CN110718265A - 靶向生物毒素的g-四联体式核酸适配体三级结构预测方法 - Google Patents

靶向生物毒素的g-四联体式核酸适配体三级结构预测方法 Download PDF

Info

Publication number
CN110718265A
CN110718265A CN201910835138.6A CN201910835138A CN110718265A CN 110718265 A CN110718265 A CN 110718265A CN 201910835138 A CN201910835138 A CN 201910835138A CN 110718265 A CN110718265 A CN 110718265A
Authority
CN
China
Prior art keywords
quadruplet
simulation
temperature
aptamer
molecular dynamics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910835138.6A
Other languages
English (en)
Other versions
CN110718265B (zh
Inventor
黄强
刘建平
章琪
李干
宋梦华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201910835138.6A priority Critical patent/CN110718265B/zh
Publication of CN110718265A publication Critical patent/CN110718265A/zh
Application granted granted Critical
Publication of CN110718265B publication Critical patent/CN110718265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Bioethics (AREA)
  • Databases & Information Systems (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于核苷酸三级结构预测技术领域,具体为一种靶向生物毒素的G‑四联体式核酸适配体三级结构预测方法。本发明方法包括:G‑四联体二级结构预测;G‑四联体三级拓扑构型预测;核酸适配体末端补全和结构优化;温度依赖型分子动力学模拟(包括两个过程:恒温分子动力学模拟和升温分子动力学模拟);采用RMSD分析方法获得最稳定核酸三级结构模型。本发明方法已用于预测靶向膝沟藻毒素的特异性核酸适配体序列GO18‑T‑d的三级结构,该序列为已知的通过指数富集配基进化技术筛选得到G‑四联体式适配体序列,通过圆二色谱实验检测到其G‑四联体构型为平行式G‑四联体构型,预测结果与圆二色谱实验检测结果完全吻合,证明本预测方法具有良好的准确性。

