CN110713381A - 一种耐火1200秒的生物基耐火纸及制备方法 - Google Patents

一种耐火1200秒的生物基耐火纸及制备方法 Download PDF

Info

Publication number
CN110713381A
CN110713381A CN201910948670.9A CN201910948670A CN110713381A CN 110713381 A CN110713381 A CN 110713381A CN 201910948670 A CN201910948670 A CN 201910948670A CN 110713381 A CN110713381 A CN 110713381A
Authority
CN
China
Prior art keywords
iron
hydrogen phosphate
calcium hydrogen
doped calcium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910948670.9A
Other languages
English (en)
Other versions
CN110713381B (zh
Inventor
张磊磊
刘叶叶
李贺军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Northwest University of Technology
Original Assignee
Northwest University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University of Technology filed Critical Northwest University of Technology
Priority to CN201910948670.9A priority Critical patent/CN110713381B/zh
Publication of CN110713381A publication Critical patent/CN110713381A/zh
Application granted granted Critical
Publication of CN110713381B publication Critical patent/CN110713381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5066Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)

Abstract

本发明涉及一种耐火1200秒的生物基耐火纸,其特征在于包括氮化硅纳米棒、铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒;具有定向三维网络结构的氮化硅纳米棒之间设计有铁掺杂磷酸氢钙纳米带,铁掺杂磷酸氢钙颗粒分布在铁掺杂磷酸氢钙纳米带表面和氮化硅纳米棒的表面,此外,铁掺杂磷酸氢钙颗粒还分布在复合结构的孔隙之间。有益之处是,通过构建构造棒‑带‑颗粒多尺度定向复合结构,可以承受1200秒不燃烧并保持形状无损伤;铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒赋予了纸的生物安全性,不会导致过敏或者诱发病变等反应,因此可以长期应用于墙纸、室内建筑装饰等与人体长期接触的应用场合。

Description

一种耐火1200秒的生物基耐火纸及制备方法
技术领域
本发明属于造纸技术领域,涉及一种生物基耐火纸及制备方法,尤其涉及耐火1200秒的生物基耐火纸及制备方法。
背景技术
纸是成为人类日常工作和生活中不可或缺产品。传统纸通常是采用树木或草等植物纤维为原料并加入一些添加剂和漂白剂制造出来的,传统纸的致命弱点是其具有易燃性、不耐火,从而导致书籍和纸质文件在火灾中会被烧毁,这是众多纸质文物损毁的一个主要原因,同时,在纸应用于室内装饰等环境时,会与人体长时间接触,需要纸具备生物相容性和环境友好性的特点。因此需要研究和开发生物基耐火纸。
文献1“Yu H P,Zhu Y J,Lu B Q.Highly efficient and environmentallyfriendly microwave-assisted hydrothermal rapid synthesis of ultralonghydroxyapatite nanowires[J].Ceramics International,2018,44(11):12352-12356.”报道了采用微波辅助水热法合成超长羟基磷灰石纳米线生物基耐火纸。
文献2“Xiong Z C,Yang Z Y,Zhu Y J,et al.Ultralong hydroxyapatitenanowire-based layered catalytic paper for highly efficient continuous flowreactions[J].Journal of Materials Chemistry A,2018:6,5762.”报道了羟基磷灰石纳米线/金纳米颗粒生物基耐火纸的制备方法。结果发现该纸在酒精灯火焰测试条件下,经过80秒测试后,该纸不燃烧并可以保持其初始形状无明显变化。
上述文献制备的生物基耐火纸的主要组分是羟基磷灰石纳米线,可以实现在酒精灯火焰测试条件下,经过80秒测试后不燃烧并保持其初始形状没有明显变化。但是80秒的耐火时间显然远远不够的,此外,在纸能够应用于室内装饰后,处于人体长时间接触的环境时,需要纸具备生物相容性和环境友好性的特点,同时要求生物基耐火纸的耐火时间越长越好。而耐火时间越长越好的生物基耐火纸是科学技术研究目标,需要在生物基耐火纸的结构,生物基耐火纸的材料以及制备工艺中进行不断地研究,以达到在现有技术基础上不断提高生物基耐火纸的耐火指标。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种耐火1200秒的生物基耐火纸及制备方法,具有棒-带-颗粒多尺度定向复合结构,该结构的示意图见图1。通过构造棒-带-颗粒多尺度定向复合结构而制备出生物基耐火纸。本发明制备的耐火纸在酒精灯燃烧测试条件下,最高可以经受1200秒不燃烧并保持形状无明显变化,该酒精灯燃烧测试的承受时间比背景技术报道数值提高了1120秒。
技术方案
一种耐火1200秒的生物基耐火纸,其特征在于包括氮化硅纳米棒、铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒;具有定向三维网络结构的氮化硅纳米棒之间设计有铁掺杂磷酸氢钙纳米带,铁掺杂磷酸氢钙颗粒分布在铁掺杂磷酸氢钙纳米带表面和氮化硅纳米棒的表面,此外,铁掺杂磷酸氢钙颗粒还分布在复合结构的孔隙之间。
一种所述耐火1200秒的生物基耐火纸的制备方法,其特征在于步骤如下:
步骤1:将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:5-1:10混合均匀形成粉末,将聚硅氮烷和二甲苯按照体积比1:1-1:4均匀混合形成液体;
步骤2:将粉末加入液体中,形成粉末浓度为10-50g/L的溶液;
步骤3:将步骤2的溶液沿着同一方向均匀涂刷于石墨纸上,之后在40-60℃烘干,然后取出后再次沿着同一方向均匀涂刷步骤2的溶液,之后再次在40-60℃烘干,重复此涂刷-烘干过程多次;
步骤4:将步骤3处理的石墨纸置于热处理炉中,在氮气保护环境下,以2-4℃/min的升温速度升温至230-300℃,并保温30-50min,再以2-5℃/min的升温速度升温至1150-1400℃,保温100-150min,体系自然冷却;
步骤5:再置于真空管式炉中,在空气环境下,以3-8℃/min的升温速度升温至600-900℃,并保温30-60min,体系自然冷却;
步骤6:再完全浸没入步骤1的粉末与水的混合溶液中,室温浸泡1-4h,取出后在温度为40-50℃的条件下烘干,得到耐火1200秒的生物基耐火纸;所述粉末与水的混合溶液中粉末的浓度为5-20g/L。
所述步骤3的涂刷-烘干过程多次为6~8次。
有益效果
本发明提出的一种耐火1200秒的生物基耐火纸及制备方法,包括了氮化硅纳米棒、铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒三种组分,其中氮化硅微米棒的直径分布在1-10微米,铁掺杂磷酸氢钙纳米带的宽度分布在200-600纳米,铁掺杂磷酸氢钙颗粒的粒径分布在30-100纳米,氮化硅微米棒构建了定向三维网络结构,铁掺杂磷酸氢钙纳米带与氮化硅微米棒形成径向连接,铁掺杂磷酸氢钙颗粒弥散分布在氮化硅微米棒表面、铁掺杂磷酸氢钙纳米带表面以及三维网络结构的孔隙中,三种材料复合形成了棒-带-颗粒多尺度定向复合结构,该结构中材料的尺度分为1-10微米、200-600纳米和30-100纳米三级,分别由氮化硅微米棒、铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒提供,该结构中材料的形貌分为三种,分别是棒状、带状和颗粒状。通过三级尺度和三种形貌的有效复合,从而最终制备出生物基耐火纸。本发明制备的耐火纸在酒精灯燃烧测试条件下,最高可以经受1200秒不燃烧并保持形状无明显变化,该酒精灯燃烧测试的承受时间比背景技术报道数值提高了1120秒。
本发明的有益之处是,其一,通过构建构造棒-带-颗粒多尺度定向复合结构,可以显著提高纸的耐火性能,本方法制备的生物基耐火纸在酒精灯耐火测试条件下,可以承受1200秒不燃烧并保持形状无损伤,比背景技术的耐火时间提高了1120秒;其二,铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒赋予了纸的生物安全性,铁掺杂磷酸氢钙具有与人体的骨组织的无机物近似的化学成分,具有优良的生物相容性并且环境友好,不会导致过敏或者诱发病变等反应,因此可以长期应用于墙纸、室内建筑装饰等与人体长期接触的应用场合;其三,本发明制备的纸具有高柔韧性,可以满足裁剪、加工、张贴等使用要求。
附图说明
图1:本发明制备的一种耐火1200秒的生物基耐火纸的结构示意图
图2:是实例4制备的生物基耐火纸在酒精灯燃烧测试1200秒后的照片
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:5混合均匀,得到粉末A;
(2)将聚硅氮烷和二甲苯按照体积比1:1均匀混合,得到液体B;
(3)将粉末A加入液体B中,其中粉末A的浓度为10g/L,搅拌均匀,得到溶液C;
(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在40℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在40℃烘干,重复此涂刷-烘干过程共6次,得到样品D;
(5)将样品D置于热处理炉中,在氮气保护环境下,以2℃/min的升温速度升温至230℃,并保温30min,再以2℃/min的升温速度升温至1150℃,保温100min,体系自然冷却后,得到样品E;
(6)将样品E置于真空管式炉中,在空气环境下,以3℃/min的升温速度升温至600℃,并保温30min,体系自然冷却后,得到样品F;
(7)将粉末A和无水乙醇按照5g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡1h,取出后在温度为40℃的条件下烘干,即可得到生物基耐火纸。
实施例子2
(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:10混合均匀,得到粉末A;
(2)将聚硅氮烷和二甲苯按照体积比1:4均匀混合,得到液体B;
(3)将粉末A加入液体B中,其中粉末A的浓度为50g/L,搅拌均匀,得到溶液C;
(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在60℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在60℃烘干,重复此涂刷-烘干过程共8次,得到样品D;
(5)将样品D置于热处理炉中,在氮气保护环境下,以4℃/min的升温速度升温至300℃,并保温50min,再以5℃/min的升温速度升温至1400℃,保温150min,体系自然冷却后,得到样品E;
(6)将样品E置于真空管式炉中,在空气环境下,以8℃/min的升温速度升温至900℃,并保温60min,体系自然冷却后,得到样品F;
(7)将粉末A和水按照20g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡4h,取出后在温度为50℃的条件下烘干,即可得到生物基耐火纸。
实施例子3
(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:5混合均匀,得到粉末A;
(2)将聚硅氮烷和二甲苯按照体积比1:4均匀混合,得到液体B;
(3)将粉末A加入液体B中,其中粉末A的浓度为50g/L,搅拌均匀,得到溶液C;
(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在40℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在60℃烘干,重复此涂刷-烘干过程共7次,得到样品D;
(5)将样品D置于热处理炉中,在氮气保护环境下,以2℃/min的升温速度升温至300℃,并保温30min,再以5℃/min的升温速度升温至1150℃,保温100min,体系自然冷却后,得到样品E;
(6)将样品E置于真空管式炉中,在空气环境下,以8℃/min的升温速度升温至600℃,并保温60min,体系自然冷却后,得到样品F;
(7)将粉末A和水按照5g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡4h,取出后在温度为40℃的条件下烘干,即可得到生物基耐火纸。
实施例子4
(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:7混合均匀,得到粉末A;
(2)将聚硅氮烷和二甲苯按照体积比1:3均匀混合,得到液体B;
(3)将粉末A加入液体B中,其中粉末A的浓度为30g/L,搅拌均匀,得到溶液C;
(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在50℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在50℃烘干,重复此涂刷-烘干过程共6-8次,得到样品D;
(5)将样品D置于热处理炉中,在氮气保护环境下,以3℃/min的升温速度升温至250℃,并保温40min,再以3℃/min的升温速度升温至1250℃,保温120min,体系自然冷却后,得到样品E;
(6)将样品E置于真空管式炉中,在空气环境下,以5℃/min的升温速度升温至800℃,并保温50min,体系自然冷却后,得到样品F;
(7)将粉末A和水按照10g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡3h,取出后在温度为50℃的条件下烘干,即可得到生物基耐火纸。
实施例子5
(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:5混合均匀,得到粉末A;
(2)将聚硅氮烷和二甲苯按照体积比1:2均匀混合,得到液体B;
(3)将粉末A加入液体B中,其中粉末A的浓度为40g/L,搅拌均匀,得到溶液C;
(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在40℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在50℃烘干,重复此涂刷-烘干过程共8次,得到样品D;
(5)将样品D置于热处理炉中,在氮气保护环境下,以4℃/min的升温速度升温至300℃,并保温40min,再以2℃/min的升温速度升温至1300℃,保温110min,体系自然冷却后,得到样品E;
(6)将样品E置于真空管式炉中,在空气环境下,以8℃/min的升温速度升温至700℃,并保温50min,体系自然冷却后,得到样品F;
(7)将粉末A和水按照15g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡2h,取出后在温度为50℃的条件下烘干,即可得到生物基耐火纸。
实施例子6
(1)将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:9混合均匀,得到粉末A;
(2)将聚硅氮烷和二甲苯按照体积比1:2均匀混合,得到液体B;
(3)将粉末A加入液体B中,其中粉末A的浓度为30g/L,搅拌均匀,得到溶液C;
(4)将溶液C沿着同一方向均匀涂刷于石墨纸上,之后在40℃烘干,然后取出后再次沿着同一方向均匀涂刷溶液C,之后再次在60℃烘干,重复此涂刷-烘干过程共8次,得到样品D;
(5)将样品D置于热处理炉中,在氮气保护环境下,以2℃/min的升温速度升温至240℃,并保温30min,再以5℃/min的升温速度升温至1350℃,保温140min,体系自然冷却后,得到样品E;
(6)将样品E置于真空管式炉中,在空气环境下,以5℃/min的升温速度升温至750℃,并保温45min,体系自然冷却后,得到样品F;
(7)将粉末A和水按照15g/L均匀混合,得到溶液G,将样品F完全浸没入溶液G中,室温浸泡3h,取出后在温度为40℃的条件下烘干,即可得到生物基耐火纸。

Claims (3)

1.一种耐火1200秒的生物基耐火纸,其特征在于包括氮化硅纳米棒、铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒;具有定向三维网络结构的氮化硅纳米棒之间设计有铁掺杂磷酸氢钙纳米带,铁掺杂磷酸氢钙颗粒分布在铁掺杂磷酸氢钙纳米带表面和氮化硅纳米棒的表面,此外,铁掺杂磷酸氢钙颗粒还分布在复合结构的孔隙之间。
2.一种权利要求1所述耐火1200秒的生物基耐火纸的制备方法,其特征在于步骤如下:
步骤1:将铁掺杂磷酸氢钙纳米带和铁掺杂磷酸氢钙颗粒按照质量比1:5-1:10混合均匀形成粉末,将聚硅氮烷和二甲苯按照体积比1:1-1:4均匀混合形成液体;
步骤2:将粉末加入液体中,形成粉末浓度为10-50g/L的溶液;
步骤3:将步骤2的溶液沿着同一方向均匀涂刷于石墨纸上,之后在40-60℃烘干,然后取出后再次沿着同一方向均匀涂刷步骤2的溶液,之后再次在40-60℃烘干,重复此涂刷-烘干过程多次;
步骤4:将步骤3处理的石墨纸置于热处理炉中,在氮气保护环境下,以2-4℃/min的升温速度升温至230-300℃,并保温30-50min,再以2-5℃/min的升温速度升温至1150-1400℃,保温100-150min,体系自然冷却;
步骤5:再置于真空管式炉中,在空气环境下,以3-8℃/min的升温速度升温至600-900℃,并保温30-60min,体系自然冷却;
步骤6:再完全浸没入步骤1的粉末与水的混合溶液中,室温浸泡1-4h,取出后在温度为40-50℃的条件下烘干,得到耐火1200秒的生物基耐火纸;所述粉末与水的混合溶液中粉末的浓度为5-20g/L。
3.根据权利要求2所述的方法,其特征在于:所述步骤3的涂刷-烘干过程多次为6~8次。
CN201910948670.9A 2019-10-08 2019-10-08 一种耐火1200秒的生物基耐火纸及制备方法 Active CN110713381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910948670.9A CN110713381B (zh) 2019-10-08 2019-10-08 一种耐火1200秒的生物基耐火纸及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910948670.9A CN110713381B (zh) 2019-10-08 2019-10-08 一种耐火1200秒的生物基耐火纸及制备方法

Publications (2)

Publication Number Publication Date
CN110713381A true CN110713381A (zh) 2020-01-21
CN110713381B CN110713381B (zh) 2022-03-15

Family

ID=69212193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910948670.9A Active CN110713381B (zh) 2019-10-08 2019-10-08 一种耐火1200秒的生物基耐火纸及制备方法

Country Status (1)

Country Link
CN (1) CN110713381B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112457000A (zh) * 2020-12-21 2021-03-09 西北工业大学 一种(Si-N)@C-Ca-P-C生物医用骨替换复合材料及制备方法
CN115093239A (zh) * 2022-06-05 2022-09-23 西北工业大学 一种兼具疏水和防火性能的纸及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100077475A (ko) * 2008-12-29 2010-07-08 도레이첨단소재 주식회사 기재 상에 나노 구조체로 이루어진 망상 필름의 제조 방법 및 그에 따라 제조된 나노 구조체 망상 필름이 구비된 기재
TW201410601A (zh) * 2012-09-06 2014-03-16 綠晶能源股份有限公司 軟性石墨紙及其製造方法及其增厚結構
CN103705977A (zh) * 2013-12-31 2014-04-09 深圳大学 含掺杂型羟基磷灰石涂层碳/碳复合材料及其制备方法
CN105401190A (zh) * 2015-10-23 2016-03-16 西北工业大学 在炭/炭复合材料表面制备出高界面结合强度生物活性涂层的方法
CN108103846A (zh) * 2017-12-25 2018-06-01 中国科学院上海硅酸盐研究所 一种羟基磷灰石超长纳米线磁性耐火纸

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100077475A (ko) * 2008-12-29 2010-07-08 도레이첨단소재 주식회사 기재 상에 나노 구조체로 이루어진 망상 필름의 제조 방법 및 그에 따라 제조된 나노 구조체 망상 필름이 구비된 기재
TW201410601A (zh) * 2012-09-06 2014-03-16 綠晶能源股份有限公司 軟性石墨紙及其製造方法及其增厚結構
CN103705977A (zh) * 2013-12-31 2014-04-09 深圳大学 含掺杂型羟基磷灰石涂层碳/碳复合材料及其制备方法
CN105401190A (zh) * 2015-10-23 2016-03-16 西北工业大学 在炭/炭复合材料表面制备出高界面结合强度生物活性涂层的方法
CN108103846A (zh) * 2017-12-25 2018-06-01 中国科学院上海硅酸盐研究所 一种羟基磷灰石超长纳米线磁性耐火纸

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOCKIN H. K. XU: "Whisker-reinforced bioactive composites containing calcium phosphate cement fillers: effects of filler ratio and surface treatments on mechanical properties", 《JOURNAL OF BIOMEDICAL MATERIALS RESEARCH》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112457000A (zh) * 2020-12-21 2021-03-09 西北工业大学 一种(Si-N)@C-Ca-P-C生物医用骨替换复合材料及制备方法
CN112457000B (zh) * 2020-12-21 2022-08-05 西北工业大学 一种(Si-N)@C-Ca-P-C生物医用骨替换复合材料及制备方法
CN115093239A (zh) * 2022-06-05 2022-09-23 西北工业大学 一种兼具疏水和防火性能的纸及制备方法

Also Published As

Publication number Publication date
CN110713381B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
CN110713381B (zh) 一种耐火1200秒的生物基耐火纸及制备方法
CN107574705B (zh) 一种基于羟基磷灰石纳米线的防火耐磨可修复的超疏水纸的制备方法
CN108103846B (zh) 一种羟基磷灰石超长纳米线磁性耐火纸
De Souza et al. Rice hull-derived silica: applications in Portland cement and mullite whiskers
Zhou et al. Elaboration and characterization of tubular macroporous ceramic support for membranes from kaolin and dolomite
CN115124363B (zh) 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用
CN107012720A (zh) 一种生物兼容的导电无纺布制备方法
Li et al. Kevlar fiber-reinforced multifunctional superhydrophobic paper for oil–water separation and liquid transportation
Montero et al. Alumina porous nanomaterials obtained by colloidal processing using D-fructose as dispersant and porosity promoter
CN109293982A (zh) 一种具有高机械强度的复合气凝胶的制备方法
Mohamed et al. Effect of porogenic agent type and firing temperatures on properties of low-cost microfiltration membranes from kaolin
CN109082942B (zh) 耐火仿“宣纸”
Banoth et al. Sustainable thermochemical extraction of amorphous silica from biowaste
CN111603612B (zh) 一种多层交替结构复合型骨修复材料及制备方法
SHAO et al. Nanocomposite “Xuan Paper” made from ultralong hydroxyapatite nanowires and cellulose fibers and its anti-mildew properties
Shao et al. A new kind of nanocomposite Xuan paper comprising ultralong hydroxyapatite nanowires and cellulose fibers with a unique ink wetting performance
Hadidi et al. Cellulose nanocrystal-derived hollow mesoporous carbon spheres and their application as a metal-free catalyst
CN112500181B (zh) 氧化硅短纤维模压陶瓷天线窗复合材料及其制备方法
Santos et al. Yttrium disilicate micro-cellular architecture from biotemplating of luffa cylindrica
Jabbar et al. Preparing and Investigating the Structural Properties of Porous Ceramic Nano-Ferrite Composites
CN109626979B (zh) 一种孔形可调的硅酸钙多孔陶瓷膜的制备方法
CN109680365B (zh) 利用蒲苇纤维制备中空硼酸铝陶瓷纤维的方法
CN102424602A (zh) 吸附有减阻剂的硅藻土复合减阻表面的制作方法
Wang et al. Synthesis mechanism of different morphological SiC and its electromagnetic absorption performance
TW200914070A (en) Porous bio-material and method of preparation thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant