300
tctcaatttg acctaatgtc tatgctatag tgacgatgac attcactcat tgctgacatt 360
cctttgaaca aaatcgctct ctttgtcgat gtgcaaaata tttattacac ctgtcgcgag 420
gcatatcagc gccaatttaa ctatcgcaaa ctgtggcaac atttaagcac acagggagaa 480
attgtcagtg ctgtcgctta tgccattcat cggggcgatg atggccaatt aaagttccaa 540
gatgccttaa ggcatatcgg ctttgagcta aaactaaagc cctttattca acgcagtgat 600
ggatcggcaa aaggagattg ggatgtaggg ataacgattg atgtacttga tgctgccccc 660
aatgtagata cagtaatact gctttctggc gatggtgatt ttgcgatatt gcttgagaaa 720
ataacgcaaa aatatggcgt aaaagcagag gtctatggtg tacctcaact gacggctaaa 780
gctctgatgg atgccacaac gcaatttaac ccgattgatg atgttttact gctctaacag 840
ctataaacct taagtttgaa actcttgggt tgataaatga taaaaattat ctatgtcagc 900
caacaatata ctgtaaacac cagcatctaa ctgcccgctt cagtggctaa caccgccgtg 960
gcaacggcta acaacgcatg cctcacatcc atgtagactt tgaagtcatg gggcagaaag 1020
gcattcattg aattttccta attaattatt tgttcctcgc taaaatatag tcaatacctt 1080
gataattagc tgcaaaatac aaaaaagacc tgaaatttca ggtcttttct atcgatatta 1140
aatagaactt atcacacaat gaagttagac ctctagcgtc ctcttacgac ggccgcgttt 1200
tactaaggag tagtaaaaca gtggtgtcag aatgagacca aagatagtga ctccaatcat1260
acctgcaaat accgccactc ccatggcctg acgcatctca gcgcccgccc ccgtcgaaaa 1320
caccataggc accactccca tgataaaggc gatagaagtc atcaagatgg ggcgcagcct 1380
taagcgtgcc gcctcaagaa ttgactccat aacctccata ccatggtctt gtttctcttt 1440
ggcaaattcg acaatcagaa tcgcgttctt cgtcgctaag cccacgagga cgataagacc 1500
aatctgggtg aaaatattat tatctccacc atagagaagc acaccactga gcgccgagag 1560
taaggtcatt gggataatta agataatcgc caatggtaaa cttaaactct cgtattgcgc 1620
cgcgagcacc ataaacacca gcacaatcac cagcgggaaa gcctgctttt ttgtacaaac 1680
ttgtcccc 1688
<210>4
<211>20
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>4
caaccgcaag tgcttcagac 20
<210>5
<211>21
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>5
atcggactaa agcgaaacag c 21
<210>6
<211>50
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>6
ggggacaagt ttgtacaaaa aagcaggctg ccctcccaat tacaacatac 50
<210>7
<211>38
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>7
ggtgttagcc actgaagcgg gcagttagat gctggtgt 38
<210>8
<211>48
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>8
ggggaccact ttgtacaaga aagctgggtt tcccgctggt gattgtgc 48
<210>9
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>9
gcttcagtgg ctaacaccgc cgtggcaacg gctaacaac 39
<210>10
<211>29
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>10
ggggacaagt ttgtacaaaa aagcaggct 29
<210>11
<211>29
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>11
ggggaccact ttgtacaaga aagctgggt 29
<210>12
<211>18
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>12
gcttcagtgg ctaacacc 18
<210>13
<211>10381
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>13
atataaatat caatatatta aattagattt tgcataaaaa acagactaca taatactgta 60
aaacacaaca tatccagtca ctatgaatca actacttaga tggtattagt gacctgtagt 120
cgactaagtt ggcagcatca cccgacgcac tttgcgccga ataaatacct gtgacggaag 180
atcacttcgc agaataaata aatcctggtg tccctgttga taccgggaag ccctgggcca 240
acttttggcg aaaatgagac gttgatcggc acgtaagagg ttccaacttt caccataatg 300
aaataagatc actaccgggc gtattttttg agttatcgag attttcagga gctaaggaag 360
ctaaaatgga gaaaaaaatc actggatata ccaccgttga tatatcccaa tggcatcgta 420
aagaacattt tgaggcattt cagtcagttg ctcaatgtac ctataaccag accgttcagc 480
tggatattac ggccttttta aagaccgtaa agaaaaataa gcacaagttt tatccggcct 540
ttattcacat tcttgcccgc ctgatgaatg ctcatccgga attccgtatg gcaatgaaag 600
acggtgagct ggtgatatgg gatagtgttc acccttgtta caccgttttc catgagcaaa 660
ctgaaacgtt ttcatcgctc tggagtgaat accacgacga tttccggcag tttctacaca 720
tatattcgca agatgtggcg tgttacggtg aaaacctggc ctatttccct aaagggttta 780
ttgagaatat gtttttcgtc tcagccaatc cctgggtgag tttcaccagt tttgatttaa 840
acgtggccaa tatggacaac ttcttcgccc ccgttttcac catgggcaaa tattatacgc 900
aaggcgacaa ggtgctgatg ccgctggcga ttcaggttca tcatgccgtc tgtgatggct 960
tccatgtcgg cagaatgctt aatgaattac aacagtactg cgatgagtgg cagggcgggg 1020
cgtaaacgcc gcgtggatcc ggcttactaa aagccagata acagtatgcg tatttgcgcg 1080
ctgatttttg cggtataaga atatatactg atatgtatac ccgaagtatg tcaaaaagag 1140
gtatgctatg aagcagcgta ttacagtgac agttgacagc gacagctatc agttgctcaa 1200
ggcatatatg atgtcaatat ctccggtctg gtaagcacaa ccatgcagaa tgaagcccgt 1260
cgtctgcgtg ccgaacgctg gaaagcggaa aatcaggaag ggatggctga ggtcgcccgg 1320
tttattgaaa tgaacggctc ttttgctgac gagaacaggg gctggtgaaa tgcagtttaa 1380
ggtttacacc tataaaagag agagccgtta tcgtctgttt gtggatgtac agagtgatat 1440
tattgacacg cccgggcgac ggatggtgat ccccctggcc agtgcacgtc tgctgtcaga 1500
taaagtctcc cgtgaacttt acccggtggt gcatatcggg gatgaaagct ggcgcatgat 1560
gaccaccgat atggccagtg tgccggtctc cgttatcggg gaagaagtgg ctgatctcag 1620
ccaccgcgaa aatgacatca aaaacgccat taacctgatg ttctggggaa tataaatgtc 1680
aggctccctt atacacagcc agtctgcagg tcgatacagt agaaattaca gaaactttat 1740
cacgtttagt aagtatagag gctgaaaatc cagatgaagc cgaacgactt gtaagagaaa 1800
agtataagag ttgtgaaatt gttcttgatg cagatgattt tcaggactat gacactagcg 1860
tatatgaata ggtagatgtt tttattttgt cacacaaaaa agaggctcgc acctcttttt 1920
cttatttctt tttatgattt aatacggcat tgaggacaat agcgagtagg ctggatacga 1980
cgattccgtt tgagaagaac atttggaagg ctgtcggtcg actaagttgg cagcatcacc 2040
cgaagaacat ttggaaggct gtcggtcgac tacaggtcac taataccatc taagtagttg 2100
attcatagtg actggatatg ttgtgtttta cagtattatg tagtctgttt tttatgcaaa 2160
atctaattta atatattgat atttatatca ttttacgttt ctcgttcagc ttttttgtac 2220
aaagttggca ttataaaaaa gcattgctca tcaatttgtt gcaacgaaca ggtcactatc 2280
agtcaaaata aaatcattat ttggggcccg agatccatgc tagcgtgagc tcgatatcgc 2340
atgcggtacc tctagaagaa gcttgggatc cgtcgacgcg tcgatccggt gattgattga 2400
gcaagctagc tttatgcttg taaaccgttt tgtgaaaaaa tttttaaaat aaaaaagggg 2460
acctctaggg tccccaatta attagtaata taatctatta aaggtcattc aaaaggtcat 2520
ccaccggatc agcttagtaa agccctcgct agattttaat gcggatgttg cgattacttc 2580
gccaactatt gcgataacaa gaaaaagcca gcctttcatg atatatctcc caatttgtgt 2640
agggcttatt atgcacgctt aaaaataata aaagcagact tgacctgata gtttggctgt 2700
gagcaattat gtgcttagtg catctaacgc ttgagttaag ccgcgccgcg aagcggcgtc 2760
ggcttgaacg aattgttaga cattatttgc cgactacctt ggtgatctcg cctttcacgt 2820
agtggacaaa ttcttccaac tgatctgcgc gtcgaattaa ttctcgaatt gacataagcc 2880
tgttcggttc gtaaactgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc 2940
ttgaccgaac gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt 3000
ttttttgtac agtctatgcc tcgggcatcc aagcagcaag cgcgttacgc cgtgggtcga 3060
tgtttgatgt tatggagcag caacgatgtt acgcagcagc aacgatgtta cgcagcaggg 3120
cagtcgccct aaaacaaagt taggtggctc aagtatgggc atcattcgca catgtaggct 3180
cggccctgac caagtcaaat ccatgcgggc tgctcttgat cttttcggtc gtgagttcgg 3240
agacgtagcc acctactccc aacatcagcc ggactccgat tacctcggga acttgctccg 3300
tagtaagaca ttcatcgcgc ttgctgcctt cgaccaagaa gcggttgttg gcgctctcgc 3360
ggcttacgtt ctgcccaagt ttgagcagcc gcgtagtgag atctatatct atgatctcgc 3420
agtctccggc gagcaccgga ggcagggcat tgccaccgcg ctcatcaatc tcctcaagca 3480
tgaggccaac gcgcttggtg cttatgtgat ctacgtgcaa gcagattaca gtgacgatcc 3540
cgcagtggct ctctatacaa agttgggcat acgggaagaa gtgatgcact ttgatatcga 3600
cccaagtacc gccacctaac aattcgttca agccgagatc ggcttcccgg ccaattcgac 3660
gcgcggatca gtgagggttt gcaactgcgg gtcaaggatc tggatttcga tcacggcacg 3720
atcatcgtgc gggagggcaa gggctccaag gatcgggcct tgatgttacc cgagagcttg 3780
gcacccagcc tgcgcgagca ggggaattga tccggtggat gaccttttga atgaccttta 3840
atagattata ttactaatta attggggacc ctagaggtcc ccttttttat tttaaaaatt 3900
ttttcacaaa acggtttaca agcataaagc tagcttgctc aatcaatcac cggatcctct 3960
agagtcgacg cgtcgactct agaggatcga tcctttttaa cccatcacat atacctgccg 4020
ttcactatta tttagtgaaa tgagatatta tgatattttc tgaattgtga ttaaaaaggc 4080
aactttatgc ccatgcaaca gaaactataa aaaatacaga gaatgaaaag aaacagatag 4140
attttttagt tctttaggcc cgtagtctgc aaatcctttt atgattttct atcaaacaaa 4200
agaggaaaat agaccagttg caatccaaac gagagtctaa tagaatgagg tcgaaaagta 4260
aatcgcgcgg gtttgttact gataaagcag gcaagaccta aaatgtgtaa agggcaaagt 4320
gtatactttg gcgtcacccc ttacatattt taggtctttt tttattgtgc gtaactaact 4380
tgccatcttc aaacaggagg gctggaagaa gcagaccgct aacacagtac ataaaaaagg 4440
agacatgaac gatgaacatc aaaaagtttg caaaacaagc aacagtatta acctttacta 4500
ccgcactgct ggcaggaggc gcaactcaag cgtttgcgaa agaaacgaac caaaagccat 4560
ataaggaaac atacggcatt tcccatatta cacgccatga tatgctgcaa atccctgaac 4620
agcaaaaaaa tgaaaaatat caagttcctg aattcgattc gtccacaatt aaaaatatct 4680
cttctgcaaa aggcctggac gtttgggaca gctggccatt acaaaacgct gacggcactg 4740
tcgcaaacta tcacggctac cacatcgtct ttgcattagc cggagatcct aaaaatgcgg 4800
atgacacatc gatttacatg ttctatcaaa aagtcggcga aacttctatt gacagctgga 4860
aaaacgctgg ccgcgtcttt aaagacagcg acaaattcga tgcaaatgat tctatcctaa 4920
aagaccaaac acaagaatgg tcaggttcag ccacatttac atctgacgga aaaatccgtt 4980
tattctacac tgatttctcc ggtaaacatt acggcaaaca aacactgaca actgcacaag 5040
ttaacgtatc agcatcagac agctctttga acatcaacgg tgtagaggat tataaatcaa 5100
tctttgacgg tgacggaaaa acgtatcaaa atgtacagca gttcatcgat gaaggcaact 5160
acagctcagg cgacaaccat acgctgagag atcctcacta cgtagaagat aaaggccaca 5220
aatacttagt atttgaagca aacactggaa ctgaagatgg ctaccaaggc gaagaatctt 5280
tatttaacaa agcatactat ggcaaaagca catcattctt ccgtcaagaa agtcaaaaac 5340
ttctgcaaag cgataaaaaa cgcacggctg agttagcaaa cggcgctctc ggtatgattg 5400
agctaaacga tgattacaca ctgaaaaaag tgatgaaacc gctgattgca tctaacacag 5460
taacagatga aattgaacgc gcgaacgtct ttaaaatgaa cggcaaatgg tacctgttca 5520
ctgactcccg cggatcaaaa atgacgattg acggcattac gtctaacgat atttacatgc 5580
ttggttatgt ttctaattct ttaactggcc catacaagcc gctgaacaaa actggccttg 5640
tgttaaaaat ggatcttgat cctaacgatg taacctttac ttactcacac ttcgctgtac 5700
ctcaagcgaa aggaaacaat gtcgtgatta caagctatat gacaaacaga ggattctacg 5760
cagacaaaca atcaacgttt gcgccaagct tcctgctgaa catcaaaggc aagaaaacat 5820
ctgttgtcaa agacagcatc cttgaacaag gacaattaac agttaacaaa taaaaacgca 5880
aaagaaaatg ccgatatcct attggcattt tcttttattt cttatcaaca taaaggtgaa 5940
tcccatatga actatataaa agcaggcaaa tggctaaccg tattcctaac cttttggtaa 6000
tgactccaac ttattgatag tgttttatgt tcagataatg cccgatgact ttgtcatgca 6060
gctccaccga ttttgagaac gacagcgact tccgtcccag ccgtgccagg tgctgcctca 6120
gattcacgtt atgccgctca attcgctgcg tatatcgctt gctgattacg tgcagctttc 6180
ccttcaggcg ggattcatac agcggccagc catccgtcat ccatatcacc acgtcaaagg 6240
gtgacagcag gctcataaga cgccccagcg tcgccatagt gcgttcaccg aatacgtgcg 6300
caacaaccgt cttccggaga ctgtcatacg cgtaaaacag ccagcgctgg cgcgatttag 6360
ccccgacata gccccactgt tcgtccattt ccgcgcagac gatgacgtca ctgcccggct 6420
gtatgcgcga ggttaccgac tgcggcctga gttttttaag tgacgtaaaa tcgtgttgag 6480
gccaacgccc ataatgcggg ctgttgcccg gcatccaacg ccattcatgg ccatatcaat 6540
gattttctgg tgcgtaccgg gttgagaagc ggtgtaagtg aactgcaggt ggcacttttc 6600
ggggaaatgt gcgcggaacc cctatttgtt tatttttcta aatacattca aatatgtatc 6660
cgctcatgag acaataaccc tgataaatgc ttcaataata ttgaaaaagg aagagtatga 6720
gtattcaaca tttccgtgtc gcccttattc ccttttttgc ggcattttgc cttcctgttt 6780
ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga agatcagttg ggtgcacgag 6840
tgggttacat cgaactggat ctcaacagcg gtaagatcct tgagagtttt cgccccgaag 6900
aacgttttcc aatgatgagc acttttaaag ttctgctatg tggcgcggta ttatcccgtg 6960
ttgacgccgg gcaagagcaa ctcggtcgcc gcatacacta ttctcagaat gacttggttg 7020
agtactcacc agtcacagaa aagcatctta cggatggcat gacagtaaga gaattatgca 7080
gtgctgccat aaccatgagt gataacactg cggccaactt acttctgaca acgatcggag 7140
gaccgaagga gctaaccgct tttttgcaca acatggggga tcatgtaact cgccttgatc 7200
gttgggaacc ggagctgaat gaagccatac caaacgacga gcgtgacacc acgatgcctg 7260
cagcaatggc aacaacgttg cgcaaactat taactggcga actacttact ctagcttccc 7320
ggcaacaatt aatagactgg atggaggcgg ataaagttgc aggaccactt ctgcgctcgg 7380
cccttccggc tggctggttt attgctgata aatctggagc cggtgagcgt gggtctcgcg 7440
gtatcattgc agcactgggg ccagatggta agccctcccg tatcgtagtt atctacacga 7500
cggggagtca ggcaactatg gatgaacgaa atagacagat cgctgagata ggtgcctcac 7560
tgattaagca ttggtaactg tcagaccaag tttactcata tatactttag attgatttat 7620
ggtgcactct cagtacaatc tgctctgatg ccgcatagtt aagccagtat acactccgct 7680
atcgctacgt gactgggtca tggctgcgcc ccgacacccg ccaacacccg ctgacgcgcc 7740
ctgacgggct tgtctgctcc cggcatccgc ttacagacaa gctgtgaccg tctccgggag 7800
ctgcatgtgt cagaggtttt caccgtcatc accgaaacgc gcgaggcagc aaggagatgg 7860
cgcccaacag tcccccggcc acggggcctg ccaccatacc cacgccgaaa caagcgctca 7920
tgagcccgaa gtggcgagcc cgatcttccc catcggtgat gtcggcgata taggcgccag 7980
caaccgcacc tgtggcgccg gtgatgccgg ccacgatgcg tccggcgtag aggatccttt 8040
ttgtccggtg ttgggttgaa ggtgaagccg gtcggggccg cagcgggggc cggcttttca 8100
gccttgcccc cctgcttcgg ccgccgtggc tccggcgtct tgggtgccgg cgcgggttcc 8160
gcagccttgg cctgcggtgc gggcacatcg gcgggcttgg ccttgatgtg ccgcctggcg 8220
tgcgagcgga acgtctcgta ggagaacttg accttccccg tttcccgcat gtgctcccaa 8280
atggtgacga gcgcatagcc ggacgctaac gccgcctcga catccgccct caccgccagg 8340
aacgcaaccg cagcctcatc acgccggcgc ttcttggccg cgcgggattc aacccactcg 8400
gccagctcgt cggtgtagct ctttggcatc gtctctcgcc tgtcccctca gttcagtaat 8460
ttcctgcatt tgcctgtttc cagtcggtag atattccaca aaacagcagg gaagcagcgc 8520
ttttccgctg cataaccctg cttcggggtc attatagcga ttttttcggt atatccatcc 8580
tttttcgcac gatatacagg attttgccaa agggttcgtg tagactttcc ttggtgtatc 8640
caacggcgtc agccgggcag gataggtgaa gtaggcccac ccgcgagcgg gtgttccttc 8700
ttcactgtcc cttattcgca cctggcggtg ctcaacggga atcctgctct gcgaggctgg 8760
ccggctaccg ccggcgtaac agatgagggc aagcggatgg ctgatgaaac caagccaacc 8820
aggaagggca gcccacctat caaggtgtac tgccttccag acgaacgaag agcgattgag 8880
gaaaaggcgg cggcggccgg catgagcctg tcggcctacc tgctggccgt cggccagggc 8940
tacaaaatca cgggcgtcgt ggactatgag cacgtccgcg agctggcccg catcaatggc 9000
gacctgggcc gcctgggcgg cctgctgaaa ctctggctca ccgacgaccc gcgcacggcg 9060
cggttcggtg atgccacgat cctcgccctg ctggcgaaga tcgaagagaa gcaggacgag 9120
cttggcaagg tcatgatggg cgtggtccgc ccgagggcag agccatgact tttttagccg 9180
ctaaaacggc cggggggtgc gcgtgattgc caagcacgtc cccatgcgct ccatcaagaa 9240
gagcgacttc gcggagctgg tgaagtacat caccgacgag caaggcaaga ccgagcgcct 9300
gggtcacgtg cgcgtcacga actgcgaggc aaacaccctg cccgctgtca tggccgaggt 9360
gatggcgacc cagcacggca acacccgttc cgaggccgac aagacctatc acctgctggt 9420
tagcttccgc gcgggagaga agcccgacgc ggagacgttg cgcgcgattg aggaccgcat 9480
ctgcgctggg cttggcttcg ccgagcatca gcgcgtcagt gccgtgcatc acgacaccga 9540
caacctgcac atccatatcg ccatcaacaa gattcacccg acccgaaaca ccatccatga 9600
gccgtatcgg gcctaccgcg ccctcgctga cctctgcgcg acgctcgaac gggactacgg 9660
gcttgagcgt gacaatcacg aaacgcggca gcgcgtttcc gagaaccgcg cgaacgacat 9720
ggagcggcac gcgggcgtgg aaagcctggt cggctggatc cggccacgat gcgtccggcg 9780
tagaggatct gaagatcagc agttcaacct gttgatagta cgtactaagc tctcatgttt 9840
cacgtactaa gctctcatgt ttaacgtact aagctctcat gtttaacgaa ctaaaccctc 9900
atggctaacg tactaagctc tcatggctaa cgtactaagc tctcatgttt cacgtactaa 9960
gctctcatgt ttgaacaata aaattaatat aaatcagcaa cttaaatagc ctctaaggtt 10020
ttaagtttta taagaaaaaa aagaatatat aaggctttta aagcttttaa ggtttaacgg 10080
ttgtggacaa caagccaggg atgtaacgca ctgagaagcc cttagagcct ctcaaagcaa 10140
ttttgagtga cacaggaaca cttaacggct gacatgggaa ttccacatgt ggaattccac 10200
atgtggaatt gtgagcggat aacaatttgt ggaattcccg ggagagctcg agctgcagct 10260
ggatggcaaa taatgatttt attttgactg atagtgacct gttcgttgca acaaattgat 10320
aagcaatgct ttcttataat gccaactttg tacaagaaag ctgaacgaga aacgtaaaat 10380
g 10381
<210>14
<211>23
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>14
agggatgtaa cgcactgaga agc 23
<210>15
<211>1269
<212>DNA
<213> Shewanella oneidensis (shewanella oneidensis)
<400>15
atgaatgcct ttctgcccca tgacttcaaa gtctacatgg atgtgaggca tgcgttgtta 60
gccgttgcca cggcattgga ttttgttggg gtagatgatt tgcaccacgg ccatagggtt 120
gcctatatgg cttatgaatg tgcaagtgtg ctcggctggc ctgatgaaaa aaagcagttc 180
gcctattttg cggggcttat ccatgattgc ggcgtttcct cctccgaaga acacttacgt 240
ctacttaaat taatgcaacc ggaagatgcc cattgtcata gcaaacgtgg ctatgaggca 300
ttgcttgaat gcccgatttt agatgttttt gctcctatcg ttctatacca ccacacgcct 360
tggcttgagc tgcaatccca tgatctttct gtctttgagc gtgatattgc tgcactgatt 420
ttcttagcgg atcgtaccga ctttttaagg gccagatata cgcatggttg ccatgaggag 480
ctgattacat tgcatgaaag tatggttgct gagaatttat tggctcactg cggaacctta 540
tttgaaccag aaatggtcaa tgctatgtgc caactggtta agaaggatgg cttttggtac 600
aacatggatg caactcatat tgagttgtta ggtttggagt tcaaagctaa tcacttttac 660
gacaaagagt tagatatcgg aggtgtgaag caattagcgc gatttttagc tcgaatagtc 720
gatgctaaga gtccctttac atttcaccat tcagaaaaag tcgcattgtt agcaaaatta 780
gtggcaaagg actgcggtat atcagatacc gatgctgaat tattatacgt cgcgggatta 840
ttacatgatg tcggtaagct taaaacgcct gacctattgc tgcataaaga aggcaaatta 900
acgaaggaag agtattcgat tgtcaaacgt catactgttg atacagaaca tactttacat 960
cgttttttcc ccaagtcggt gattggcgaa tgggcctcaa atcaccatga gcgtctcgat 1020
ggttctggct atccttttag taagcggcag gaacaattag atttaccttc gcgtattctt 1080
gctgtagtcg atgtttttca ggcgctgact caaaagcgac catatcgagg ctctttgtcg 1140
ctatcagaga tttacgacat tatgcagccc atggtcgata aggggcagtt agatgctggt 1200
gtttacagta tattgttggc tgacatagat aatttttatc atttatcaac ccaagagttt 1260
caaacttaa 1269

Claims (3)

1. A method for constructing an electricity-generating Shewanella recombinant strain is characterized by comprising the following steps: knocking out a target gene SO _3941 of wild Shewanella oneidensis MR-1 to obtain an electric Shewanella recombinant strain delta 3941, wherein the nucleotide sequence of the gene SO _3941 is shown as SEQ ID NO 15.
2. An electrogenic shewanella recombinant strain Δ 3941 constructed by the method of claim 1.
3. Use of the power-producing shewanella recombinant strain of claim 2 to produce electricity Δ 3941.
CN201910930539.XA 2019-09-29 2019-09-29 Electricity-producing Shewanella recombinant strain, construction method and application Pending CN110724656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910930539.XA CN110724656A (en) 2019-09-29 2019-09-29 Electricity-producing Shewanella recombinant strain, construction method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910930539.XA CN110724656A (en) 2019-09-29 2019-09-29 Electricity-producing Shewanella recombinant strain, construction method and application

Publications (1)

Publication Number Publication Date
CN110724656A true CN110724656A (en) 2020-01-24

Family

ID=69219592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910930539.XA Pending CN110724656A (en) 2019-09-29 2019-09-29 Electricity-producing Shewanella recombinant strain, construction method and application

Country Status (1)

Country Link
CN (1) CN110724656A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046286A (en) * 2021-03-16 2021-06-29 天津大学 Shewanella strain for promoting biofilm formation and construction method and application thereof
CN115725490A (en) * 2022-10-19 2023-03-03 天津大学 Construction method and application of recombinant Shewanella strain for synthesizing and secreting efficient electron transfer carrier phenazine-1-carboxylic acid
CN115976089A (en) * 2022-09-09 2023-04-18 天津大学 Method for improving electric energy output by engineering reinforced Shewanella vesicle secretion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101526A1 (en) * 2009-03-02 2010-09-10 Nanyang Technological University A diguanylate cyclase, method of producing the same and its use in the manufacture of cyclic-di-gmp and analogues thereof
WO2012021554A1 (en) * 2010-08-09 2012-02-16 Yale University Cyclic di-gmp-ii riboswitches, motifs, and compounds, and methods for their use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101526A1 (en) * 2009-03-02 2010-09-10 Nanyang Technological University A diguanylate cyclase, method of producing the same and its use in the manufacture of cyclic-di-gmp and analogues thereof
WO2012021554A1 (en) * 2010-08-09 2012-02-16 Yale University Cyclic di-gmp-ii riboswitches, motifs, and compounds, and methods for their use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LILY CHAO等: ""PdeB, a Cyclic Di-GMP-Specific Phosphodiesterase That Regulates Shewanella oneidensis MR-1 Motility and Biofilm Formation", 《JOURNAL OF BACTERIOLOGY》 *
NCBI DATABASE: "HD-GYP domain-containing protein [Shewanella oneidensis],NCBI Reference Sequence: WP_011073332.1", 《NCBI DATABASE> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046286A (en) * 2021-03-16 2021-06-29 天津大学 Shewanella strain for promoting biofilm formation and construction method and application thereof
CN115976089A (en) * 2022-09-09 2023-04-18 天津大学 Method for improving electric energy output by engineering reinforced Shewanella vesicle secretion
CN115725490A (en) * 2022-10-19 2023-03-03 天津大学 Construction method and application of recombinant Shewanella strain for synthesizing and secreting efficient electron transfer carrier phenazine-1-carboxylic acid

Similar Documents

Publication Publication Date Title
CN110791520A (en) Electricity-generating recombinant Shewanella strain and construction method and application thereof
CN110699309A (en) Electricity-producing Shewanella engineering strain and construction method and application thereof
CN110724656A (en) Electricity-producing Shewanella recombinant strain, construction method and application
CN107916235B (en) Recombinant yeast strain and microorganism mixed strain electricity generation method
WO2012129748A1 (en) Recombinant e.coli and use thereof in producing 5-aminolevulinic acid
CN110904020A (en) Electricity-producing Shewanella recombinant strain and construction method and application thereof
RU2537003C2 (en) Mutant microorganism, producing succinic acid, methods of its obtaining and method of obtaining succinic acid (versions)
WO2021104537A1 (en) Codon-optimized fad-glucose dehydrogenase gene and application thereof
CN110791521A (en) Electricity-generating recombinant Shewanella strain and construction method and application thereof
CN111849847B (en) Method for increasing content of heme in escherichia coli cells
Su et al. A graphene modified biocathode for enhancing hydrogen production
Deng et al. To boost c-type cytochrome wire efficiency of electrogenic bacteria with Fe 3 O 4/Au nanocomposites
CN113564090B (en) Construction method for recombinant bacteria producing tetrahydropyrimidine and application thereof
CN108315289B (en) Method for improving yield of glycolic acid in escherichia coli
Hyun et al. Performance evaluations of yeast based microbial fuel cells improved by the optimization of dead zone inside carbon felt electrode
PT103780A (en) SEQUENCE OF DNA CODING A SPECIFIC TRANSPORTER FOR L-ARABINOSE, CDNA MOLECULE, PLASMIDE, UNDERSTANDING THE AFFECTED DNA SEQUENCE, HOST CELL TRANSFORMED WITH THAT PLUMBING AND APPLICATION.
CN114107359B (en) Method for improving cellulase expression capability of trichoderma reesei by regulating cell metabolism
CN113106047B (en) Recombinant methylbutyric acid bacillus and construction method and application thereof
US20150104794A1 (en) Genetically Engineered Yarrowia Lipolytica with Enhanced Extracellular Secretion of a-ketoglutarate
CN110499259B (en) Yarrowia lipolytica YW100-1 and application thereof
CN111019875A (en) Transcription factor SugR coding gene and application thereof in N-acetylglucosamine production
CN113493758A (en) Tyrosol-producing recombinant escherichia coli capable of shortening fermentation period and application thereof
CN117230051B (en) Algin lyase mutant Pl7MaM and preparation method and application thereof
CN115851563B (en) Engineering bacterium for electrosynthesis of 3-hydroxybutyric acid by fixing carbon dioxide and construction method
CN115725490B (en) Construction method and application of recombinant Shewanella strain for synthesizing and secreting efficient electron transfer carrier phenazine-1-carboxylic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200124

RJ01 Rejection of invention patent application after publication