Description

靶向生物毒素的G-四联体式核酸适配体三级结构预测方法
技术领域
本发明属于核苷酸三级结构预测技术领域,具体涉及靶向生物毒素的G-四联体型核酸适配体的三级结构预测方法。
背景技术
近年来,核酸G-四联体结构越来越受到科研人员的重视,因为它们在调节各种生物体代谢活动中起到了重要作用[1,2]。另一方面,G-四联体具有良好的稳定性和特异性,能够高效特异地识别小分子、细胞器甚至全细胞,使其在检测领域具有很大的潜力[3]。在获得靶向目标分子的G-四联体式核酸适配体的过程中,人们往往通过SELEX技术(systematicevolution of ligands by exponential enrichment, SELEX)筛选得到G-四联体式适配体序列,然而传统的SELEX筛选无法提供G-四联体式适配体的三级结构信息,从而对G-四联体式适配体的优化和设计工作造成很大的困扰[4]。从理论上讲,G-四联体的三级结构可以通过X射线衍射、核磁共振和低温电子显微镜技术来确定。然而,由于成本较高、耗时长、以及G-四联体拓扑构象较多,这些方法不能很好地应用于G-四联体式核酸适配体。 随着计算技术的快速发展,人们长期以来一直在研究用于G-四联体式核酸适配体结构预测的计算机模拟方法,它们通常分为二级结构预测和三级结构预测两类。大多数二级结构预测效果都很好,而三级预测的效果和精度有限[5]。其中一个关键的难题在于:对于任何一个G-四联体序列,理论上其分子内可能存在九种类型的拓扑结构,这给G-四联体拓扑结构预测工作带来了很大的困难。解决这一难题的一个可靠的方法是利用分子动力学模拟研究核苷酸序列如何自发地折叠成G-四联体结构[6]。然而,G-四联体折叠是一个缓慢且极其复杂的过程,从计算模拟的角度来准确预测该过程具有十分大的困难。对于这九种类型的拓扑结构,目前没有一个可信的结构预测方法,准确预测出G-四联体的天然三级结构。
基于以上问题,寻找一种可行的预测G-四联体式核酸适配体三级结构的方法十分有必要。
发明内容
本发明的目的是提供一种精确度高的靶向生物毒素的G-四联体式核酸适配体三级结构的预测方法,以获得全原子的G-四联体核酸三级结构模型。
本发明还涉及利用本发明方法预测得到靶向膝沟藻毒素的核酸适配体GO18-T-d全原子三级结构模型,为该适配体的优化工作提供理论上的指导。
本发明提供的靶向生物毒素的G-四联体式核酸适配体三级结构预测方法,是基于已筛选得到的靶向生物毒素的G-四联体式核酸序列,只需获得核酸序列便能实现从G-四联体式核酸适配体一级结构到三级结构的预测。本发明利用G-四联体拓扑结构出色的热稳定性来预测其拓扑构型,规避了从计算模拟角度预测G-四联体自发折叠过程的困难,精确地预测了核酸G-四联体拓扑结构。
具体而言,本发明提供的靶向生物毒素的G-四联体式核酸适配体三级结构的预测方法,其流程如附图1所示,具体步骤为:
第一步:G-四联体二级结构预测
预测程序的第一步是核酸序列的G-四联体二级结构预测。在获得核苷酸序列之后,使用核酸G-四联体分析网站QGRS Mapper (http://bioinformatics.ramapo.edu/QGRS/index.php/)预测其二级结构[7]。在QGRS Mapper网站中,对所有可能出现的G-四联体二级结构进行打分,得分越高,作为此结构存在的可能性越大,得到最高分数的二级结构。
第二步:G-四联体三级拓扑构型预测
由于G-四联体具有结构多样性的特点,在预测核酸三级结构的过程中,需要先对G-四联体进行拓扑构型进行预测。获取第一步最高分数的二级结构后,对其进行G-四联体拓扑构型预测,得到G-四联体的三级拓扑构型。此步骤使用三维核酸结构的可视化建模网站3D-Nus 的G-Quadruplex模块[8](https://iith.ac.in/3dnus/Quadruplex.html)。
第三步:核酸适配体末端补全和结构优化
在获得G-四联体的三级拓扑构型之后,接下来就是利用AutoPSF VMD插件补全适配体的5'端和3'端[9],获得核酸适配体的全长三级结构模型。因为四个鸟嘌呤形成的平面中心之间的金属阳离子是维持G-四联体结构的要素,对于不同G-四联拓扑构型,维持其结构稳定的阳离子种类不同(主要为K+、Mg2+),所以需要在G-四联体的中心放置金属阳离子来稳定G-四联体;
经过上述处理后,使用NAMD(版本2.10)程序对每个三级结构模型进行至少5000次迭代的能量最小化处理[3],以消除不合理的核酸结构[10]
第四步:温度依赖型分子动力学模拟
本步骤旨在评估其结构的热稳定性;温度依赖型分子动力学模拟包括两个过程:恒温分子动力学模拟和升温分子动力学模拟;其中,恒温分子动力学模拟过程,是将第三步获得的每个模型的三级结构模型放置于293K下保持不少于10 ns的时间,从而获得稳定性更好的三级结构模型;随后系统升温,进行升温分子动力学模拟,即每个模型的模拟温度在不少于4ns的时间内逐渐从293K升高到693K,使核酸能够克服能垒来完成所有可能的结构转变;由此获得了每个合理的全长三级结构模型的分子动力学模拟轨迹,这些轨迹显示了每个结构模型在恒定温度下的最稳定构象以及随温度升高而发生的构象变化过程。
本步骤中,温度依赖型分子动力学模拟在Gromacs5.1.4软件中进行,即利用Gromacs5.1.4软件进行每个全长核酸三级结构模型的温度依赖型模拟[11];为了构建适用于Gromacs5.14软件的模拟体系,本发明使用AMBER99 bsc1力场并采用SPC水模型进行建模[12];模型建立后,将模型放置在模拟体系水立方体的中心,并在体系中插入金属阳离子以及相应的阴离子以达到所需的离子浓度;恒温、升温和冷却过程由Gromacs5.1.4的模拟退火模块完成。模拟体系搭建完成后,本发明利用速度重新缩放的方法将模拟温度保持在恒定温度293K,在此温度下进行每个全长核酸三级结构模型的恒温分子动力学模拟,模拟时间不少于10 ns,从而获得稳定性更好的核酸三级结构模型。随后模拟体系升温,进行升温分子动力学模拟,在升温过程中,每个体系的模拟温度在一段时间内(不少于4ns)从294K逐渐升高到693K,使核酸能够克服能垒来完成所有可能的结构转变。从而得到各个合理的全长三级结构模型的分子动力学模拟轨迹,这些轨迹显示了每个结构模型在恒定温度下的最稳定构象以及随温度升高而发生的构象变化过程。
第五步:采用RMSD分析方法获得最稳定核酸三级结构模型
在上一步结束后,本发明获得了每个合理的全长三级结构模型的分子动力学模拟轨迹,这些轨迹显示了每个结构模型在恒定温度下的最稳定构象以及随温度升高而发生的构象变化过程。为了比较不同结构模型之间的热稳定性差异,本发明进一步通过对其结构模型中的G-四联体拓扑结构进行RMSD分析[13],来定量地比较不同结构模型的G-四联体拓扑构型的热稳定性,从而可以选择热稳定性最好的G-四联体作为其天然G-四联体拓扑构型。
由于鸟嘌呤的八个氧原子和中心的金属阳离子构成G-四联体的核心结构,因此将这一部分用于RMSD分析。其中,子步骤一,计算每个G-四联体拓扑结构在恒温模拟中的初始构象的RMSD随模拟时间的变化,以检查它们是否能够在293K模拟温度下保持稳定,RMSD随模拟时间的变化波动越小,说明核酸的结构越稳定,排除掉不稳定的G-四联体拓扑结构。子步骤二,找出升温分子动力学模拟过程中不同G-四联体拓扑结构之间的RMSD随模拟时间变化的差异,选择RMSD随模拟时间变化波动最小的G-四联体拓扑结构模型作为核酸适配体的最可能的天然G-四联体拓扑结构,此轨迹下的核酸适配体全长三级结构模型最有可能为其天然三级结构。
本发明提供的核酸三级结构预测方法中,温度依赖型分子动力学模拟由两个过程组成:(1)在恒定温度下进行一段时间的分子动力学模拟。(2)一段时间的分子动力学升温模拟。分析不同模拟轨迹的RMSD随模拟时间的变化,获得最有可能的核酸三级结构。RMSD随模拟时间的变化波动越小,其构象的热稳定性越好,选择具有最高熔化温度的G-四联体结构模型作为其最可能的结构,从而巧妙地规避了从计算模拟角度来预测G-四联体自发折叠这一缓慢而复杂的过程,精确地预测了核酸G-四联体三级拓扑结构。
附图说明
图1为核酸适配体三级结构预测流程图。
图2为G-四联体核心拓扑结构的分类图。
图3为GO18-T-d适配体恒温分子动力学模拟过程的RMSD随时间变化图。
图4为GO18-T-d适配体升温分子动力学模拟过程的RMSD随时间变化图。
图5为GO18-T-d适配体在恒温模拟过程结束后的九种三级结构模型图。
图6为GO18-T-d适配体在升温模拟过程结束后的六种三级结构模型图。
图7为GO18-T-d适配体最终的全原子三级结构模型图。
图8为GO18-T-d适配体圆二色谱谱图。
具体实施方式
本发明的方法具体应用在靶向膝沟藻毒素的G-四联体式核酸适配体GO18-T-d的流程:
第一步:G-四联体二级结构预测
预测程序的第一步是GO18-T-d序列的G-四联体二级结构预测。在获得GO18-T-d核苷酸序列(5’-AACCTTTGGTCGGGCAAGGTAGGTT-3’(SEQ. ID. NO1))之后,使用QGRS Mapper 网站预测其二级结构。在QGRS Mapper中,所有可能出现的G-四联体二级结构都根据得分进行排名:得分越高,作为此结构存在的可能性越大。结果显示GO18-T-d的G值高达20,表明形成G-四联体结构的可能性很大。
第二步:G-四联体三级拓扑构型预测
在第二步中,对第一步具有最高分数的二级结构进行G-四联体三级拓扑构型预测。此步骤使用3D-Nus 网站的G-Quadruplex模块,结果形成九个不同拓扑结构的G-四联体核心构型。
第三步:GO18-T-d适配体末端补全和结构优化
在获得GO18-T-d的三级核心构型之后,接下来就是补全适配体的5’端和3’端,本发明使用AutoPSF VMD插件获得GO18-T-d的全长三级结构模型。由于四个鸟嘌呤形成的平面中心之间的金属阳离子Mg2+是维持G-四联体结构的要素,因此本方法在G-四联体的中心放置了一个Mg2+。然后在每个三级结构模型上进行50000次迭代的能量最小化处理,以消除不合理的结构并使用NAMD(版本2.10)程序改进结构参数。在末端延长以及能量最小化的两个过程中,本发明使用CHARMM36力场。在结束延伸步骤之后,根据它们的拓扑类型获得了九个可能的三级结构模型,如说明书附图2所示,这些模型被命名为Q1、Q2、Q3、Q4、Q5、Q14、Q15、Q16、Q17。
第四步:是对每个全长三级结构模型进行温度依赖型分子动力学模拟,旨在评估九个不同结构的热稳定性。利用Gromacs5.1.4软件进行每个全长核酸三级结构模型的温度依赖型模拟,在核酸模拟体系建模的过程中,为了构建适用于Gromacs5.14软件的模拟体系,本发明使用AMBER99 bsc1力场并采用SPC水模型进行建模。模型建立后,将模型放置在模拟体系水立方体的中心,并在体系中插入数十个Mg2+,然后插入另外的NaCl以达到10mmol/L的离子浓度。温度依赖型分子动力学模拟包括两个过程:恒温分子动力学模拟和升温分子动力学模拟。恒温、升温和冷却过程均由Gromacs5.1.4软件的模拟退火模块完成。模拟体系搭建完成后,本发明利用速度重新缩放的方法将模拟温度保持在恒定温度293K,并将已建好的九个模型的模拟体系放置于293K的恒定温度下保持10ns,其RMSD随模拟时间变化过程如附图3所示。分析结果表明,Q5、Q15、Q16三个结构模型的RMSD波动较大,而Q1、Q2、Q3、Q4、Q14、Q17的波动趋势相对稳定,这表明GO18-T-d适配体作为前三种结构存在的可能性较小,因此将它们排除在可能的三级结构之外。在随后的升温过程中,每个模型的温度在10 ns内逐渐从293K增加到693K,以便GO18-T-d核酸适配体能够通过克服能量壁垒来完成所有可能的构象变化。升温模拟部分的RMSD随时间变化图如附图4所示。很明显,Q3结构模型的G-四联体结构区域随着温度的升高而波动最小,通过观测Q1、Q2、Q3、Q4、Q14、Q17六个结构模型的结构,发现仅有Q3结构模型保持稳定的G-四联体拓扑结构。因此,Q3结构模型作为GO18-T-d适配体最有可能的三级结构模型,并且其G-四联体拓扑构型为平行式G-四联体。
第五步:圆二色谱实验检测GO18-T-d适配体G-四联体拓扑构型。
本发明通过圆二色谱实验来确定GO18-T-d适配体G-四联体的天然拓扑构型。所用GO18-T-d核酸适配体以及化学试剂均购自上海生工生物工程有限公司。实验所用的圆二色光谱仪为英国应用光物理公司的Chirascan型号圆二色光谱仪。
(1)样品准备:本发明用于圆二色谱实验的缓冲液与模拟条件保持一致,为150mmol/LMgCl2,并添加20 mmol/L Tris-HCl以维持体系的 pH为 7.5。缓冲液制备完后用0.2μm的水相过滤膜过滤以出去溶液中的颗粒物。本实验所用的核酸适配体GO18-T-d购买于生工生物工程股份有限公司,用缓冲液将核酸稀释到20μmol/L,取200μL核酸样品置于加热器中95℃加热10分钟,关闭加热器,再以2℃/min降至室温。
(2)圆二色谱检测:打开钢气瓶开关,打开圆二色光谱仪的氢气灯并吹气20分钟。清洗比色皿,用缓冲液润洗比色皿,测量时先检测空气噪音,减去空气噪音后,测量缓冲液和核酸样品的信号,将测得的核酸样品信号减去缓冲液信号即为核酸适配体GO18-T-d的圆二色谱图。波长测量范围为220 nm到360 nm,检测温度25℃,扫描速度为120 nm/min,每个样品重复扫描三次,取平均值)。
实验测得的GO18-T-d适配体圆二色谱谱图如附图8所示,其在270nm处有一个正向吸收峰而在240nm处有一个负向吸收峰,符合平行式G-四联体的圆二色谱谱图特征,可以确定GO18-T-d适配体的天然G-四联体构型为平行式G-四联体构型,本发明方法的预测结果与实验结果完全吻合。
参考文选
[1]. Rhodes, D. and Lipps, H.J. G-quadruplexes and their regulatory rolesin biology. Nucleic Acids Res, 2015. 43, 8627-8637.
[2]. Makarov, V.L., Hirose, Y. and Langmore, J.P. Long G tails at bothends of human chromosomes suggest a C strand degradation mechanism fortelomere shortening. Cell, 1997. 88, 657-666.
[3]. Feng, L.,et al. A graphene functionalized electrochemical aptasensorfor selective label-free detection of cancer cells. Biomaterials, 2011. 32,2930-2937.
[4]. Zhuo, Z.,et al. Recent advances in SELEX technology and aptamerapplications in biomedicine. Int. J. Mol. Sci., 2017. 18, 2142.
[5]. Kwok, C.K. and Merrick, C.J. G-Quadruplexes: prediction,characterization, and biological application. Trends Biotechnol., 2017. 35,997-1013.
[6]. Yang, C.,et al. In silico direct folding of thrombin-bindingaptamerG-quadruplex at all-atom level. Nucleic Acids Res., 2017. 45, 12648-12656.
[7].Kikin, O., D’Antonio, L. and Bagga, P.S. QGRS Mapper: a web-basedserver for predicting G-quadruplexes in nucleotide sequences. Nucleic AcidsRes., 2006. 34, W676-W682.
[8].Patro, L.P.P., Kumar, A., Kolimi, N. and Rathinavelan, T. 3D-NuS: aweb server forautomated modeling and visualization of non-canonical 3-dimensional nucleic acid structures. J. Mol. Biol., 2017. 429, 2438-2448.
[9].Humphrey, W., Dalke, A. and Schulten, K. VMD: visual moleculardynamics. J. Mol. Graphics, 1996. 14, 33-38.
[10].Phillips, J.C., et al. Scalable molecular dynamics with NAMD. J.Comput. Chem., 2005. 26, 1781-1802.
[11].Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess,B. and Lindahl, E. GROMACS: High performance molecular simulations throughmulti-level parallelism from laptops to supercomputers. SoftwareX, 2015. 1,19-25.
[12].Ganesan, A ., M.L. Coote and K. Barakat, Molecular dynamics-drivendrug discovery:leaping forward with confidence. Drug Discov Today, 2017. 22(2), 6969-72.。

Claims (3)

1.一种靶向生物毒素的G-四联体式核酸适配体三级结构预测方法,其特征在于,具体步骤为:
第一步:G-四联体二级结构预测:
对于获得的核苷酸序列,使用核酸G-四联体结构分析网站QGRS Mapper 预测其二级结构;在QGRS Mapper网站中,对所有可能出现的G-四联体二级结构进行打分,得分越高,作为此结构存在的可能性越大,取得分最高者;
第二步:G-四联体三级拓扑构型预测:
使用三维核酸结构的可视化建模网站3D-Nus 的G-Quadruplex模块对最高分数的二级结构进行G-四联体拓扑构型预测,得到G-四联体的三级拓扑构型;
第三步:核酸适配体末端补全和结构优化:
对于获得的适配体G-四联体三级拓扑构型,利用AutoPSF VMD插件补全适配体的5'端和3'端,以获得核酸适配体的全长三级结构模型;由于四个鸟嘌呤形成的平面中心之间的金属阳离子是维持G-四联体结构的要素,对于不同G-四联拓扑构型,维持其结构稳定的阳离子种类不同,主要为K+、Mg2+,故在G-四联体的中心放置相应的金属阳离子来稳定G-四联体;
经过上述处理后,使用版本2.10NAMD程序对每个三级结构模型进行至少5000次迭代的能量最小化处理,以消除不合理的核酸结构;
第四步:温度依赖型分子动力学模拟:
本步骤旨在评估其结构的热稳定性;温度依赖型分子动力学模拟包括两个过程:恒温分子动力学模拟和升温分子动力学模拟;其中,恒温分子动力学模拟过程,是将第三步获得的每个模型的三级结构模型放置于293K下保持不少于10 ns的时间,从而获得稳定性更好的三级结构模型;随后系统升温,进行升温分子动力学模拟,即每个模型的模拟温度在不少于4ns的时间内逐渐从293K升高到693K,使核酸能够克服能垒来完成所有可能的结构转变;由此获得了每个合理的全长三级结构模型的分子动力学模拟轨迹,这些轨迹显示了每个结构模型在恒定温度下的最稳定构象以及随温度升高而发生的构象变化过程;
第五步:采用RMSD分析方法获得最稳定核酸三级结构模型:
为了比较不同结构模型之间的热稳定性差异,进一步对其结构模型中的G-四联体拓扑结构进行RMSD分析,从而定量地比较不同结构模型的G-四联体拓扑构型的热稳定性,选择热稳定性最好的G-四联体作为其天然G-四联体拓扑构型。
2. 根据权利要求1所述的预测方法,其特征在于,第四步中,所述温度依赖型分子动力学模拟在Gromacs5.1.4软件中进行,即利用Gromacs5.1.4软件进行每个全长核酸三级结构模型的温度依赖型模拟;为了构建适用于Gromacs5.14软件的模拟体系,使用AMBER99 bsc1力场并采用SPC水模型进行建模;模型建立后,将模型放置在模拟体系水立方体的中心,并在体系中插入金属阳离子以及相应的阴离子以达到所需的离子浓度;恒温、升温和冷却过程由Gromacs5.1.4的模拟退火模块完成;模拟体系搭建完成后,利用速度重新缩放的方法将模拟温度保持在恒定温度293K,在此温度下进行每个全长核酸三级结构模型的恒温分子动力学模拟;随后模拟体系升温,进行升温分子动力学模拟。
3.根据权利要求1所述的预测方法,其特征在于,第五步的RMSD分析中,子步骤一,计算每个G-四联体拓扑结构在恒温模拟中的初始构象的RMSD随模拟时间的变化,以检查它们是否能够在293K模拟温度下保持稳定,RMSD随模拟时间的变化波动越小,说明核酸的结构越稳定,排除掉不稳定的G-四联体拓扑结构;子步骤二,找出升温分子动力学模拟过程中不同G-四联体拓扑结构之间的RMSD随模拟时间变化的差异,选择RMSD随模拟时间变化波动最小的G-四联体拓扑结构模型作为核酸适配体的最可能的天然G-四联体拓扑结构,此轨迹下的核酸适配体全长三级结构模型最有可能为其天然三级结构。
CN201910835138.6A 2019-09-05 2019-09-05 靶向生物毒素的g-四联体式核酸适配体三级结构预测方法 Active CN110718265B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910835138.6A CN110718265B (zh) 2019-09-05 2019-09-05 靶向生物毒素的g-四联体式核酸适配体三级结构预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910835138.6A CN110718265B (zh) 2019-09-05 2019-09-05 靶向生物毒素的g-四联体式核酸适配体三级结构预测方法

Publications (2)

Publication Number Publication Date
CN110718265A true CN110718265A (zh) 2020-01-21
CN110718265B CN110718265B (zh) 2021-02-26

Family

ID=69209677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910835138.6A Active CN110718265B (zh) 2019-09-05 2019-09-05 靶向生物毒素的g-四联体式核酸适配体三级结构预测方法

Country Status (1)

Country Link
CN (1) CN110718265B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112116948A (zh) * 2020-09-25 2020-12-22 山东大学 一种特殊分支数的dna多面体的模拟分析方法
CN113539377A (zh) * 2021-06-18 2021-10-22 中国人民解放军海军军医大学 一种靶向生物毒素的环状核酸适配体三级结构的预测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033503A1 (en) * 1997-02-05 1998-08-06 Board Of Regents, The University Of Texas System Porphyrin compounds as telomerase inhibitors
CN102156823A (zh) * 2011-02-18 2011-08-17 复旦大学 一种靶向作用于蛋白激酶非活性构象的化合物筛选方法
CN103966186A (zh) * 2014-04-08 2014-08-06 南京工业大学 一种提高枯草芽孢杆菌脂肪酶a的热稳定性的方法
CN107073137A (zh) * 2014-06-16 2017-08-18 南安普敦大学 减少内含子保留
CN107729717A (zh) * 2017-11-03 2018-02-23 四川大学 一种计算机模拟获取g蛋白偶联受体中间态结构的方法
CN109002690A (zh) * 2018-06-08 2018-12-14 济南大学 通过构建charmm rotamers力场预测突变氨基酸侧链结构的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033503A1 (en) * 1997-02-05 1998-08-06 Board Of Regents, The University Of Texas System Porphyrin compounds as telomerase inhibitors
CN102156823A (zh) * 2011-02-18 2011-08-17 复旦大学 一种靶向作用于蛋白激酶非活性构象的化合物筛选方法
CN103966186A (zh) * 2014-04-08 2014-08-06 南京工业大学 一种提高枯草芽孢杆菌脂肪酶a的热稳定性的方法
CN107073137A (zh) * 2014-06-16 2017-08-18 南安普敦大学 减少内含子保留
CN107729717A (zh) * 2017-11-03 2018-02-23 四川大学 一种计算机模拟获取g蛋白偶联受体中间态结构的方法
CN109002690A (zh) * 2018-06-08 2018-12-14 济南大学 通过构建charmm rotamers力场预测突变氨基酸侧链结构的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MENGHUA SONG ET AL.: ""De novo post-SELEX optimization of a G-quadruplex DNA aptamer binding to marine toxin gonyautoxin 1/4"", 《COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL》 *
QING LIU ET AL.: ""Surface Binding Energy Landscapes Affect Phosphodiesterase Isoform-Specific Inhibitor Selectivity"", 《COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL》 *
章琪等: ""金属阳离子对膝沟藻毒素适配体(GO18-Td)G四联体结构的影响"", 《生物化工》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112116948A (zh) * 2020-09-25 2020-12-22 山东大学 一种特殊分支数的dna多面体的模拟分析方法
CN113539377A (zh) * 2021-06-18 2021-10-22 中国人民解放军海军军医大学 一种靶向生物毒素的环状核酸适配体三级结构的预测方法
CN113539377B (zh) * 2021-06-18 2022-04-05 中国人民解放军海军军医大学 一种靶向生物毒素的环状核酸适配体三级结构的预测方法

Also Published As

Publication number Publication date
CN110718265B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
Uusitalo et al. Martini coarse-grained force field: extension to RNA
Kinghorn et al. Aptamer bioinformatics
Chowdhury et al. A review on multiple sequence alignment from the perspective of genetic algorithm
AU2003222214B2 (en) Methods and systems to identify operational reaction pathways
CN110718265B (zh) 靶向生物毒素的g-四联体式核酸适配体三级结构预测方法
Magnus et al. RNA 3D structure prediction guided by independent folding of homologous sequences
CN105814573A (zh) 基于结构的预测性建模
Lin et al. Computational methods for analyzing and modeling genome structure and organization
Husby et al. Small‐molecule G‐quadruplex interactions: Systematic exploration of conformational space using multiple molecular dynamics
Hopf et al. Quantification of the effect of mutations using a global probability model of natural sequence variation
Li et al. A gene-based information gain method for detecting gene–gene interactions in case–control studies
Zhou et al. Searching the sequence space for potent aptamers using SELEX in silico
Wheatley et al. Molecular dynamics of a DNA Holliday junction: The inverted repeat sequence d (CCGGTACCGG) 4
CN113129996B (zh) 一种基于分子动力学模拟的核酸适配体优化设计方法
CN112210587B (zh) 一种基于单核苷酸分子对接的核酸适配体设计方法
Ma et al. RNANetMotif: Identifying sequence-structure RNA network motifs in RNA-protein binding sites
Menon Computational genome analysis for identifying Biliary Atresia genes
Mazzanti et al. Biasing RNA coarse-grained folding simulations with small-angle X-ray scattering data
Shea et al. Predicting mutational function using machine learning
Palivec et al. Obtaining 3D Atomistic Structure of Saccharides from Raman/ROA/NMR Spectroscopic Techniques
Di Stefano et al. Restraint-Based Modeling of Genomes and Genomic Domains
Liu et al. NEPRE: a Scoring Function for Protein Structures based on Neighbourhood Preference
Jiang Investigating the role of molecular motors on chromatin organization
Tang Applications of bioinformatics in the post-genome era
Pareja-Barrueto et al. Molecular Determinants of Gap Junction Channels Conductance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant